1
|
Nechalová L, Bielik V, Hric I, Babicová M, Baranovičová E, Grendár M, Koška J, Penesová A. Gut microbiota and metabolic responses to a 12-week caloric restriction combined with strength and HIIT training in patients with obesity: a randomized trial. BMC Sports Sci Med Rehabil 2024; 16:239. [PMID: 39639405 PMCID: PMC11619444 DOI: 10.1186/s13102-024-01029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Nowadays, obesity has become a major health issue. In addition to negatively affecting body composition and metabolic health, recent evidence shows unfavorable shifts in gut microbiota in individuals with obesity. However, the effects of weight loss on gut microbes and metabolites remain controversial. Therefore, the purpose of this study was to investigate the effects of a 12-week program on gut microbiota and metabolic health in patients with obesity. METHODS We conducted a controlled trial in 23 male and female patients with obesity. Twelve participants completed a 12-week program of caloric restriction combined with strength and HIIT training (INT, pre-BMI 37.33 ± 6.57 kg/m2), and eleven participants were designated as non-intervention controls (pre-BMI 38.65 ± 8.07 kg/m2). Metagenomic sequencing of the V3-V4 region of the 16S rDNA gene from fecal samples allowed for gut microbiota classification. Nuclear magnetic resonance spectroscopy characterized selected serum and fecal metabolite concentrations. RESULTS Within INT, we observed a significant improvement in body composition; a significant decrease in liver enzymes (AST, ALT, and GMT); a significant increase in the relative abundance of the commensal bacteria (e.g., Akkermansia muciniphila, Parabacteroides merdae, and Phocaeicola vulgatus); and a significant decrease in the relative abundance of SCFA-producing bacteria (e.g., the genera Butyrivibrio, Coprococcus, and Blautia). In addition, significant correlations were found between gut microbes, body composition, metabolic health biomarkers, and SCFAs. Notably, the Random Forest Machine Learning analysis identified predictors (Butyrivibrio fibrisolvens, Blautia caecimuris, Coprococcus comes, and waist circumference) with a moderate ability to discriminate between INT subjects pre- and post-intervention. CONCLUSIONS Our results indicate that a 12-week caloric restriction combined with strength and HIIT training positively influences body composition, metabolic health biomarkers, gut microbiota, and microbial metabolites, demonstrating significant correlations among these variables. We observed a significant increase in the relative abundance of bacteria linked to obesity, e.g., Akkermansia muciniphila. Additionally, our study contributes to the ongoing debate about the role of SCFAs in obesity, as we observed a significant decrease in SCFA producers after a 12-week program. TRIAL REGISTRATION The trial was registered on [05/12/2014] with ClinicalTrials.gov (No: NCT02325804).
Collapse
Affiliation(s)
- Libuša Nechalová
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, 814 69, Slovakia
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, Bratislava, 845 05, Slovakia
| | - Viktor Bielik
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, 814 69, Slovakia.
| | - Ivan Hric
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, 814 69, Slovakia
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, Bratislava, 845 05, Slovakia
| | - Miriam Babicová
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, 814 69, Slovakia
| | - Eva Baranovičová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, 036 01, Slovakia
| | - Marián Grendár
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, 036 01, Slovakia
| | - Juraj Koška
- Phoenix VA Health Care System, Phoenix, AZ, USA
| | - Adela Penesová
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, 814 69, Slovakia
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, Bratislava, 845 05, Slovakia
| |
Collapse
|
2
|
Hemmati MA, Monemi M, Asli S, Mohammadi S, Foroozanmehr B, Haghmorad D, Oksenych V, Eslami M. Using New Technologies to Analyze Gut Microbiota and Predict Cancer Risk. Cells 2024; 13:1987. [PMID: 39682735 PMCID: PMC11640725 DOI: 10.3390/cells13231987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
The gut microbiota significantly impacts human health, influencing metabolism, immunological responses, and disease prevention. Dysbiosis, or microbial imbalance, is linked to various diseases, including cancer. It is crucial to preserve a healthy microbiome since pathogenic bacteria, such as Escherichia coli and Fusobacterium nucleatum, can cause inflammation and cancer. These pathways can lead to the formation of tumors. Recent advancements in high-throughput sequencing, metagenomics, and machine learning have revolutionized our understanding of the role of gut microbiota in cancer risk prediction. Early detection is made easier by machine learning algorithms that improve the categorization of cancer kinds based on microbiological data. Additionally, the investigation of the microbiome has been transformed by next-generation sequencing (NGS), which has made it possible to fully profile both cultivable and non-cultivable bacteria and to understand their roles in connection with cancer. Among the uses of NGS are the detection of microbial fingerprints connected to treatment results and the investigation of metabolic pathways implicated in the development of cancer. The combination of NGS with machine learning opens up new possibilities for creating customized medicine by enabling the development of diagnostic tools and treatments that are specific to each patient's microbiome profile, even in the face of obstacles like data complexity. Multi-omics studies reveal microbial interactions, biomarkers for cancer detection, and gut microbiota's impact on cancer progression, underscoring the need for further research on microbiome-based cancer prevention and therapy.
Collapse
Affiliation(s)
- Mohammad Amin Hemmati
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran; (M.A.H.); (B.F.)
| | - Marzieh Monemi
- Department of Basic Science, Faculty of Pharmacy and Pharmaceutical Science, Tehran Medical Science, Islamic Azad University, Tehran 19395-1495, Iran;
| | - Shima Asli
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran; (S.A.); (S.M.)
| | - Sina Mohammadi
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran; (S.A.); (S.M.)
| | - Behina Foroozanmehr
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran; (M.A.H.); (B.F.)
| | - Dariush Haghmorad
- Department of Immunology, Semnan University of Medical Sciences, Semnan 35147-99442, Iran;
| | - Valentyn Oksenych
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7028 Trondheim, Norway
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Majid Eslami
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| |
Collapse
|
3
|
Hu Y, Wang S, Wang R, Zhang Y, Yuan Q, Yuan C. Total saponins from Panax japonicus regulated the intestinal microbiota to alleviate lipid metabolism disorders in aging mice. Arch Gerontol Geriatr 2024; 125:105500. [PMID: 38851092 DOI: 10.1016/j.archger.2024.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
Total saponins from Panax japonicus (TSPJ) have many beneficial physiological activities, particularly in alleviating the damages of aging and abnormal lipid metabolism. This work used mice models to investigate if TSPJ reduced obesity and regulated metabolic functions via the intestinal microbiota, the disturbance of which has been shown to cause aging-related diseases. The results showed that TSPJ significantly reduced the weight and blood lipid level of aging mice. Further analyses showed that TSPJ significantly inhibited adipogenesis, changed the composition of the intestinal flora, and protected the integrity of the intestinal barrier. It was inferred from the accumulated experimental data that TSPJ helped to combat obesity in aging mice by regulating the intestinal microbiota and promoting microbial metabolism.
Collapse
Affiliation(s)
- Yaqi Hu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Shuwen Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Rui Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yifan Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Qi Yuan
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
4
|
Aggarwal H, Gautam J, Kumari D, Gupta SK, Bajpai S, Chaturvedi K, Kumar Y, Dikshit M. Comparative profiling of gut microbiota and metabolome in diet-induced obese and insulin-resistant C57BL/6J mice. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119643. [PMID: 37996062 DOI: 10.1016/j.bbamcr.2023.119643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Diet-based models are commonly used to investigate obesity and related disorders. We conducted a comparative profiling of three obesogenic diets HFD, high fat diet; HFHF, high fat high fructose diet; and HFCD, high fat choline deficient diet to assess their impact on the gut microbiome and metabolome. After 20 weeks, we analyzed the gut microbiota and metabolomes of liver, plasma, cecal, and fecal samples. Fecal and plasma bile acids (BAs) and fecal short-chain fatty acids (SCFAs) were also examined. Significant changes were observed in fecal and cecal metabolites, with increased Firmicutes and decreased Bacteroidetes in the HFD, HFHF, and HFCD-fed mice compared to chow and LFD (low fat diet)-fed mice. Most BAs were reduced in plasma and fecal samples of obese groups, except taurocholic acid, which increased in HFCD mice's plasma. SCFAs like acetate and butyrate significantly decreased in obesogenic diet groups, while propionic acid specifically decreased in the HFCD group. Pathway analysis revealed significant alterations in amino acid, carbohydrate metabolism, and nucleic acid biosynthesis pathways in obese mice. Surprisingly, even LFD-fed mice showed distinct changes in microbiome and metabolite profiles compared to the chow group. This study provides insights into gut microbiome dysbiosis and metabolite alterations induced by obesogenic and LFD diets in various tissues. These findings aid in selecting suitable diet models to study the role of the gut microbiome and metabolites in obesity and associated disorders, with potential implications for understanding similar pathologies in humans.
Collapse
Affiliation(s)
- Hobby Aggarwal
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Jyoti Gautam
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Deepika Kumari
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sonu Kumar Gupta
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sneh Bajpai
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Kartikey Chaturvedi
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Yashwant Kumar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| | - Madhu Dikshit
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| |
Collapse
|
5
|
Nogacka AM, Saturio S, Alvarado-Jasso GM, Salazar N, de los Reyes Gavilán CG, Martínez-Faedo C, Suarez A, Wang R, Miyazawa K, Harata G, Endo A, Arboleya S, Gueimonde M. Probiotic-Induced Modulation of Microbiota Composition and Antibiotic Resistance Genes Load, an In Vitro Assessment. Int J Mol Sci 2024; 25:1003. [PMID: 38256076 PMCID: PMC10816173 DOI: 10.3390/ijms25021003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The imbalance of the gut microbiota (GM) is known as dysbiosis and is associated with disorders such as obesity. The increasing prevalence of microorganisms harboring antibiotic resistance genes (ARG) in the GM has been reported as a potential risk for spreading multi-drug-resistant pathogens. The objective of this work was the evaluation, in a fecal culture model, of different probiotics for their ability to modulate GM composition and ARG levels on two population groups, extremely obese (OB) and normal-weight (NW) subjects. Clear differences in the basal microbiota composition were observed between NW and OB donors. The microbial profile assessed by metataxonomics revealed the broader impact of probiotics on the OB microbiota composition. Also, supplementation with probiotics promoted significant reductions in the absolute levels of tetM and tetO genes. Regarding the blaTEM gene, a minor but significant decrease in both donor groups was detected after probiotic addition. A negative association between the abundance of Bifidobacteriaceae and the tetM gene was observed. Our results show the ability of some of the tested strains to modulate GM. Moreover, the results suggest the potential application of probiotics for reducing the levels of ARG, which constitutes an interesting target for the future development of probiotics.
Collapse
Affiliation(s)
- Alicja Maria Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain; (A.M.N.); (S.S.); (G.M.A.-J.); (N.S.); (C.G.d.l.R.G.); (S.A.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
| | - Silvia Saturio
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain; (A.M.N.); (S.S.); (G.M.A.-J.); (N.S.); (C.G.d.l.R.G.); (S.A.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
| | - Guadalupe Monserrat Alvarado-Jasso
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain; (A.M.N.); (S.S.); (G.M.A.-J.); (N.S.); (C.G.d.l.R.G.); (S.A.)
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain; (A.M.N.); (S.S.); (G.M.A.-J.); (N.S.); (C.G.d.l.R.G.); (S.A.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
| | - Clara G. de los Reyes Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain; (A.M.N.); (S.S.); (G.M.A.-J.); (N.S.); (C.G.d.l.R.G.); (S.A.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
| | - Ceferino Martínez-Faedo
- Endocrinology and Nutrition Service, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain;
- Endocrinology, Nutrition, Diabetes and Obesity Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Adolfo Suarez
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
- Digestive Service, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain
| | - Ruipeng Wang
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama 241-0021, Japan; (R.W.); (K.M.); (G.H.)
| | - Kenji Miyazawa
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama 241-0021, Japan; (R.W.); (K.M.); (G.H.)
| | - Gaku Harata
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama 241-0021, Japan; (R.W.); (K.M.); (G.H.)
| | - Akihito Endo
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Abashiri, Hokkaido 099-2493, Japan;
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain; (A.M.N.); (S.S.); (G.M.A.-J.); (N.S.); (C.G.d.l.R.G.); (S.A.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain; (A.M.N.); (S.S.); (G.M.A.-J.); (N.S.); (C.G.d.l.R.G.); (S.A.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
| |
Collapse
|
6
|
Tian S, Chu Q, Ma S, Ma H, Song H. Dietary Fiber and Its Potential Role in Obesity: A Focus on Modulating the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14853-14869. [PMID: 37815013 DOI: 10.1021/acs.jafc.3c03923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Dietary fiber is a carbohydrate polymer with ten or more monomeric units that are resistant to digestion by human digestive enzymes, and it has gained widespread attention due to its significant role in health improvement through regulating gut microbiota. In this review, we summarized the interaction between dietary fiber, gut microbiota, and obesity, and the beneficial effects of dietary fiber on obesity through the modulation of microbiota, such as modifying selective microbial composition, producing starch-degrading enzymes, improving gut barrier function, reducing the inflammatory response, reducing trimethylamine N-oxide, and promoting the production of gut microbial metabolites (e.g., short chain fatty acids, bile acids, ferulic acid, and succinate). In addition, factors affecting the gut microbiota composition and metabolites by dietary fiber (length of the chain, monosaccharide composition, glycosidic bonds) were also concluded. Moreover, strategies for enhancing the biological activity of dietary fiber (fermentation technology, ultrasonic modification, nanotechnology, and microfluidization) were subsequently discussed. This review may provide clues for deeply exploring the structure-activity relationship between dietary fiber and antiobesity properties by targeting specific gut microbiota.
Collapse
Affiliation(s)
- Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shaotong Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Huan Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| |
Collapse
|
7
|
González A, Conceição E, Teixeira JA, Nobre C. In vitro models as a tool to study the role of gut microbiota in obesity. Crit Rev Food Sci Nutr 2023; 64:10912-10923. [PMID: 37403775 DOI: 10.1080/10408398.2023.2232022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Obesity, a highly prevalent condition worldwide that leads to the development of multiple metabolic diseases, has been related to gut microbial dysbiosis. To understand this correlation, in vivo models have been extremely useful. However, its use is limited by associated ethical concerns, high costs, low representativeness, and low reproducibility. Therefore, new and improved in vitro models have been developed in recent years, representing a promising tool in the study of the role of gut microbiota modulation in weight management and metabolic health. This review aims to provide an update on the main findings obtained in vitro regarding gut microbiota modulation with probiotics, and food compounds, and its interaction with the host metabolism, associated with obesity. Available in vitro colon models currently used to study obesity are discussed, including batch and dynamic fermentation systems, and models that allow the study of microbiota-host interactions using cell cultures. In vitro models have demonstrated that homeostatic microbiota may help overcome obesity by producing satiety-related neurotransmitters and metabolites that protect the gut barrier and improve the metabolic activity of adipose tissue. In vitro models may be the key to finding new treatments for obesity-related disorders.
Collapse
Affiliation(s)
- Abigail González
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Eva Conceição
- CIPsi - Psychology Research Centre, University of Minho Campus de Gualtar, Braga, Portugal
| | - José António Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Portugal
| | - Clarisse Nobre
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Portugal
| |
Collapse
|
8
|
Kubáňová L, Bielik V, Hric I, Ugrayová S, Šoltys K, Rádiková Ž, Baranovičová E, Grendár M, Kolisek M, Penesová A. Gut Microbiota and Serum Metabolites in Individuals with Class III Obesity Without Type 2 Diabetes Mellitus: Pilot Analysis. Metab Syndr Relat Disord 2023. [PMID: 37083403 DOI: 10.1089/met.2022.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Background: Gut microbial composition seems to change in association with prediabetes. The purpose of this prospective cross-sectional study was to compare the composition of gut microbiota and energy metabolites between individuals with class III obesity but without type 2 diabetes mellitus (OB) and healthy normal weight controls. Methods: The subjects of this prospective cross-sectional study were participants recruited from a previous clinical trial (No: NCT02325804), with intervention focused on weight loss. We recruited 19 OB [mean age ± standard deviation (SD) was 35.4 ± 7.0 years, mean body mass index (BMI) ± SD was 48.8 ± 6.7 kg/m2] and 23 controls (mean age ± SD was 31.7 ± 14.8 years, mean BMI ± SD was 22.2 ± 1.7 kg/m2). Their fecal microbiota was categorized using specific primers targeting the V1-V3 region of 16S rDNA, whereas serum metabolites were characterized by nuclear magnetic resonance spectroscopy. Multivariate statistical analysis and Random Forest models were applied to discriminate predictors with the highest variable importance. Results: We observed a significantly lower microbial α-diversity (P = 0.001) and relative abundance of beneficial bacterium Akkermansia (P = 0.001) and the short-chain fatty acid-producing bacteria Eubacterium hallii (P = 0.019), Butyrivibrio (P = 0.024), Marvinbryantia (P = 0.010), and Coprococcus (P = 0.050) and a higher abundance of the pathogenic bacteria Bilophila (P = 0.018) and Fusobacterium (P = 0.022) in OB compared with controls. Notably, the Random Forest machine learning analysis identified energy metabolites (citrate and acetate), HOMA-IR, and insulin as important predictors capable of discriminating between OB and controls. Conclusions: Our results suggest that changes in gut microbiota and in serum acetate and citrate are additional promising biomarkers before progression to Type 2 diabetes. The non-invasive manipulation of gut microbiota composition in OB through a healthy lifestyle, thus, offers a new approach for managing class III obesity and associated disorders. ClinicalTrials.gov identifier: NCT02325804.
Collapse
Affiliation(s)
- Libuša Kubáňová
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viktor Bielik
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ivan Hric
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Simona Ugrayová
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia
| | - Katarína Šoltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Žofia Rádiková
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eva Baranovičová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Marián Grendár
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Kolisek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Adela Penesová
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
9
|
Key Stratification of Microbiota Taxa and Metabolites in the Host Metabolic Health-Disease Balance. Int J Mol Sci 2023; 24:ijms24054519. [PMID: 36901949 PMCID: PMC10003303 DOI: 10.3390/ijms24054519] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Human gut microbiota seems to drive the interaction with host metabolism through microbial metabolites, enzymes, and bioactive compounds. These components determine the host health-disease balance. Recent metabolomics and combined metabolome-microbiome studies have helped to elucidate how these substances could differentially affect the individual host pathophysiology according to several factors and cumulative exposures, such as obesogenic xenobiotics. The present work aims to investigate and interpret newly compiled data from metabolomics and microbiota composition studies, comparing controls with patients suffering from metabolic-related diseases (diabetes, obesity, metabolic syndrome, liver and cardiovascular diseases, etc.). The results showed, first, a differential composition of the most represented genera in healthy individuals compared to patients with metabolic diseases. Second, the analysis of the metabolite counts exhibited a differential composition of bacterial genera in disease compared to health status. Third, qualitative metabolite analysis revealed relevant information about the chemical nature of metabolites related to disease and/or health status. Key microbial genera were commonly considered overrepresented in healthy individuals together with specific metabolites, e.g., Faecalibacterium and phosphatidylethanolamine; and the opposite, Escherichia and Phosphatidic Acid, which is converted into the intermediate Cytidine Diphosphate Diacylglycerol-diacylglycerol (CDP-DAG), were overrepresented in metabolic-related disease patients. However, it was not possible to associate most specific microbiota taxa and metabolites according to their increased and decreased profiles analyzed with health or disease. Interestingly, positive association of essential amino acids with the genera Bacteroides were observed in a cluster related to health, and conversely, benzene derivatives and lipidic metabolites were related to the genera Clostridium, Roseburia, Blautia, and Oscillibacter in a disease cluster. More studies are needed to elucidate the microbiota species and their corresponding metabolites that are key in promoting health or disease status. Moreover, we propose that greater attention should be paid to biliary acids and to microbiota-liver cometabolites and its detoxification enzymes and pathways.
Collapse
|
10
|
Zhang N, Wang Q, Lin F, Zheng B, Huang Y, Yang Y, Xue C, Xiao M, Ye J. Neoagarotetraose alleviates high fat diet induced obesity via white adipocytes browning and regulation of gut microbiota. Carbohydr Polym 2022; 296:119903. [DOI: 10.1016/j.carbpol.2022.119903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 11/02/2022]
|
11
|
Zhao Q, Liu Z, Zhu Y, Wang H, Dai Z, Yang X, Ren X, Xue Y, Shen Q. Cooked Adzuki Bean Reduces High-Fat Diet-Induced Body Weight Gain, Ameliorates Inflammation, and Modulates Intestinal Homeostasis in Mice. Front Nutr 2022; 9:918696. [PMID: 35782919 PMCID: PMC9241564 DOI: 10.3389/fnut.2022.918696] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Adzuki bean is widely consumed in East Asia. Although the positive effects of its biologically active ingredients on obesity have been confirmed, the role of whole cooked adzuki bean in preventing obesity and the relationship between the effects and gut microbiota remain unclear. Mice were fed either a low-fat diet (LFD) or high-fat diet (HFD) with or without 15% cooked adzuki bean for 12 weeks. Cooked adzuki bean significantly inhibited weight gain and hepatic steatosis, reduced high levels of serum triacylglycerol (TG), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), and alleviated systemic inflammation and metabolic endotoxemia in mice fed a HFD. Importantly, cooked adzuki bean regulated gut microbiota composition, decreased the abundance of lipopolysaccharide (LPS)-producing bacteria (Desulfovibrionaceae,Helicobacter,and Bilophila), and HFD-dependent taxa (Deferribacteraceae, Ruminiclostridium_9, Ruminiclostridium, Mucispirillum, Oscillibacter, Enterorhabdus, Tyzzerella, Anaerotruncus, Intestinimonas, unclassified_f_Ruminococcaceae, Ruminiclostridium_5, and Ruminococcaceae), and enriched Muribaculaceae, norank_f_Muribaculaceae, Anaeroplasma, Lachnospiraceae_NK4A136_group, and Lachnospiraceae to alleviate inflammation and metabolic disorders induced by HFD. These findings provide new evidence for understanding the anti-obesity effect of cooked adzuki bean.
Collapse
Affiliation(s)
- Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Zhenyu Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Yiqing Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Zijian Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Xuehao Yang
- Cofco Nutrition and Health Research Institute Co., LTD., Beijing, China
| | - Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- *Correspondence: Qun Shen,
| |
Collapse
|
12
|
Long-term daily high-protein, drained yoghurt consumption alters abundance of selected functional groups of the human gut microbiota and fecal short-chain fatty acid profiles in a cohort of overweight and obese women. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Guo K, Yan Y, Zeng C, Shen L, He Y, Tan Z. Study on Baohe Pills Regulating Intestinal Microecology and Treating Diarrhea of High-Fat and High-Protein Diet Mice. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6891179. [PMID: 35620223 PMCID: PMC9129966 DOI: 10.1155/2022/6891179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/18/2022] [Accepted: 04/09/2022] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To investigate the effects of Baohe pills on intestinal microorganisms and enzyme activities in mice with a high-fat and high-protein diet. METHODS 45 KM male mice were randomly divided into the control group, the high-fat and high-protein diet group, and the Baohe pill intervention group. The mice in the high-fat and high-protein diet group and the Baohe pill intervention group were fed with the self-made high-fat and high-protein diet as the sole food source of the mice, and the mice in the control group were fed with the normal diet. Starting from the 7th day of the feed intervention, mice in the Baohe pill intervention group were given 0.28 g/mL of Baohe pill decoction twice a day at the dose of 6.67 g/(kg·day), each time of 0.35 mL for 6 days. Mice in the control group and the high-fat and high-protein diet group were given the same amount of distilled water by gavage. The general state of mice in each group was observed, and the changes of intestinal microorganisms and intestinal enzyme activities were analyzed by culturable microorganism technology and intestinal functional enzyme detection technology. RESULTS The excrement of mice fed with a high-fat and high-protein diet was relatively thin and wet, and the Baohe pill intervention could not improve the symptoms well. In the high-fat and high-protein diet group, the number of bacteria, Escherichia coli, Lactobacillus, and Bifidobacterium, was significantly lower than that in the control group (P < 0.01). Baohe pills could obviously increase the high-fat, high-protein diet for the number of culturable microorganisms in mice, the total number of bacteria, and the number of Bifidobacteria in the most significant (P < 0.01), but the number of bacteria, Escherichia coli, and the Lactobacillus are still significantly lower than the control group (P < 0.01). In terms of enzyme activity, both contents and mucosa, the Baohe pill could improve the activities of amylase, protease, sucrase, and lactase in high-fat and high-protein diet mice, which were significantly different from the control group (P < 0.05). In terms of microbial activity, the intestinal contents of high-fat and high-protein mice were lower than those of the control group, while the intestinal mucosa was higher than that of the control group, but the difference was not significant (P > 0.05). Baohe pills could improve the intestinal contents and intestinal mucosal microbial activity of mice, and the difference was significant in the high-fat and high-protein diet group (P < 0.05). Discussion. A high-fat and high-protein diet can destroy the physiological balance of the body, which is mainly reflected in the disturbance of intestinal flora and the decrease of some enzyme activities and microbial activity. Baohe pills can restore the number of intestinal flora to a certain extent and improve the activities of various digestive enzymes including protease and amylase.
Collapse
Affiliation(s)
- KangXiao Guo
- Changsha Health Vocational College, Changsha, Hunan Province, China
| | - YongWang Yan
- Changsha Health Vocational College, Changsha, Hunan Province, China
| | - ChaoFeng Zeng
- Changsha Health Vocational College, Changsha, Hunan Province, China
| | - Ling Shen
- Changsha Health Vocational College, Changsha, Hunan Province, China
| | - YunShan He
- Hunan University of Chinese Medicine, Changsha, Hunan Province., China
| | - ZhouJin Tan
- Hunan University of Chinese Medicine, Changsha, Hunan Province., China
| |
Collapse
|
14
|
Impact of Food-Based Weight Loss Interventions on Gut Microbiome in Individuals with Obesity: A Systematic Review. Nutrients 2022; 14:nu14091953. [PMID: 35565919 PMCID: PMC9099876 DOI: 10.3390/nu14091953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/18/2022] Open
Abstract
The observation that the gut microbiota is different in healthy weight as compared with the obese state has sparked interest in the possible modulation of the microbiota in response to weight change. This systematic review investigates the effect of food-based weight loss diets on microbiota outcomes (α-diversity, β-diversity, relative bacterial abundance, and faecal short-chain fatty acids, SCFAs) in individuals without medical comorbidities who have successfully lost weight. Nineteen studies were included using the keywords ‘obesity’, ‘weight loss’, ‘microbiota’, and related terms. Across all 28 diet intervention arms, there were minimal changes in α- and β-diversity and faecal SCFA concentrations following weight loss. Changes in relative bacterial abundance at the phylum and genus level were inconsistent across studies. Further research with larger sample sizes, detailed dietary reporting, and consistent microbiota analysis techniques are needed to further our understanding of the effect of diet-induced weight loss on the gut microbiota.
Collapse
|
15
|
Han X, Zhao W, Zhou Q, Chen H, Yuan J, Zhang XF, Zhang Z. Procyanidins from Hawthorn ( Crataegus Pinnatifida) Alleviates Lipid Metabolism Disorder via Inhibiting Insulin Resistance and Oxidative Stress, Normalizing Gut Microbiota Structure and Intestinal Barrier, Further Suppressing Hepatic Inflammation and Lipid Accumulation. Food Funct 2022; 13:7901-7917. [DOI: 10.1039/d2fo00836j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, lipid metabolism disorder (LMD) has been regarded as a risky factor leading to multiple diseases and affecting human health. Procyanidins have been reported to be the potential therapy for...
Collapse
|
16
|
Song H, Shen X, Zhou Y, Zheng X. Black rice anthocyanins alleviate hyperlipidemia, liver steatosis and insulin resistance by regulating lipid metabolism and gut microbiota in obese mice. Food Funct 2021; 12:10160-10170. [PMID: 34528983 DOI: 10.1039/d1fo01394g] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hyperlipidemia, liver steatosis and insulin resistance are common metabolic diseases associated with obesity. The present study was designed to investigate the in vivo protective value of black rice anthocyanins (BRAN) on hyperlipidemia, liver steatosis and insulin resistance in mice with high-fat-diet (HFD)-induced obesity and elucidate the underlying mechanism. Specific pathogen-free male C57BL/6J mice (four weeks old, weighing 17.6-20.9 g) were randomly divided into three groups and fed with low-fat diet (LFD, 10% fat energy), HFD (45% fat energy), or HFD supplemented with BRAN by intragastric administration for 14 weeks. The obesity-related biochemical indices and hepatic gene expression levels were determined. 16S rRNA sequencing was used to determine the gut microbial changes induced by BRAN treatment. The results showed that the body weight gain, triglycerides, total cholesterol, steatosis scores and insulin resistance index in the BRAN group decreased by 24.69%, 29.83%, 28.08%, 46.67% and 40.42%, respectively, compared to the HFD group. Gene expression analysis indicated that BRAN treatment improved the gene expression profiles involved in lipid metabolism compared with the mice fed HFD alone. Moreover, BRAN treatment significantly altered the composition of the gut microbiota, which was closely correlated with the obesity-related biomarkers. In conclusion, this study demonstrated that dietary supplementation of BRAN protected from obesity-associated hyperlipidemia, hepatic steatosis and insulin resistance by influencing the gut microbiota and lipid metabolism.
Collapse
Affiliation(s)
- Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Yang Zhou
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Xiaodong Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Valdés A, Álvarez-Rivera G, Socas-Rodríguez B, Herrero M, Cifuentes A. Capillary electromigration methods for food analysis and Foodomics: Advances and applications in the period February 2019-February 2021. Electrophoresis 2021; 43:37-56. [PMID: 34473359 DOI: 10.1002/elps.202100201] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022]
Abstract
This work presents a revision of the main applications of capillary electromigration methods in food analysis and Foodomics. Articles that were published during the period February 2019-February 2021 are included. The work shows the multiple CE methods that have been developed and applied to analyze different types of molecules in foods. Namely, CE methods have been applied to analyze amino acids, biogenic amines, carbohydrates, chiral compounds, contaminants, DNAs, food additives, heterocyclic amines, lipids, secondary metabolites, peptides, pesticides, phenols, pigments, polyphenols, proteins, residues, toxins, vitamins, small organic and inorganic compounds, as well as other minor compounds. The last results on the use of CE for monitoring food interactions and food processing, including recent microchips developments and new applications of CE in Foodomics, are discussed too. The new procedures of CE to investigate food quality and safety, nutritional value, storage and bioactivity are also included in the present review work.
Collapse
|
18
|
Rogler G, Zaugg M. Nutrition-or Lack Thereof-As a Source of Gut Inflammation: Evidence from Basic Science and Clinical Studies. Mol Nutr Food Res 2021; 65:e2001086. [PMID: 33655661 DOI: 10.1002/mnfr.202001086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gerhard Rogler
- Department of Gastroenterology & Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Zaugg
- Department of Anesthesiology and Pain Medicine, Department of Pharmacology and Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| |
Collapse
|
19
|
Song H, Shen X, Wang F, Li Y, Zheng X. Black Current Anthocyanins Improve Lipid Metabolism and Modulate Gut Microbiota in High-Fat Diet-Induced Obese Mice. Mol Nutr Food Res 2021; 65:e2001090. [PMID: 33559369 DOI: 10.1002/mnfr.202001090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/21/2021] [Indexed: 12/25/2022]
Abstract
SCOPE This study aimed to explore the anti-obesity potential of blackcurrant anthocyanins (BCA) and investigate the correlation between the gut microbiota and the BCA-induced beneficial effects. METHODS AND RESULTS Male C57BL/6J mice (n = 36) are randomly assigned into low-fat diet group (LFD), high-fat diet group (HFD), and BCA group feeding HFD supplemented with BCA for 12 weeks. Body weight and food intake are monitored weekly. Obesity-related biochemical indexes and the expression levels of genes related to lipid metabolism are determined. Amplicon sequencing of the bacterial 16S rRNA gene is conducted to analyze the gut microbiota structure, and spearman correlation analysis is used to determine the correlations between gut microbiota and obesity-related indicators. The results showed that BCA treatment alleviated HFD-induced obesity, hyperlipemia, and hepatic steatosis. Moreover, BCA supplement improved hepatic lipid metabolism by regulating the expression of genes related to the synthesis and degradation of lipids and cholesterols. Microbial analysis revealed that BCA supplementation significantly changed the overall structure and composition of the gut microbiota, and resulted in an enrichment of Akkermansia_muciniphila, which is negatively correlated with the physical biomarkers. CONCLUSION This study demonstrated that BCA supplement could be a beneficial treatment for preventing HFD-induced obesity by targeting microbiota.
Collapse
Affiliation(s)
- Haizhao Song
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Fang Wang
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Yu Li
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Xiaodong Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
20
|
Daliri EBM, Ofosu FK, Chelliah R, Lee BH, Oh DH. Challenges and Perspective in Integrated Multi-Omics in Gut Microbiota Studies. Biomolecules 2021; 11:300. [PMID: 33671370 PMCID: PMC7922017 DOI: 10.3390/biom11020300] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
The advent of omic technology has made it possible to identify viable but unculturable micro-organisms in the gut. Therefore, application of multi-omic technologies in gut microbiome studies has become invaluable for unveiling a comprehensive interaction between these commensals in health and disease. Meanwhile, despite the successful identification of many microbial and host-microbial cometabolites that have been reported so far, it remains difficult to clearly identify the origin and function of some proteins and metabolites that are detected in gut samples. However, the application of single omic techniques for studying the gut microbiome comes with its own challenges which may be overcome if a number of different omics techniques are combined. In this review, we discuss our current knowledge about multi-omic techniques, their challenges and future perspective in this field of gut microbiome studies.
Collapse
Affiliation(s)
- Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea; (E.B.-M.D.); (F.K.O.); (R.C.)
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea; (E.B.-M.D.); (F.K.O.); (R.C.)
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea; (E.B.-M.D.); (F.K.O.); (R.C.)
| | - Byong H. Lee
- SportBiomics, Sacramento Inc., California, CA 95660, USA;
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea; (E.B.-M.D.); (F.K.O.); (R.C.)
| |
Collapse
|
21
|
Nogacka AM, de Los Reyes-Gavilán CG, Arboleya S, Ruas-Madiedo P, Martínez-Faedo C, Suarez A, He F, Harata G, Endo A, Salazar N, Gueimonde M. In vitro Selection of Probiotics for Microbiota Modulation in Normal-Weight and Severely Obese Individuals: Focus on Gas Production and Interaction With Intestinal Epithelial Cells. Front Microbiol 2021; 12:630572. [PMID: 33633711 PMCID: PMC7899977 DOI: 10.3389/fmicb.2021.630572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
The intestinal microbiota plays important roles in the maintenance of health. Strategies aiming at its modulation, such as probiotics, have received a deal of attention. Several strains have been studied in different in vitro models; however, the correlation of results obtained with the in vivo data has been limited. This questions the usefulness of such in vitro selection models, traditionally relying on over-simplified tests, not considering the influence of the accompanying microbiota or focusing on microbiota composition without considering functional traits. Here we assess the potential of six Bifidobacterium, Lactobacillus and Lacticaseibacillus strains in an in vitro model to determine their impact on the microbiota not just in terms of composition but also of functionality. Moreover, we compared the responses obtained in two different population groups: normal-weight and severely obese subjects. Fecal cultures were conducted to evaluate the impact of the strains on specific intestinal microbial groups, on the production of short-chain fatty acids, and on two functional responses: the production of gas and the interaction with human intestinal epithelial cells. The response to the different probiotics differed between both human groups. The addition of the probiotic strains did not induce major changes on the microbiota composition, with significant increases detected almost exclusively for the species added. Higher levels of gas production were observed in cultures from normal-weight subjects than in the obese population, with some strains being able to significantly reduce gas production in the latter group. Moreover, in obese subjects all the Bifidobacterium strains tested and Lacticaseibacillus rhamnosus GG were able to modify the response of the intestinal cells, restoring values similar to those obtained with the microbiotas of normal-weight subjects. Our results underline the need for the screening and selection of probiotics in a target-population specific manner by using appropriate in vitro models before enrolling in clinical intervention trials.
Collapse
Affiliation(s)
- Alicja Maria Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Functionality and Ecology of Beneficial Microorganisms, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Ceferino Martínez-Faedo
- Endocrinology and Nutrition Service, Central University Hospital of Asturias (HUCA), Oviedo, Spain.,Endocrinology, Nutrition, Diabetes and Obesity Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Adolfo Suarez
- Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain.,Digestive Service, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Fang He
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama, Japan
| | - Gaku Harata
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama, Japan
| | - Akihito Endo
- Department of Food and Cosmetic Science, Tokyo University of Agriculture, Abashiri, Japan
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| |
Collapse
|