1
|
Muurholm CG, Ravkilde T, De Roover R, Skouboe S, Hansen R, Crijns W, Depuydt T, Poulsen PR. Experimental investigation of dynamic real-time rotation-including dose reconstruction during prostate tracking radiotherapy. Med Phys 2022; 49:3574-3584. [PMID: 35395104 PMCID: PMC9322296 DOI: 10.1002/mp.15660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/12/2022] [Accepted: 03/30/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Hypofractionation in prostate radiotherapy is of increasing interest. Steep dose gradients and a large weight on each individual fraction emphasize the need for motion management. Real-time motion management techniques such as multi-leaf collimator (MLC) tracking or couch tracking typically adjust for translational motion while rotations remain uncompensated with unknown dosimetric impact. PURPOSE The purpose of this study is to demonstrate and validate dynamic real-time rotation-including dose reconstruction during radiotherapy experiments with and without MLC and couch tracking. METHODS Real-time dose reconstruction was performed using the in-house developed software DoseTracker. DoseTracker receives streamed target positions and accelerator parameters during treatment delivery and uses a pencil beam algorithm with water density assumption to reconstruct the dose in a moving target. DoseTracker's ability to reconstruct motion-induced dose errors in a dynamically rotating and translating target was investigated during three different scenarios: (1) no motion compensation and translational motion correction with (2) MLC tracking and (3) couch tracking. In each scenario, dose reconstruction was performed online and in real-time during delivery of two dual-arc volumetric modulated arc therapy (VMAT) prostate plans with a prescribed fraction dose of 7 Gy to the prostate and simultaneous intraprostatic lesion boosts with doses of at least 8 Gy, but up to 10 Gy as long as the organs-at-risk dose constraints were fulfilled. The plans were delivered to a pelvis phantom that replicated three patient-measured motion traces using a rotational insert with 21 layers of EBT3 film spaced 2.5 mm apart. DoseTracker repeatedly calculated the actual motion-including dose increment and the planned static dose increment since the last calculation in 84500 points in the film stack. The experiments were performed with a TrueBeam accelerator with MLC and couch tracking based on electromagnetic transponders embedded in the film stack. The motion-induced dose error was quantified as the difference between the final cumulative dose with motion and without motion using the 2D 2%/2mm γ-failure rate and the difference in dose to 95% of the clinical target volume (CTV ΔD95% ) and the gross target volume (GTV ΔD95% ) as well as the difference in dose to 0.1 cm3 of the urethra, bladder, and rectum (ΔD0.1CC ). The motion-induced errors were compared between dose reconstructions and film measurements. RESULTS The dose was reconstructed in all calculation points at a mean frequency of 4.7 Hz. The root-mean-square difference between real-time reconstructed and film measured motion-induced errors was 3.1%-points (γ-failure rate), 0.13 Gy (CTV ΔD95% ), 0.23 Gy (GTV ΔD95% ), 0.19 Gy (urethra ΔD0.1CC ), 0.09 Gy (bladder ΔD0.1CC ), and 0.07 Gy (rectum ΔD0.1CC ). CONCLUSIONS In a series of phantom experiments, online real-time rotation-including dose reconstruction was performed for the first time. The calculated motion-induced errors agreed well with film measurements. The dose reconstruction provides a valuable tool for monitoring dose delivery and investigating the efficacy of advanced motion-compensation techniques in the presence of translational and rotational motion. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Thomas Ravkilde
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Robin De Roover
- Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Simon Skouboe
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Rune Hansen
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Wouter Crijns
- Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Tom Depuydt
- Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Per R Poulsen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.,Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Real-time dose-guidance in radiotherapy: Proof of principle. Radiother Oncol 2021; 164:175-182. [PMID: 34597738 DOI: 10.1016/j.radonc.2021.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/03/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE The outcome of radiotherapy is a direct consequence of the dose delivered to the patient. Yet image-guidance and motion management to date focus on geometrical considerations as a practical surrogate for dose. Here, we propose real-time dose-guidance realized through continuous motion-including dose reconstructions and demonstrate this new concept in simulated liver stereotactic body radiotherapy (SBRT) delivery. MATERIALS AND METHODS During simulated liver SBRT delivery, in-house developed software performed real-time motion-including reconstruction of the tumor dose delivered so far and continuously predicted the remaining fraction tumor dose. The total fraction dose was estimated as the sum of the delivered and predicted doses, both with and without the emulated couch correction that maximized the predicted final CTV D95% (minimum dose to 95% of the clinical target volume). Dose-guided treatments were simulated for 15 liver SBRT patients previously treated with tumor motion monitoring, using both sinusoidal tumor motion and the actual patient-measured motion. A dose-guided couch correction was triggered if it improved the predicted final CTV D95% with 3, 4 or 5 %-points. The final CTV D95% of the dose-guidance strategy was compared with simulated treatments using geometry guided couch corrections (Wilcoxon signed-rank test). RESULTS Compared to geometry guidance, dose-guided couch corrections improved the median CTV D95% with 0.5-1.5 %-points (p < 0.01) for sinusoidal motions and with 0.9 %-points (p < 0.01, 3 %-points trigger threshold), 0.5 %-points (p = 0.03, 4 %-points threshold) and 1.2 %-points (p = 0.09, 5 %-points threshold) for patient-measured tumor motion. CONCLUSION Real-time dose-guidance was proposed and demonstrated to be superior to geometrical adaptation in liver SBRT simulations.
Collapse
|
3
|
Mejnertsen L, Hewson E, Nguyen DT, Booth J, Keall P. Dose-based optimisation for multi-leaf collimator tracking during radiation therapy. Phys Med Biol 2021; 66:065027. [PMID: 33607648 DOI: 10.1088/1361-6560/abe836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Motion in the patient anatomy causes a reduction in dose delivered to the target, while increasing dose to healthy tissue. Multi-leaf collimator (MLC) tracking has been clinically implemented to adapt dose delivery to account for intrafraction motion. Current methods shift the planned MLC aperture in the direction of motion, then optimise the new aperture based on the difference in fluence. The drawback of these methods is that 3D dose, a function of patient anatomy and MLC aperture sequence, is not properly accounted for. To overcome the drawback of current fluence-based methods, we have developed and investigated real-time adaptive MLC tracking based on dose optimisation. A novel MLC tracking algorithm, dose optimisation, has been developed which accounts for the moving patient anatomy by optimising the MLC based on the dose delivered during treatment, simulated using a simplified dose calculation algorithm. The MLC tracking with dose optimisation method was applied in silico to a prostate cancer VMAT treatment dataset with observed intrafraction motion. Its performance was compared to MLC tracking with fluence optimisation and, as a baseline, without MLC tracking. To quantitatively assess performance, we computed the dose error and 3D γ failure rate (2 mm/2%) for each fraction and method. Dose optimisation achieved a γ failure rate of (4.7 ± 1.2)% (mean and standard deviation) over all fractions, which was significantly lower than fluence optimisation (7.5 ± 2.9)% (Wilcoxon sign-rank test p < 0.01). Without MLC tracking, a γ failure rate of (15.3 ± 12.9)% was achieved. By considering the accumulation of dose in the moving anatomy during treatment, dose optimisation is able to optimise the aperture to actively target regions of underdose while avoiding overdose.
Collapse
Affiliation(s)
- Lars Mejnertsen
- ACRF Image X Institute, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
4
|
Skouboe S, De Roover R, Gammelmark Muurholm C, Ravkilde T, Crijns W, Hansen R, Depuydt T, Poulsen PR. Six degrees of freedom dynamic motion-including dose reconstruction in a commercial treatment planning system. Med Phys 2021; 48:1427-1435. [PMID: 33415778 DOI: 10.1002/mp.14707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/19/2020] [Accepted: 12/23/2020] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Intrafractional motion during radiotherapy delivery can deteriorate the delivered dose. Dynamic rotational motion of up to 38 degrees has been reported during prostate cancer radiotherapy, but methods to determine the dosimetric consequences of such rotations are lacking. Here, we create and experimentally validate a dose reconstruction method that accounts for dynamic rotations and translations in a commercial treatment planning system (TPS). Interplay effects are quantified by comparing dose reconstructions with dynamic and constant rotations. METHODS The dose reconstruction accumulates the dose in points of interest while the points are moved in six degrees of freedom (6DoF) in a precalculated time-resolved four-dimensional (4D) dose matrix to emulate dynamic motion in a patient. The required 4D dose matrix was generated by splitting the original treatment plan into multiple sub-beams, each representing 0.4 s dose delivery, and recalculating the dose of the split plan in the TPS (Eclipse). The dose accumulation was performed via TPS scripting by querying the dose of each sub-beam in dynamically moving points, allowing dose reconstruction with any dynamic motion. The dose reconstruction was validated with film dosimetry for two prostate dual arc VMAT plans with intra-prostatic lesion boosts. The plans were delivered to a pelvis phantom with internal dynamic rotational motion of a film stack (21 films with 2.5 mm separation). Each plan was delivered without motion and with three prostate motion traces. Motion-including dose reconstruction was performed for each motion experiment using the actual dynamic rotation as well as a constant rotation equal to the mean rotation during the experiment. For each experiment, the 3%/2 mm γ failure rate of the TPS dose reconstruction was calculated with the film measurement being the reference. For each motion experiment, the motion-induced 3%/2 mm γ failure rate was calculated using the static delivery as the reference and compared between film measurements and TPS dose reconstruction. DVH metrics for RT structures fully contained in the film volume were also compared between film and TPS. RESULTS The mean γ failure rate of the TPS dose reconstructions when compared to film doses was 0.8% (two static experiments) and 1.7% (six dynamic experiments). The mean (range) of the motion-induced γ failure rate in film measurements was 35.4% (21.3-59.2%). The TPS dose reconstruction agreed with these experimental γ failure rates with root-mean-square errors of 2.1% (dynamic rotation dose reconstruction) and 17.1% (dose reconstruction assuming constant rotation). By DVH metrics, the mean (range) difference between dose reconstructions with dynamic and constant rotation was 4.3% (-0.3-10.6%) (urethra D 2 % ), -0.6% (-5.6%-2.5%) (urethra D 99 % ), 1.1% (-7.1-7.7%) (GTV D 2 % ), -1.4% (-17.4-7.1%) (GTV D 95 % ), -1.2% (-17.1-5.7%) (GTV D 99 % ), and -0.1% (-3.2-7.6%) (GTV mean dose). Dose reconstructions with dynamic motion revealed large interplay effects (cold and hot spots). CONCLUSIONS A method to perform dose reconstructions for dynamic 6DoF motion in a TPS was developed and experimentally validated. It revealed large differences in dose distribution between dynamic and constant rotations not identifiable through dose reconstructions with constant rotation.
Collapse
Affiliation(s)
- Simon Skouboe
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Robin De Roover
- Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | | | - Thomas Ravkilde
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Wouter Crijns
- Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Rune Hansen
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Tom Depuydt
- Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Per Rugaard Poulsen
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Eiben B, Bertholet J, Menten MJ, Nill S, Oelfke U, McClelland JR. Consistent and invertible deformation vector fields for a breathing anthropomorphic phantom: a post-processing framework for the XCAT phantom. Phys Med Biol 2020; 65:165005. [PMID: 32235043 DOI: 10.1088/1361-6560/ab8533] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Breathing motion is challenging for radiotherapy planning and delivery. This requires advanced four-dimensional (4D) imaging and motion mitigation strategies and associated validation tools with known deformations. Numerical phantoms such as the XCAT provide reproducible and realistic data for simulation-based validation. However, the XCAT generates partially inconsistent and non-invertible deformations where tumours remain rigid and structures can move through each other. We address these limitations by post-processing the XCAT deformation vector fields (DVF) to generate a breathing phantom with realistic motion and quantifiable deformation. An open-source post-processing framework was developed that corrects and inverts the XCAT-DVFs while preserving sliding motion between organs. Those post-processed DVFs are used to warp the first XCAT-generated image to consecutive time points providing a 4D phantom with a tumour that moves consistently with the anatomy, the ability to scale lung density as well as consistent and invertible DVFs. For a regularly breathing case, the inverse consistency of the DVFs was verified and the tumour motion was compared to the original XCAT. The generated phantom and DVFs were used to validate a motion-including dose reconstruction (MIDR) method using isocenter shifts to emulate rigid motion. Differences between the reconstructed doses with and without lung density scaling were evaluated. The post-processing framework produced DVFs with a maximum [Formula: see text]-percentile inverse-consistency error of 0.02 mm. The generated phantom preserved the dominant sliding motion between the chest wall and inner organs. The tumour of the original XCAT phantom preserved its trajectory while deforming consistently with the underlying tissue. The MIDR was compared to the ground truth dose reconstruction illustrating its limitations. MIDR with and without lung density scaling resulted in small dose differences up to 1 Gy (prescription 54 Gy). The proposed open-source post-processing framework overcomes important limitations of the original XCAT phantom and makes it applicable to a wider range of validation applications within radiotherapy.
Collapse
Affiliation(s)
- Björn Eiben
- Centre for Medical Image Computing, Radiotherapy Image Computing Group, Department of Medical Physics and Biomedical Engineering University College London, London, United Kingdom of Great Britain and Northern Ireland
- Authors contributed equally
| | - Jenny Bertholet
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom of Great Britain and Northern Ireland
- Authors contributed equally
| | - Martin J Menten
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom of Great Britain and Northern Ireland
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Simeon Nill
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom of Great Britain and Northern Ireland
| | - Uwe Oelfke
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom of Great Britain and Northern Ireland
| | - Jamie R McClelland
- Centre for Medical Image Computing, Radiotherapy Image Computing Group, Department of Medical Physics and Biomedical Engineering University College London, London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
6
|
Vanhanen A, Poulsen P, Kapanen M. Dosimetric effect of intrafraction motion and different localization strategies in prostate SBRT. Phys Med 2020; 75:58-68. [PMID: 32540647 DOI: 10.1016/j.ejmp.2020.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 05/04/2020] [Accepted: 06/06/2020] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to evaluate the dosimetric effect of continuous motion monitoring based localization (Calypso, Varian Medical Systems), gating and intrafraction motion correction in prostate SBRT. Delivered doses were modelled by reconstructing motion inclusive dose distributions for different localization strategies. Actually delivered dose (strategy A) utilized initial Calypso localization, CBCT and additional pre-treatment motion correction by kV-imaging and Calypso, and gating during the irradiation. The effect of gating was investigated by simulating non-gated treatments (strategy B). Additionally, non-gated and single image-guided (CBCT) localization was simulated (strategy C). A total of 308 fractions from 22 patients were reconstructed. The dosimetric effect was evaluated by comparing motion inclusive target and risk organ dose-volume parameters to planned values. Motion induced dose deficits were seen mainly in PTV and CTV to PTV margin regions, whereas CTV dose deficits were small in all strategies: mean ± SD difference in CTVD99% was -0.3 ± 0.4%, -0.4 ± 0.6% and -0.7 ± 1.2% in strategies A, B and C, respectively. Largest dose deficits were seen in individual fractions for strategy C (maximum dose reductions were -29.0% and -7.1% for PTVD95% and CTVD99%, respectively). The benefit of gating was minor, if additional motion correction was applied immediately prior to irradiation. Continuous motion monitoring based localization and motion correction ensured the target coverage and minimized the OAR exposure for every fraction and is recommended to use in prostate SBRT. The study is part of clinical trial NCT02319239.
Collapse
Affiliation(s)
- A Vanhanen
- Department of Oncology, Unit of Radiotherapy, Tampere University Hospital, POB-2000, 33521 Tampere, Finland; Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, POB-2000, 33521 Tampere, Finland.
| | - P Poulsen
- Department of Oncology and Danish Center for Particle Therapy, Aarhus University Hospital, Palle Juul-Jensens Boulevard 25, Entrance B3, 8200 Aarhus N, Denmark
| | - M Kapanen
- Department of Oncology, Unit of Radiotherapy, Tampere University Hospital, POB-2000, 33521 Tampere, Finland; Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, POB-2000, 33521 Tampere, Finland
| |
Collapse
|
7
|
Esposito M, Villaggi E, Bresciani S, Cilla S, Falco MD, Garibaldi C, Russo S, Talamonti C, Stasi M, Mancosu P. Estimating dose delivery accuracy in stereotactic body radiation therapy: A review of in-vivo measurement methods. Radiother Oncol 2020; 149:158-167. [PMID: 32416282 DOI: 10.1016/j.radonc.2020.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/25/2022]
Abstract
Stereotactic body radiation therapy (SBRT) has been recognized as a standard treatment option for many anatomical sites. Sophisticated radiation therapy techniques have been developed for carrying out these treatments and new quality assurance (QA) programs are therefore required to guarantee high geometrical and dosimetric accuracy. This paper focuses on recent advances on in-vivo measurements methods (IVM) for SBRT treatment. More specifically, all of the online QA methods for estimating the effective dose delivered to patients were compared. Determining the optimal IVM for performing SBRT treatments would reduce the risk of errors that could jeopardize treatment outcome. A total of 89 papers were included. The papers were subdivided into the following topics: point dosimeters (PD), transmission detectors (TD), log file analysis (LFA), electronic portal imaging device dosimetry (EPID), dose accumulation methods (DAM). The detectability capability of the main IVM detectors/devices were evaluated. All of the systems have some limitations: PD has no spatial data, EPID has limited sensitivity towards set-up errors and intra-fraction motion in some anatomical sites, TD is insensitive towards patient related errors, LFA is not an independent measure, DAMs are not always based on measures. In order to minimize errors in SBRT dose delivery, we recommend using synergic combinations of two or more of the systems described in our review: on-line tumor position and patient information should be combined with MLC position and linac output detection accuracy. In this way the effects of SBRT dose delivery errors will be reduced.
Collapse
Affiliation(s)
- Marco Esposito
- S.C. Fisica Sanitaria Firenze-Empoli, Azienda Sanitaria USL Toscana Centro, Italy.
| | | | - Sara Bresciani
- Medical Physics, Candiolo Cancer Institute - FPO IRCCS, Turin, Italy
| | - Savino Cilla
- Medical Physics Unit, Gemelli Molise Hospital, Campobasso, Italy
| | - Maria Daniela Falco
- Department of Radiation Oncology "G. D'Annunzio", University of Chieti, SS. Annunziata Hospital, Chieti, Italy
| | - Cristina Garibaldi
- Radiation Research Unit, European Institute of Oncology IRCCS, Milan, Italy
| | - Serenella Russo
- S.C. Fisica Sanitaria Firenze-Empoli, Azienda Sanitaria USL Toscana Centro, Italy
| | - Cinzia Talamonti
- University of Florence, Dept Biomedical Experimental and Clinical Science, "Mario Serio", Medical Physics Unit, AOU Careggi, Florence, Italy
| | - Michele Stasi
- Medical Physics, Candiolo Cancer Institute - FPO IRCCS, Turin, Italy
| | - Pietro Mancosu
- Medical Physics Unit of Radiotherapy Dept., Humanitas Clinical and Research Hospital - IRCCS, Rozzano, Italy
| |
Collapse
|
8
|
Menten MJ, Mohajer JK, Nilawar R, Bertholet J, Dunlop A, Pathmanathan AU, Moreau M, Marshall S, Wetscherek A, Nill S, Tree AC, Oelfke U. Automatic reconstruction of the delivered dose of the day using MR-linac treatment log files and online MR imaging. Radiother Oncol 2020; 145:88-94. [PMID: 31931291 PMCID: PMC7191265 DOI: 10.1016/j.radonc.2019.12.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/11/2019] [Accepted: 12/15/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND PURPOSE Anatomical changes during external beam radiotherapy prevent the accurate delivery of the intended dose distribution. Resolving the delivered dose, which is currently unknown, is crucial to link radiotherapy doses to clinical outcomes and ultimately improve the standard of care. MATERIAL AND METHODS In this study, we present a dose reconstruction workflow based on data routinely acquired during MR-guided radiotherapy. It employs 3D MR images, 2D cine MR images and treatment machine log files to calculate the delivered dose taking intrafractional motion into account. The developed pipeline was used to measure anatomical changes and assess their dosimetric impact in 89 prostate radiotherapy fractions delivered with a 1.5 T MR-linac at our institute. RESULTS Over the course of radiation delivery, the CTV shifted 0.6 mm ± 2.1 mm posteriorly and 1.3 mm ± 1.5 mm inferiorly. When extrapolating the dose changes in each case to 20 fractions, the mean clinical target volume D98% and clinical target volume D50% dose-volume metrics decreased by 1.1 Gy ± 1.6 Gy and 0.1 Gy ± 0.2 Gy, respectively. Bladder D3% did not change (0.0 Gy ± 1.2 Gy), while rectum D3% decreased by 1.0 Gy ± 2.0 Gy. Although anatomical changes and their dosimetric impact were small in the majority of cases, large intrafractional motion caused the delivered dose to substantially deviate from the intended plan in some fractions. CONCLUSIONS The presented end-to-end workflow is able to reliably, non-invasively and automatically reconstruct the delivered prostate radiotherapy dose by processing MR-linac treatment log files and online MR images. In the future, we envision this workflow to be adapted to other cancer sites and ultimately to enter widespread clinical use.
Collapse
Affiliation(s)
- Martin J Menten
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK.
| | - Jonathan K Mohajer
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Rahul Nilawar
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Jenny Bertholet
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Alex Dunlop
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Angela U Pathmanathan
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | | | | | - Andreas Wetscherek
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Simeon Nill
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Alison C Tree
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Uwe Oelfke
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
État des lieux de la radiothérapie adaptative en 2019 : de la mise en place à l’utilisation clinique. Cancer Radiother 2019; 23:581-591. [DOI: 10.1016/j.canrad.2019.07.142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022]
|
10
|
Skouboe S, Poulsen PR, Muurholm CG, Worm E, Hansen R, Høyer M, Ravkilde T. Simulated real‐time dose reconstruction for moving tumors in stereotactic liver radiotherapy. Med Phys 2019; 46:4738-4748. [DOI: 10.1002/mp.13792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Simon Skouboe
- Department of Oncology Aarhus University Hospital Aarhus N 8200Denmark
| | - Per Rugaard Poulsen
- Department of Oncology Aarhus University Hospital Aarhus N 8200Denmark
- Danish Center for Particle Therapy Aarhus University Hospital Aarhus N 8200 Denmark
| | | | - Esben Worm
- Department of Medical Physics Aarhus University Hospital Aarhus N 8200Denmark
| | - Rune Hansen
- Department of Medical Physics Aarhus University Hospital Aarhus N 8200Denmark
| | - Morten Høyer
- Danish Center for Particle Therapy Aarhus University Hospital Aarhus N 8200 Denmark
| | - Thomas Ravkilde
- Department of Medical Physics Aarhus University Hospital Aarhus N 8200Denmark
| |
Collapse
|
11
|
Skouboe S, Ravkilde T, Bertholet J, Hansen R, Worm ES, Muurholm CG, Weber B, Høyer M, Poulsen PR. First clinical real-time motion-including tumor dose reconstruction during radiotherapy delivery. Radiother Oncol 2019; 139:66-71. [PMID: 31431367 DOI: 10.1016/j.radonc.2019.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/25/2019] [Accepted: 07/04/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE To clinically implement and characterize real-time motion-including tumor dose reconstruction during radiotherapy delivery. METHODS Seven patients with 2-3 fiducial markers implanted near liver tumors received stereotactic body radiotherapy on a conventional linear accelerator. The 3D marker motion during a setup CBCT scan was determined online from the CBCT projections and used to generate a correlation model between tumor and external marker block motion. During treatment, the correlation model was updated by kV imaging every three seconds and used for real-time tumor localization. Using streamed accelerator parameters and tumor positions, in-house developed software, DoseTracker, calculated the dose to the moving tumor in real-time assuming water density in the patient. Post-treatment, the real-time tumor localization was validated by comparison with independent marker segmentations and 3D motion estimations. Dose reconstruction was validated by comparison with treatment planning system (TPS) calculations that modeled motion as isocenter shifts and used both actual CT densities and water densities. RESULTS The real-time estimated tumor position had a mean 3D root-mean-square error of 1.7 mm (range: 0.9-2.6 mm). The motion-induced reduction in the minimum dose to 95% of the clinical target volume (CTV D95) per fraction was up to 12.3%-points. It was estimated in real-time by DoseTracker during patient treatment with a root-mean-square difference relative to the TPS of 1.3%-points (TPS CT) and 1.0%-points (TPS water). CONCLUSIONS The world's first clinical real-time motion-including tumor dose reconstruction during radiotherapy was demonstrated. This marks an important milestone for real-time in-treatment quality assurance and paves the way for real-time dose-guided treatment adaptation.
Collapse
Affiliation(s)
- Simon Skouboe
- Department of Oncology, Aarhus University Hospital, Denmark.
| | - Thomas Ravkilde
- Department of Medical Physics, Aarhus University Hospital, Denmark
| | - Jenny Bertholet
- Joint Department of Physics, The Institute of Cancer Research and the Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Rune Hansen
- Department of Medical Physics, Aarhus University Hospital, Denmark
| | | | | | - Britta Weber
- Department of Oncology, Aarhus University Hospital, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | - Morten Høyer
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | - Per Rugaard Poulsen
- Department of Oncology, Aarhus University Hospital, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| |
Collapse
|
12
|
Bertholet J, Knopf A, Eiben B, McClelland J, Grimwood A, Harris E, Menten M, Poulsen P, Nguyen DT, Keall P, Oelfke U. Real-time intrafraction motion monitoring in external beam radiotherapy. Phys Med Biol 2019; 64:15TR01. [PMID: 31226704 PMCID: PMC7655120 DOI: 10.1088/1361-6560/ab2ba8] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 06/21/2019] [Indexed: 12/25/2022]
Abstract
Radiotherapy (RT) aims to deliver a spatially conformal dose of radiation to tumours while maximizing the dose sparing to healthy tissues. However, the internal patient anatomy is constantly moving due to respiratory, cardiac, gastrointestinal and urinary activity. The long term goal of the RT community to 'see what we treat, as we treat' and to act on this information instantaneously has resulted in rapid technological innovation. Specialized treatment machines, such as robotic or gimbal-steered linear accelerators (linac) with in-room imaging suites, have been developed specifically for real-time treatment adaptation. Additional equipment, such as stereoscopic kilovoltage (kV) imaging, ultrasound transducers and electromagnetic transponders, has been developed for intrafraction motion monitoring on conventional linacs. Magnetic resonance imaging (MRI) has been integrated with cobalt treatment units and more recently with linacs. In addition to hardware innovation, software development has played a substantial role in the development of motion monitoring methods based on respiratory motion surrogates and planar kV or Megavoltage (MV) imaging that is available on standard equipped linacs. In this paper, we review and compare the different intrafraction motion monitoring methods proposed in the literature and demonstrated in real-time on clinical data as well as their possible future developments. We then discuss general considerations on validation and quality assurance for clinical implementation. Besides photon RT, particle therapy is increasingly used to treat moving targets. However, transferring motion monitoring technologies from linacs to particle beam lines presents substantial challenges. Lessons learned from the implementation of real-time intrafraction monitoring for photon RT will be used as a basis to discuss the implementation of these methods for particle RT.
Collapse
Affiliation(s)
- Jenny Bertholet
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
- Author to whom any correspondence should be
addressed
| | - Antje Knopf
- Department of Radiation Oncology,
University Medical Center
Groningen, University of Groningen, The
Netherlands
| | - Björn Eiben
- Department of Medical Physics and Biomedical
Engineering, Centre for Medical Image Computing, University College London, London,
United Kingdom
| | - Jamie McClelland
- Department of Medical Physics and Biomedical
Engineering, Centre for Medical Image Computing, University College London, London,
United Kingdom
| | - Alexander Grimwood
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Emma Harris
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Martin Menten
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| | - Per Poulsen
- Department of Oncology, Aarhus University Hospital, Aarhus,
Denmark
| | - Doan Trang Nguyen
- ACRF Image X Institute, University of Sydney, Sydney,
Australia
- School of Biomedical Engineering,
University of Technology
Sydney, Sydney, Australia
| | - Paul Keall
- ACRF Image X Institute, University of Sydney, Sydney,
Australia
| | - Uwe Oelfke
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS
Foundation Trust, London, United
Kingdom
| |
Collapse
|
13
|
Abstract
The world is embracing the information age, with real-time data at hand to assist with many decisions. Similarly, in cancer radiotherapy we are inexorably moving toward using information in a smarter and faster fashion, to usher in the age of real-time adaptive radiotherapy. The three critical steps of real-time adaptive radiotherapy, aligned with driverless vehicle technology are a continuous see, think, and act loop. See: use imaging systems to probe the patient anatomy or physiology as it evolves with time. Think: use current and prior information to optimize the treatment using the available adaptive degrees of freedom. Act: deliver the real-time adapted treatment. This paper expands upon these three critical steps for real-time adaptive radiotherapy, provides a historical context, reviews the clinical rationale, and gives a future outlook for real-time adaptive radiotherapy.
Collapse
Affiliation(s)
- Paul Keall
- ACRF Image X Institute, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| | - Per Poulsen
- Department of Oncology and Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Jeremy T Booth
- Northern Sydney Cancer Centre, Royal North Shore Hospital and Institute of Medical Physics, School of Physics, University of Sydney, Sydney Australia
| |
Collapse
|
14
|
Park SY, Park JM, Kim JI, Lee S, Choi CH. Validation of new transmission detector transmission factors for online dosimetry: an experimental study. Radiat Oncol 2018; 13:156. [PMID: 30143012 PMCID: PMC6109263 DOI: 10.1186/s13014-018-1106-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/20/2018] [Indexed: 01/14/2023] Open
Abstract
Background The demand for dose verification during treatment has risen with the increasing use of intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) in modern radiation therapy. This study aims to validate the transmission factors of a new transmission detector, the Dolphin online monitoring system (IBA Dosimetry, Schwarzenbruck, Germany), for clinical use. Methods The transmission factors of the Dolphin detector were evaluated using 6 MV, 6 flattening filter free (FFF), 10 MV, and 10 FFF clinical beams from a TrueBeam STx linear accelerator system. Two-dimensional (2D) dose distributions were measured through portal dosimetry with and without Dolphin to derive the transmission factors. The measurements were performed using 10 IMRT and 10 VMAT treatment plans. The transmission factors were calculated using a non-negative least squares problem solver for the 2D dose matrix. Normalized plans were generated using the derived transmission factors. Patient-specific quality assurance with normalized plans was performed using portal dosimetry and an ArcCheck detector to verify the transmission factors. The gamma passing rates were calculated for the 2%/2 mm and 1%/1 mm criteria. Results The transmission factors for the 6 MV, 6 FFF, 10 MV, and 10 FFF beams, were 0.878, 0.824, 0.913, and 0.883, respectively. The average dose difference between the original plan without Dolphin and the normalized plan with Dolphin was less than 1.8% for all measurements. The mean passing rates of the gamma evaluation were 98.1 ± 2.1 and 82.9 ± 12.6 for the 2%/2 mm and 1%/1 mm criteria, respectively, for portal dosimetry of the original plan. In the case of the portal dosimetry of the normalized plan, the mean passing rates of the gamma evaluation were 97.2 ± 2.8 and 79.1 ± 14.8 for the 2%/2 mm and 1%/1 mm criteria, respectively. Conclusions The Dolphin detector can be used for online dosimetry when valid transmission factors are applied to the clinical plan.
Collapse
Affiliation(s)
- So-Yeon Park
- Department of Radiation Oncology, Veterans Health Service Medical Center, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jong Min Park
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung-In Kim
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sungyoung Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chang Heon Choi
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea. .,Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea. .,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Ravkilde T, Skouboe S, Hansen R, Worm E, Poulsen PR. First online real-time evaluation of motion-induced 4D dose errors during radiotherapy delivery. Med Phys 2018; 45:3893-3903. [PMID: 29869789 DOI: 10.1002/mp.13037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/25/2022] Open
Abstract
PURPOSE In radiotherapy, dose deficits caused by tumor motion often far outweigh the discrepancies typically allowed in plan-specific quality assurance (QA). Yet, tumor motion is not usually included in present QA. We here present a novel method for online treatment verification by real-time motion-including four-dimensional (4D) dose reconstruction and dose evaluation and demonstrate its use during stereotactic body radiotherapy (SBRT) delivery with and without MLC tracking. METHODS Five volumetric-modulated arc therapy (VMAT) plans were delivered with and without MLC tracking to a motion stage carrying a Delta4 dosimeter. The VMAT plans have previously been used for (nontracking) liver SBRT with intratreatment tumor motion recorded by kilovoltage intrafraction monitoring (KIM). The motion stage reproduced the KIM-measured tumor motions in three dimensions (3D) while optical monitoring guided the MLC tracking. Linac parameters and the target position were streamed to an in-house developed software program (DoseTracker) that performed real-time 4D dose reconstructions and 3%/3 mm γ-evaluations of the reconstructed cumulative dose using a concurrently reconstructed planned dose without target motion as reference. Offline, the real-time reconstructed doses and γ-evaluations were validated against 4D dosimeter measurements performed during the experiments. RESULTS In total, 181,120 dose reconstructions and 5,237 γ-evaluations were performed online and in real time with median computation times of 30 ms and 1.2 s, respectively. The mean (standard deviation) difference between reconstructed and measured doses was -1.2% (4.9%) for transient doses and -1.5% (3.9%) for cumulative doses. The root-mean-square deviation between reconstructed and measured motion-induced γ-fail rates was 2.0%-point. The mean (standard deviation) sensitivity and specificity of DoseTracker to predict γ-fail rates above a given threshold was 96.8% (3.5%) and 99.2% (0.4%), respectively, for clinically relevant thresholds between 1% and 30% γ-fail rate. CONCLUSIONS Real-time delivery-specific QA during radiotherapy of moving targets was demonstrated for the first time. It allows supervision of treatment accuracy and action on treatment discrepancy within 2 s with high sensitivity and specificity.
Collapse
Affiliation(s)
- Thomas Ravkilde
- Medical Physics, Department of Oncology, Aarhus University Hospital, 8000, Aarhus C, Denmark
| | - Simon Skouboe
- Department of Oncology, Aarhus University Hospital, 8000, Aarhus C, Denmark
| | - Rune Hansen
- Medical Physics, Department of Oncology, Aarhus University Hospital, 8000, Aarhus C, Denmark
| | - Esben Worm
- Medical Physics, Department of Oncology, Aarhus University Hospital, 8000, Aarhus C, Denmark
| | - Per R Poulsen
- Department of Oncology, Aarhus University Hospital, 8000, Aarhus C, Denmark
- Institute for Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark
| |
Collapse
|