1
|
Gao H, Chen F, Wang S. Hesperidin reduces systolic blood pressure in diabetic patients and has no effect on blood pressure in healthy individuals: A systematic review and meta-analysis. Phytother Res 2024; 38:3706-3719. [PMID: 38772688 DOI: 10.1002/ptr.8231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/23/2024]
Abstract
In recent years, there have been a number of studies where hesperidin was administered to modify arterial blood pressure, but the conclusions of each study are contradictory. In order to investigate the effect of hesperidin on blood pressure, we searched the CNKI, Wanfang Database, the VIP database, Sinomed database, Pubmed, Embase and The Cochrane Library databases, and searched the literature on hesperidin and blood pressure published in Chinese and English journals, mainly focusing on patients' systolic blood pressure and diastolic blood pressure. The search time frame was from the inception of the databases until December 2023. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was used to assess the overall quality and used Cohen's kappa coefficient (κ) to measure agreement. We did preliminary screening of the retrieved literature through Notexpress, 14 articles with a total of 656 patients were included. Cochrance data conversion tool was used for data conversion, and RevMan 5.3 was used for meta-analysis, and finally Stata was used to make the Egger's test for the included study. The results of total population blood pressure showed that hesperidin had no antihypertensive effect on the population, but the conclusions changed when the population was divided into groups. The results of different populations showed that hesperidin had no effect on systolic blood pressure (weighted mean difference [WMD] = -0.50, 95% CI: -3.25 ~ 2.26, Z = 0.35, p = 0.72) and diastolic blood pressure (WMD = -0.51, 95% CI: -2.53 ~ 1.51, Z = 0.50, p = 0.62) in healthy individuals. However, hesperidin reduced systolic blood pressure in patients with type 2 diabetes (WMD = -4.32, 95% CI: - 7.77 ~ - 0.87, Z = 2.45, p = 0.01), and had a tendency to reduce diastolic blood pressure in diabetic patients (WMD = -3.72, 95% CI: -7.63 ~ 0.18, Z = 1.87, p = 0.06). The results in patients with type 2 diabetes needed to be further supported by future research focusing on individuals with diabetes.
Collapse
Affiliation(s)
- Haifeng Gao
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Fang Chen
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Shuo Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| |
Collapse
|
2
|
Mechanistic insights into dietary (poly)phenols and vascular dysfunction-related diseases using multi-omics and integrative approaches: Machine learning as a next challenge in nutrition research. Mol Aspects Med 2023; 89:101101. [PMID: 35728999 DOI: 10.1016/j.mam.2022.101101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023]
Abstract
Dietary (poly)phenols have been extensively studied for their vasculoprotective effects and consequently their role in preventing or delaying onsets of cardiovascular and metabolic diseases. Even though early studies have ascribed the vasculoprotective properties of (poly)phenols primarily on their putative free radical scavenging properties, recent data indicate that in biological systems, (poly)phenols act primarily through genomic and epigenomic mechanisms. The molecular mechanisms underlying their health properties are still not well identified, mainly due to the use of physiologically non-relevant conditions (native molecules or extracts at high concentrations, rather than circulating metabolites), but also due to the use of targeted genomic approaches aiming to evaluate the effect only on few specific genes, thus preventing to decipher detailed molecular mechanisms involved. The use of state-of-the-art untargeted analytical methods represents a significant breakthrough in nutrigenomics, as these methods enable detailed insights into the effects at each specific omics level. Moreover, the implementation of multi-omics approaches allows integration of different levels of regulation of cellular functions, to obtain a comprehensive picture of the molecular mechanisms of action of (poly)phenols. In combination with bioinformatics and the methods of machine learning, multi-omics has potential to make a huge contribution to the nutrition science. The aim of this review is to provide an overview of the use of the omics, multi-omics, and integrative approaches in studying the vasculoprotective properties of dietary (poly)phenols and address the potentials for use of the machine learning in nutrigenomics.
Collapse
|
3
|
Wang Z, Ma R, Jia Z, Lin P, Zhao Z, Wang W, Yi S, Li X, Li J. Investigating on the influence mechanism of sausage of sea bass on calcium absorption and transport based on Caco-2 cell monolayer model. Front Nutr 2022; 9:1046945. [PMID: 36330132 PMCID: PMC9623112 DOI: 10.3389/fnut.2022.1046945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
A monolayer Caco-2 cell model was established to explore the effects of sea bass sausage digestive juice containing phosphate on calcium ion transport. Differential proteins of Caco-2 cells treated with fish sausage juice were detected and analyzed by gene ontology (GO) functional annotation and kyoto encyclopedia of genes and genomes (KEGG) pathway analyses. Results revealed that after treatment with 0.23 mg/mL digestive juice of perch sausage in vitro, Caco-2 cell viability was the highest at 72 h (99.84%). Additionally, 0.23 mg/mL digestive juice of perch sausage in vitro significantly increased calcium ion transport. The transfer volume was 1.396 μg/well. Fish sausages containing phosphate significantly affected the protein expression levels of Caco-2 cells. Two hundred one differential proteins were detected, including 114 up-regulated and 87 down-regulated proteins. The main differential proteins included P02795, Q9P0W0, Q96PU5, Q9GZT9 and Q5EBL8. The adjustment ratios of the fish sausage group were 0.7485, 1.373, 1.2535, 0.6775, and 0.809, respectively. The pathway analysis showed that phosphate affected calcium ion absorption and transport through the P02795 enrichment pathway. The fish sausage group showed that the immune-related functions of cells were affected. This study expounds the effects of water-retaining agents on the nutritional quality of aquatic products and provides theoretical support for the research and application of surimi products.
Collapse
|
4
|
Pla-Pagà L, Pedret A, Valls RM, Calderón-Pérez L, Llauradó E, Companys J, Martín-Luján F, Moragas A, Canela N, Puiggròs F, Caimari A, Del Bas JM, Arola L, Solà R, Mayneris-Perxachs J. Effects of Hesperidin Consumption on the Cardiovascular System in Pre- and Stage 1 Hypertensive Subjects: Targeted and Non-Targeted Metabolomic Approaches (CITRUS Study). Mol Nutr Food Res 2021; 65:e2001175. [PMID: 34272817 DOI: 10.1002/mnfr.202001175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/18/2021] [Indexed: 12/20/2022]
Abstract
SCOPE The aim of the present work is to determine new biomarkers of the biological effects of hesperidin in orange juice (OJ) applying a non-targeted metabolomics approach validated by targeted metabolomics analyses of compliance biomarkers. METHODS AND RESULTS Plasma/serum and urine targeted (HPLC-MS/MS) and untargeted (1 H-NMR) metabolomics signatures are explored in a subsample with pre- and stage-1 hypertension subjects of the CITRUS study (N = 159). Volunteers received 500 mL day-1 of control drink, OJ, or hesperidin-enriched OJ (EOJ) for 12-weeks. A 6-h postprandrial study is performed at baseline. Targeted analyses reveals plasma and urine hesperetin 7-O-β-d-glucuronide as the only metabolite differing between OJ and EOJ groups after 12-weeks consumption, and in urine is correlated with a decreased systolic blood pressure level. The non-targeted approach shows that after single dose and 12-weeks consumption of OJ and EOJ change several metabolites related with an anti-inflammatory and antioxidant actions, lower blood pressure levels and uremic toxins. CONCLUSIONS Hesperetin 7-O-β-d-glucuronide can be a candidate marker for distinguishing between the consumption of different hesperidin doses at 12-weeks consumption as well as a potential agent mediating blood pressure reduction. Moreover, changes in different endogenous metabolites can explain the mechanisms of action and the biological effects of hesperidin consumption.
Collapse
Affiliation(s)
- L Pla-Pagà
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain.,Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Spain
| | - A Pedret
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain.,Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Spain
| | - R M Valls
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain.,Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Spain
| | - L Calderón-Pérez
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain.,Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Spain
| | - E Llauradó
- Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Spain
| | - J Companys
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain.,Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Spain
| | - F Martín-Luján
- Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Spain.,Institut Universitari d'Investigació en Atenció Primària-IDIAP Jordi Gol, Tarragona, Spain.,Primary Care Centre Sant Pere, Institut Català de la Salut, Tarragona, Spain
| | - A Moragas
- Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Spain.,Institut Universitari d'Investigació en Atenció Primària-IDIAP Jordi Gol, Tarragona, Spain.,Primary Care Centre Jaume I, Institut Català de la Salut, Tarragona, Spain
| | - N Canela
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain.,Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Science, Reus, Spain
| | - F Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
| | - A Caimari
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
| | - J M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
| | - L Arola
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain
| | - R Solà
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain.,Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-Salut), Universitat Rovira i Virgili, Reus, Spain.,Hospital Universitari Sant Joan, Reus, Spain
| | - J Mayneris-Perxachs
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain.,Department of Endocrinology, Diabetes and Nutrition, Dr Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
5
|
Kao TW, Huang CC. Recent Progress in Metabolic Syndrome Research and Therapeutics. Int J Mol Sci 2021; 22:6862. [PMID: 34202257 PMCID: PMC8269131 DOI: 10.3390/ijms22136862] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic syndrome (MetS) is a well-defined yet difficult-to-manage disease entity. Both the precipitous rise in its incidence due to contemporary lifestyles and the growing heterogeneity among affected populations present unprecedented challenges. Moreover, the predisposed risk for developing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in populations with MetS, and the viral impacts on host metabolic parameters, underscores the need to investigate this mechanism thoroughly. Recent investigations of metabolomics and proteomics have revealed not only differentially expressed substances in MetS, but also the consequences of diet consumption and physical activity on energy metabolism. These variations in metabolites, as well as protein products, also influence a wide spectrum of host characteristics, from cellular behavior to phenotype. Research on the dysregulation of gut microbiota and the resultant inflammatory status has also contributed to our understanding of the underlying pathogenic mechanisms. As for state-of-the-art therapies, advancing depictions of the bio-molecular landscape of MetS have emerged and now play a key role in individualized precision medicine. Fecal microbiota transplantation, aiming to restore the host's homeostasis, and targeting of the bile acid signaling pathway are two approaches to combatting MetS. Comprehensive molecular inquiries about MetS by omics measures are mandatory to facilitate the development of novel therapeutic modalities.
Collapse
Affiliation(s)
- Ting-Wei Kao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Chin-Chou Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
6
|
Nakazawa Y, Doki Y, Sugiyama Y, Kobayashi R, Nagai N, Morisita N, Endo S, Funakoshi-Tago M, Tamura H. Effect of Alpha-Glucosyl-Hesperidin Consumption on Lens Sclerosis and Presbyopia. Cells 2021; 10:cells10020382. [PMID: 33673261 PMCID: PMC7917927 DOI: 10.3390/cells10020382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Presbyopia is characterized by a decline in the ability to accommodate the lens. The most commonly accepted theory for the onset of presbyopia is an age-related increase in the stiffness of the lens. However, the cause of lens sclerosis remains unclear. With age, water microcirculation in the lens could change because of an increase in intracellular pressure. In the lens, the intracellular pressure is controlled by the Transient Receptor Potential Vanilloid (TRPV) 1 and TRPV4 feedback pathways. In this study, we tried to elucidate that administration of α-glucosyl-hesperidin (G-Hsd), previously reported to prevent nuclear cataract formation, affects lens elasticity and the distribution of TRPV channels and Aquaporin (AQP) channels to meet the requirement of intracellular pressure. As a result, the mouse control lens was significantly toughened compared to both the 1% and 2% G-Hsd mouse lens treatments. The anti-oxidant levels in the lens and plasma decreased with age; however, this decrease could be nullified with either 1% or 2% G-Hsd treatment in a concentration- and exposure time-dependent manner. Moreover, G-Hsd treatment affected the TRPV4 distribution, but not TRPV1, AQP0, and AQP5, in the peripheral area and could maintain intracellular pressure. These findings suggest that G-Hsd has great potential as a compound to prevent presbyopia and/or cataract formation.
Collapse
Affiliation(s)
- Yosuke Nakazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibako Minato-ku, Tokyo 105-8512, Japan; (Y.D.); (Y.S.); (R.K.); (M.F.-T.); (H.T.)
- Correspondence: ; Tel.: +81-3-5400-2689
| | - Yuri Doki
- Faculty of Pharmacy, Keio University, 1-5-30 Shibako Minato-ku, Tokyo 105-8512, Japan; (Y.D.); (Y.S.); (R.K.); (M.F.-T.); (H.T.)
| | - Yuki Sugiyama
- Faculty of Pharmacy, Keio University, 1-5-30 Shibako Minato-ku, Tokyo 105-8512, Japan; (Y.D.); (Y.S.); (R.K.); (M.F.-T.); (H.T.)
| | - Ryota Kobayashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibako Minato-ku, Tokyo 105-8512, Japan; (Y.D.); (Y.S.); (R.K.); (M.F.-T.); (H.T.)
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan;
| | - Naoki Morisita
- R&D Division, Hayashibara Co., Ltd., Okayama 702-8006, Japan; (N.M.); (S.E.)
| | - Shin Endo
- R&D Division, Hayashibara Co., Ltd., Okayama 702-8006, Japan; (N.M.); (S.E.)
| | - Megumi Funakoshi-Tago
- Faculty of Pharmacy, Keio University, 1-5-30 Shibako Minato-ku, Tokyo 105-8512, Japan; (Y.D.); (Y.S.); (R.K.); (M.F.-T.); (H.T.)
| | - Hiroomi Tamura
- Faculty of Pharmacy, Keio University, 1-5-30 Shibako Minato-ku, Tokyo 105-8512, Japan; (Y.D.); (Y.S.); (R.K.); (M.F.-T.); (H.T.)
| |
Collapse
|