1
|
Liu Z, Solano-Aguilar G, Lakshman S, Urban JF, Zhang M, Chen P, Yu LL, Sun J. Metabolic pathway and network analysis integration for discovering the biomarkers in pig feces after a controlled fruit-vegetable dietary intervention. Food Chem 2024; 461:140836. [PMID: 39154458 DOI: 10.1016/j.foodchem.2024.140836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
This study aimed to establish a strategy for identifying dietary intake biomarkers using a non-targeted metabolomic approach, including metabolic pathway and network analysis. The strategy was successfully applied to identify dietary intake biomarkers in fecal samples from pigs fed two doses of a polyphenol-rich fruit and vegetable (FV) diet following the Dietary Guidelines for Americans (DGA) recommendations. Potential biomarkers were identified among dietary treatment groups using liquid chromatography-high resolution mass spectrometry (LC-HRMS) based on a non-targeted metabolomic approach with metabolic pathway and network analysis. Principal component analysis (PCA) results showed significant differences in fecal metabolite profiles between the control and two FV intervention groups, indicating a diet-induced differential fecal metabolite profile after FV intervention. Metabolites from common flavonoids, e.g., (epi)catechin and protocatechuic acid, or unique flavonoids, e.g., 5,3',4'-trihydroxy-3-methoxy-6,7-methylenedioxyflavone and 3,5,3',4'-tetrahydroxy-6,7-methylenedioxyflavone, were identified as highly discriminating factors, confirming their potential as fecal markers for the FV dietary intervention. Microbiota pathway prediction using targeted flavonoids provided valuable and reliable biomarker exploration with high confidence. A correlation network analysis between these discriminatory ion features was applied to find connections to possible dietary biomarkers, further validating these biomarkers with biochemical insights. This study demonstrates that integrating metabolic pathways and network analysis with a non-targeted metabolomic approach is highly effective for rapid and accurate identification and prediction of fecal biomarkers under controlled dietary conditions in animal studies. This approach can also be utilized to study microbial metabolisms in human clinical research.
Collapse
Affiliation(s)
- Zhihao Liu
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Gloria Solano-Aguilar
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Sukla Lakshman
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Joseph F Urban
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Mengliang Zhang
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Pei Chen
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Jianghao Sun
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
| |
Collapse
|
2
|
Kortesniemi M, Noerman S, Kårlund A, Raita J, Meuronen T, Koistinen V, Landberg R, Hanhineva K. Nutritional metabolomics: Recent developments and future needs. Curr Opin Chem Biol 2023; 77:102400. [PMID: 37804582 DOI: 10.1016/j.cbpa.2023.102400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 10/09/2023]
Abstract
Metabolomics has rapidly been adopted as one of the key methods in nutrition research. This review focuses on the recent developments and updates in the field, including the analytical methodologies that encompass improved instrument sensitivity, sampling techniques and data integration (multiomics). Metabolomics has advanced the discovery and validation of dietary biomarkers and their implementation in health research. Metabolomics has come to play an important role in the understanding of the role of small molecules resulting from the diet-microbiota interactions when gut microbiota research has shifted towards improving the understanding of the activity and functionality of gut microbiota rather than composition alone. Currently, metabolomics plays an emerging role in precision nutrition and the recent developments therein are discussed.
Collapse
Affiliation(s)
- Maaria Kortesniemi
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland.
| | - Stefania Noerman
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Anna Kårlund
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Jasmin Raita
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Topi Meuronen
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Ville Koistinen
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland; Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Kati Hanhineva
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland; Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
3
|
Metabolomics of Acute vs. Chronic Spinach Intake in an Apc-Mutant Genetic Background: Linoleate and Butanoate Metabolites Targeting HDAC Activity and IFN-γ Signaling. Cells 2022; 11:cells11030573. [PMID: 35159382 PMCID: PMC8834217 DOI: 10.3390/cells11030573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
There is growing interest in the crosstalk between the gut microbiome, host metabolomic features, and disease pathogenesis. The current investigation compared long-term (26 week) and acute (3 day) dietary spinach intake in a genetic model of colorectal cancer. Metabolomic analyses in the polyposis in rat colon (Pirc) model and in wild-type animals corroborated key contributions to anticancer outcomes by spinach-derived linoleate bioactives and a butanoate metabolite linked to increased α-diversity of the gut microbiome. Combining linoleate and butanoate metabolites in human colon cancer cells revealed enhanced apoptosis and reduced cell viability, paralleling the apoptosis induction in colon tumors from rats given long-term spinach treatment. Mechanistic studies in cell-based assays and in vivo implicated the linoleate and butanoate metabolites in targeting histone deacetylase (HDAC) activity and the interferon-γ (IFN-γ) signaling axis. Clinical translation of these findings to at-risk patients might provide valuable quality-of-life benefits by delaying surgical interventions and drug therapies with adverse side effects.
Collapse
|