1
|
Petersen C, Satheesh Babu AK, Della Lucia CM, Paz HA, Iglesias-Carres L, Zhong Y, Jalili T, Symons JD, Shankar K, Neilson AP, Wankhade UD, Anandh Babu PV. Gut microbes metabolize strawberry phytochemicals and mediate their beneficial effects on vascular inflammation. Gut Microbes 2025; 17:2446375. [PMID: 39760464 DOI: 10.1080/19490976.2024.2446375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 11/02/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025] Open
Abstract
Evidence suggests that a healthy gut microbiome is essential for metabolizing dietary phytochemicals. However, the microbiome's role in metabolite production and the influence of gut dysbiosis on this process remain unclear. Further, studies on the relationship among gut microbes, metabolites, and biological activities of phytochemicals are limited. We addressed this knowledge gap using strawberry phytochemicals as a model. C57BL/6J mice were fed a standard diet [C]; strawberry-supplemented diet (~2 human servings) [CS]; strawberry-supplemented diet and treated with antibiotics (to deplete gut microbes) [CSA]; high-fat diet (HFD) [HF]; strawberry-supplemented HFD [HS]; and strawberry-supplemented HFD and treated with antibiotics [HSA] for 12 weeks. First, antibiotic treatment suppressed the production of selected metabolites (CSA vs. CS), and p-coumaric acid was identified as a strawberry-derived microbial metabolite. Second, HFD-induced dysbiosis negatively affected metabolite production (HS vs. HF), and hippuric acid was identified as a microbial metabolite in HFD conditions. Third, dietary strawberries improved HFD-induced vascular inflammation (HS vs. HF). However, antibiotic treatment reduced metabolite production and abolished the vascular effects of strawberries (HSA vs. HS), indicating the importance of gut microbes in mediating the vascular benefits of strawberries via metabolites. Fourth, strawberry supplementation decreased Coprobacillus that was positively associated with vascular inflammation, whereas it increased Lachnospiraceae that was negatively associated with vascular inflammation and positively associated with hippuric acid. Fifth, hippuric acid was negatively associated with vascular inflammation. Our study fills in some pieces of the giant puzzle regarding the influence of gut microbes on the biological activities of phytochemicals. HFD-induced gut dysbiosis negatively impacts metabolite production and a strong association exists among gut microbes, strawberry-derived microbial metabolites, and the vascular benefits of dietary strawberries. Further, our study provides significant proof of concept to warrant future research on the use of strawberries as a nutritional strategy to prevent vascular complications.
Collapse
Affiliation(s)
- Chrissa Petersen
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
| | | | - Ceres Mattos Della Lucia
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
| | - Henry A Paz
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lisard Iglesias-Carres
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA
| | - Ying Zhong
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Thunder Jalili
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
| | - J David Symons
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew P Neilson
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA
| | - Umesh D Wankhade
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Din AU, Sweet MG, McAmis AM, Ratliff JG, Anandh Babu PV, Neilson AP. Establishing reliable blood biomarkers for trimethylamine N-oxide status in rodents: Effects of oral choline challenge, dietary choline and fasting conditions. J Nutr Biochem 2025; 141:109905. [PMID: 40120776 DOI: 10.1016/j.jnutbio.2025.109905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Circulating concentrations of the gut microbial-mammalian metabolite trimethylamine N-oxide (TMAO) are linked to atherosclerosis risk. TMAO biosynthesis begins when dietary choline is converted to trimethylamine (TMA) by gut microbial TMA lyase. TMA is transported to the liver, where flavin-containing monooxygenases convert it to TMAO. While dietary modifications regulate TMAO production, the impact of different intake methods, including oral gavage, dietary supplementation, and conditions such as fasting versus nonfasting, has not been fully explored. Twelve female Sprague-Dawley rats were divided into three diet groups (n = 4 per group): no-choline (0% choline), low-choline (0.08% choline), and high-choline (1% choline). Choline and TMAO fasting and nonfasting blood concentrations, and their kinetics following an acute choline challenge, were assessed before and after a 2-week dietary intervention with the distinct choline dietary levels. Fasting choline was under tight control, with little effect of dietary choline. Nonfasting choline was more variable, with high dietary choline reflected in higher blood choline. Greater levels of dietary choline were reflected in significantly greater levels of TMAO, particularly for nonfasting levels. Kinetic profiling demonstrated additional information regarding the appearance and clearance of these compounds from blood. These results suggest that acute oral choline gavage is likely most suitable for studies targeting acute (direct) inhibitors, whereas a choline-rich diet with assessment of fasting and nonfasting blood levels is more suitable for studying alterations to TMAO production capacity. Future research should examine the impact on atherosclerosis biomarkers and microbiome diversity to deepen the understanding of TMAO regulation and its cardiovascular implications.
Collapse
Affiliation(s)
- Ahmad Ud Din
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Michael G Sweet
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Ashley M McAmis
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Juanita G Ratliff
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah, USA
| | - Andrew P Neilson
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA; Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
3
|
Dovrolis N, Spathakis M, Collins AR, Pandey VK, Uddin MI, Anderson DD, Kaminska T, Paspaliaris V, Kolios G. Pan-Cancer Insights: A Study of Microbial Metabolite Receptors in Malignancy Dynamics. Cancers (Basel) 2024; 16:4178. [PMID: 39766077 PMCID: PMC11674037 DOI: 10.3390/cancers16244178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES The role of the gut microbiome in cancer biology has become an increasingly prominent area of research, particularly regarding the role of microbial metabolites and their receptors (MMRs). These metabolites, through the various gut-organ axes, have been proven to influence several pathogenetic mechanisms. This study conducted a comprehensive pan-cancer analysis of MMR transcriptomic profiles across twenty-three cancer types, exploring the mechanisms through which they can influence cancer development and progression. METHODS Utilizing both cancer cell lines from CCLE (Cancer Cell Line Encyclopedia) and human tumor samples from TCGA (The Cancer Gene Atlas), we analyzed 107 MMRs interacting with microbial metabolites such as short-chain fatty acids, bile acids, indole derivatives, and others while studying their interactions with key known cancer genes. RESULTS Our results revealed that certain MMRs, such as GPR84 and serotonin receptors, are consistently upregulated in various malignancies, while others, like ADRA1A, are frequently downregulated, suggesting diverse roles in cancer pathophysiology. Furthermore, we identified significant correlations between MMR expression and cancer hallmark genes and pathways, including immune evasion, proliferation, and metastasis. CONCLUSIONS These findings suggest that the interactions between microbial metabolites and MMRs may serve as potential biomarkers for cancer diagnosis, prognosis, and therapy, highlighting their therapeutic potential. This study underscores the significance of the microbiota-cancer axis and provides novel insights into microbiome-based strategies for cancer treatment.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (G.K.)
| | - Michail Spathakis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (G.K.)
| | - Alexandra R. Collins
- Paspa Pharmaceuticals Pty Ltd., Hawthorn East, VIC 3145, Australia; (A.R.C.); (V.K.P.); (M.I.U.); (T.K.); (V.P.)
| | - Varun Kumar Pandey
- Paspa Pharmaceuticals Pty Ltd., Hawthorn East, VIC 3145, Australia; (A.R.C.); (V.K.P.); (M.I.U.); (T.K.); (V.P.)
| | - Muhammad Ikhtear Uddin
- Paspa Pharmaceuticals Pty Ltd., Hawthorn East, VIC 3145, Australia; (A.R.C.); (V.K.P.); (M.I.U.); (T.K.); (V.P.)
| | | | - Tetiana Kaminska
- Paspa Pharmaceuticals Pty Ltd., Hawthorn East, VIC 3145, Australia; (A.R.C.); (V.K.P.); (M.I.U.); (T.K.); (V.P.)
| | - Vasilis Paspaliaris
- Paspa Pharmaceuticals Pty Ltd., Hawthorn East, VIC 3145, Australia; (A.R.C.); (V.K.P.); (M.I.U.); (T.K.); (V.P.)
- BioGut Technologies Inc., Fort Worth, TX 76104, USA;
- Tithon Biotech, Inc., San Diego, CA 92127, USA
| | - George Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (G.K.)
| |
Collapse
|
4
|
Marosvölgyi T, Mintál K, Farkas N, Sipos Z, Makszin L, Szabó É, Tóth A, Kocsis B, Kovács K, Hormay E, Lénárd L, Karádi Z, Bufa A. Antibiotics and probiotics-induced effects on the total fatty acid composition of feces in a rat model. Sci Rep 2024; 14:6542. [PMID: 38503819 PMCID: PMC10951306 DOI: 10.1038/s41598-024-57046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
Fatty acids (FAs) play important roles as membrane components and signal transduction molecules. Changes in short chain FA (SCFA) composition are associated with gut microbiota modifications. However, the effect of bacteria-driven changes on the detailed FA spectrum has not been explored yet. We investigated the effect of antibiotics (ABx) and/or probiotics, in four treatment groups on rat stool FA composition. Principal component analysis indicated that the chromatogram profiles of the treatment groups differ, which was also observed at different time points. Linear mixed effects models showed that in the parameters compared (sampling times, treatments. and their interactions), both the weight percentage and the concentration of FAs were affected by ABx and probiotic administration. This study found that the gut microbiome defines trans and branched saturated FAs, most saturated FAs, and unsaturated FAs with less carbon atoms. These results are among the first ones to demonstrate the restoring effects of a probiotic mixture on a substantial part of the altered total FA spectrum, and also revealed a previously unknown relationship between gut bacteria and a larger group of FAs. These findings suggest that intestinal bacteria produce not only SCFAs but also other FAs that may affect the host's physiological processes.
Collapse
Affiliation(s)
- Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Kitti Mintál
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Nelli Farkas
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Zoltán Sipos
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Lilla Makszin
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Éva Szabó
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, 7624, Hungary.
| | - Attila Tóth
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Krisztina Kovács
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Edina Hormay
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - László Lénárd
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Anita Bufa
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| |
Collapse
|