1
|
Bollack A, Pemberton HG, Collij LE, Markiewicz P, Cash DM, Farrar G, Barkhof F. Longitudinal amyloid and tau PET imaging in Alzheimer's disease: A systematic review of methodologies and factors affecting quantification. Alzheimers Dement 2023; 19:5232-5252. [PMID: 37303269 DOI: 10.1002/alz.13158] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
Deposition of amyloid and tau pathology can be quantified in vivo using positron emission tomography (PET). Accurate longitudinal measurements of accumulation from these images are critical for characterizing the start and spread of the disease. However, these measurements are challenging; precision and accuracy can be affected substantially by various sources of errors and variability. This review, supported by a systematic search of the literature, summarizes the current design and methodologies of longitudinal PET studies. Intrinsic, biological causes of variability of the Alzheimer's disease (AD) protein load over time are then detailed. Technical factors contributing to longitudinal PET measurement uncertainty are highlighted, followed by suggestions for mitigating these factors, including possible techniques that leverage shared information between serial scans. Controlling for intrinsic variability and reducing measurement uncertainty in longitudinal PET pipelines will provide more accurate and precise markers of disease evolution, improve clinical trial design, and aid therapy response monitoring.
Collapse
Affiliation(s)
- Ariane Bollack
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC), University College London, London, UK
| | - Hugh G Pemberton
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC), University College London, London, UK
- GE Healthcare, Amersham, UK
- UCL Queen Square Institute of Neurology, London, UK
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Pawel Markiewicz
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC), University College London, London, UK
| | - David M Cash
- UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at University College London, London, UK
| | | | - Frederik Barkhof
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC), University College London, London, UK
- UCL Queen Square Institute of Neurology, London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Veit-Haibach P, Ahlström H, Boellaard R, Delgado Bolton RC, Hesse S, Hope T, Huellner MW, Iagaru A, Johnson GB, Kjaer A, Law I, Metser U, Quick HH, Sattler B, Umutlu L, Zaharchuk G, Herrmann K. International EANM-SNMMI-ISMRM consensus recommendation for PET/MRI in oncology. Eur J Nucl Med Mol Imaging 2023; 50:3513-3537. [PMID: 37624384 PMCID: PMC10547645 DOI: 10.1007/s00259-023-06406-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
PREAMBLE The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional non-profit medical association that facilitates communication worldwide between individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. The merged International Society for Magnetic Resonance in Medicine (ISMRM) is an international, nonprofit, scientific association whose purpose is to promote communication, research, development, and applications in the field of magnetic resonance in medicine and biology and other related topics and to develop and provide channels and facilities for continuing education in the field.The ISMRM was founded in 1994 through the merger of the Society of Magnetic Resonance in Medicine and the Society of Magnetic Resonance Imaging. SNMMI, ISMRM, and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine and/or magnetic resonance imaging. The SNMMI, ISMRM, and EANM will periodically define new guidelines for nuclear medicine practice to help advance the science of nuclear medicine and/or magnetic resonance imaging and to improve the quality of service to patients throughout the world. Existing practice guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each practice guideline, representing a policy statement by the SNMMI/EANM/ISMRM, has undergone a thorough consensus process in which it has been subjected to extensive review. The SNMMI, ISMRM, and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging and magnetic resonance imaging requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline by those entities not providing these services is not authorized. These guidelines are an educational tool designed to assist practitioners in providing appropriate care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the SNMMI, the ISMRM, and the EANM caution against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the guidelines. The practice of medicine includes both the art and the science of the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.
Collapse
Affiliation(s)
- Patrick Veit-Haibach
- Joint Department Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, Toronto General Hospital, 1 PMB-275, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Håkan Ahlström
- Department of Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden
- Antaros Medical AB, BioVenture Hub, 431 53, Mölndal, Sweden
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Thomas Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zürich, University of Zürich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Andrei Iagaru
- Department of Radiology, Division of Nuclear Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Geoffrey B Johnson
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen, Denmark
| | - Ur Metser
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Harald H Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Bernhard Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Greg Zaharchuk
- Division of Neuroradiology, Department of Radiology, Stanford University, 300 Pasteur Drive, Room S047, Stanford, CA, 94305-5105, USA
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany.
| |
Collapse
|
3
|
Senders ML, Calcagno C, Tawakol A, Nahrendorf M, Mulder WJM, Fayad ZA. PET/MR imaging of inflammation in atherosclerosis. Nat Biomed Eng 2023; 7:202-220. [PMID: 36522465 DOI: 10.1038/s41551-022-00970-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/25/2022] [Indexed: 12/23/2022]
Abstract
Myocardial infarction, stroke, mental disorders, neurodegenerative processes, autoimmune diseases, cancer and the human immunodeficiency virus impact the haematopoietic system, which through immunity and inflammation may aggravate pre-existing atherosclerosis. The interplay between the haematopoietic system and its modulation of atherosclerosis has been studied by imaging the cardiovascular system and the activation of haematopoietic organs via scanners integrating positron emission tomography and resonance imaging (PET/MRI). In this Perspective, we review the applicability of integrated whole-body PET/MRI for the study of immune-mediated phenomena associated with haematopoietic activity and cardiovascular disease, and discuss the translational opportunities and challenges of the technology.
Collapse
Affiliation(s)
- Max L Senders
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ahmed Tawakol
- Cardiology Division and Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Willem J M Mulder
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands.
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Li J, Fu C, Zhao S, Pu Y, Yang F, Zeng S, Yang C, Gao H, Chen L. The progress of PET/MRI in clinical management of patients with pancreatic malignant lesions. Front Oncol 2023; 13:920896. [PMID: 37188192 PMCID: PMC10175752 DOI: 10.3389/fonc.2023.920896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Recently, the morbidity and mortality of pancreatic cancer have been increasing year by year. Because of its deep anatomical location and because most presented patients often suffer from abdominal pain or jaundice, it is difficult to diagnose pancreatic cancer at an early stage, leading to late clinical stage and poor prognosis. integrated positron emission tomography/magnetic resonance imaging (PET/MRI) fusion imaging not only has the characteristics of high resolution and multi-parameter imaging of MRI, but also combines the high sensitivity and the semi-quantitative characteristics of PET. In addition, the continuous development of novel MRI imaging and PET imaging biomarkers provide a unique and precise research direction for future pancreatic cancer research. This review summarizes the value of PET/MRI in the diagnosis, staging, efficacy monitoring, and prognosis evaluation of pancreatic cancer, and prognosis for developing emerging imaging agents and artificial intelligence radiomics in pancreatic cancer.
Collapse
Affiliation(s)
- Jindan Li
- Department of PET-CT/MR Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chaojiang Fu
- Department of Emergency, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Sheng Zhao
- Department of PET-CT/MR Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yongzhu Pu
- Department of PET-CT/MR Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fake Yang
- Department of PET-CT/MR Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shuguang Zeng
- Department of Information Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Conghui Yang
- Department of PET-CT/MR Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongqiang Gao
- Department of Hepatobiliary Surgery, The First People’s Hospital of Kunming City & Ganmei Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Long Chen, ; Hongqiang Gao,
| | - Long Chen
- Department of PET-CT/MR Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- *Correspondence: Long Chen, ; Hongqiang Gao,
| |
Collapse
|
5
|
Pain CD, Egan GF, Chen Z. Deep learning-based image reconstruction and post-processing methods in positron emission tomography for low-dose imaging and resolution enhancement. Eur J Nucl Med Mol Imaging 2022; 49:3098-3118. [PMID: 35312031 PMCID: PMC9250483 DOI: 10.1007/s00259-022-05746-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/25/2022] [Indexed: 12/21/2022]
Abstract
Image processing plays a crucial role in maximising diagnostic quality of positron emission tomography (PET) images. Recently, deep learning methods developed across many fields have shown tremendous potential when applied to medical image enhancement, resulting in a rich and rapidly advancing literature surrounding this subject. This review encapsulates methods for integrating deep learning into PET image reconstruction and post-processing for low-dose imaging and resolution enhancement. A brief introduction to conventional image processing techniques in PET is firstly presented. We then review methods which integrate deep learning into the image reconstruction framework as either deep learning-based regularisation or as a fully data-driven mapping from measured signal to images. Deep learning-based post-processing methods for low-dose imaging, temporal resolution enhancement and spatial resolution enhancement are also reviewed. Finally, the challenges associated with applying deep learning to enhance PET images in the clinical setting are discussed and future research directions to address these challenges are presented.
Collapse
Affiliation(s)
- Cameron Dennis Pain
- Monash Biomedical Imaging, Monash University, Melbourne, Australia.
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, Australia.
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
- Department of Data Science and AI, Monash University, Melbourne, Australia
| |
Collapse
|
6
|
Einspänner E, Jochimsen TH, Harries J, Melzer A, Unger M, Brown R, Thielemans K, Sabri O, Sattler B. Evaluating different methods of MR-based motion correction in simultaneous PET/MR using a head phantom moved by a robotic system. EJNMMI Phys 2022; 9:15. [PMID: 35239047 PMCID: PMC8894542 DOI: 10.1186/s40658-022-00442-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Due to comparatively long measurement times in simultaneous positron emission tomography and magnetic resonance (PET/MR) imaging, patient movement during the measurement can be challenging. This leads to artifacts which have a negative impact on the visual assessment and quantitative validity of the image data and, in the worst case, can lead to misinterpretations. Simultaneous PET/MR systems allow the MR-based registration of movements and enable correction of the PET data. To assess the effectiveness of motion correction methods, it is necessary to carry out measurements on phantoms that are moved in a reproducible way. This study explores the possibility of using such a phantom-based setup to evaluate motion correction strategies in PET/MR of the human head. Method An MR-compatible robotic system was used to generate rigid movements of a head-like phantom. Different tools, either from the manufacturer or open-source software, were used to estimate and correct for motion based on the PET data itself (SIRF with SPM and NiftyReg) and MR data acquired simultaneously (e.g. MCLFIRT, BrainCompass). Different motion estimates were compared using data acquired during robot-induced motion. The effectiveness of motion correction of PET data was evaluated by determining the segmented volume of an activity-filled flask inside the phantom. In addition, the segmented volume was used to determine the centre-of-mass and the change in maximum activity concentration. Results The results showed a volume increase between 2.7 and 36.3% could be induced by the experimental setup depending on the motion pattern. Both, BrainCompass and MCFLIRT, produced corrected PET images, by reducing the volume increase to 0.7–4.7% (BrainCompass) and to -2.8–0.4% (MCFLIRT). The same was observed for example for the centre-of-mass, where the results show that MCFLIRT (0.2–0.6 mm after motion correction) had a smaller deviation from the reference position than BrainCompass (0.5–1.8 mm) for all displacements. Conclusions The experimental setup is suitable for the reproducible generation of movement patterns. Using open-source software for motion correction is a viable alternative to the vendor-provided motion-correction software. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-022-00442-6.
Collapse
Affiliation(s)
- Eric Einspänner
- Clinic of Radiology and Nuclear Medicine, Magdeburg, Germany. .,Department of Nuclear Medicine, Leipzig University Hospital, Leipzig, Germany.
| | - Thies H Jochimsen
- Department of Nuclear Medicine, Leipzig University Hospital, Leipzig, Germany
| | - Johanna Harries
- Department of Radiation Safety and Medical Physics, Medical School Hannover, Hannover, Germany
| | - Andreas Melzer
- Innovation Center Computer Assisted Surgery (ICCAS), Faculty of Medicine, University Leipzig, Leipzig, Germany.,Institute for Medical Science and Technology IMSaT University Dundee, Dundee, UK
| | - Michael Unger
- Innovation Center Computer Assisted Surgery (ICCAS), Faculty of Medicine, University Leipzig, Leipzig, Germany
| | - Richard Brown
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Kris Thielemans
- Institute of Nuclear Medicine, University College London, London, UK
| | - Osama Sabri
- Department of Nuclear Medicine, Leipzig University Hospital, Leipzig, Germany
| | - Bernhard Sattler
- Department of Nuclear Medicine, Leipzig University Hospital, Leipzig, Germany
| |
Collapse
|
7
|
Dynamic whole-body FDG-PET imaging for oncology studies. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Introduction
Recent PET/CT systems have improved sensitivity and spatial resolution by smaller PET detectors and improved reconstruction software. In addition, continuous-bed-motion mode is now available in some PET systems for whole-body PET imaging. In this review, we describe the advantages of dynamic whole-body FDG-PET in oncology studies.
Methods
PET–CT imaging was obtained at 60 min after FDG administration. Dynamic whole-body imaging with continuous bed motion in 3 min each with flow motion was obtained over 400 oncology cases. For routine image analysis, these dynamic phases (usually four phases) were summed as early FDG imaging. The image quality of each serial dynamic imaging was visually evaluated. In addition, changes in FDG uptake were analyzed in consecutive dynamic imaging and also in early delayed (90 min after FDG administration) time point imaging (dual-time-point imaging; DTPI). Image interpretation was performed by consensus of two nuclear medicine physicians.
Result
All consecutive dynamic whole-body PET images of 3 min duration had acceptable image quality. Many of the areas with physiologically high FDG uptake had altered uptake on serial images. On the other hand, most of the benign and malignant lesions did not show visual changes on serial images. In the study of 60 patients with suspected colorectal cancer, unchanged uptake was noted in almost all regions with pathologically proved FDG uptake, indicating high sensitivity with high negative predictive value on both serial dynamic imaging and on DTPI. We proposed another application of serial dynamic imaging for minimizing motion artifacts for patients who may be likely to move during PET studies.
Discussion
Dynamic whole-body imaging has several advantages over the static imaging. Serial assessment of changes in FDG uptake over a short period of time is useful for distinguishing pathological from physiological uptake, especially in the abdominal regions. These dynamic PET studies may minimize the need for DPTI. In addition, continuous dynamic imaging has the potential to reduce motion artifacts in patients who are likely to move during PET imaging. Furthermore, kinetic analysis of the FDG distribution in tumor areas has a potential for precise tissue characterization.
Conclusion
Dynamic whole-body FDG-PET imaging permits assessment of serial FDG uptake change which is particularly useful for differentiation of pathological uptake from physiological uptake with high diagnostic accuracy. This imaging can be applied for minimizing motion artifacts. Wide clinical applications of such serial, dynamic whole-body PET imaging is expected in oncological studies in the near future.
Collapse
|
8
|
Bogdanovic B, Solari EL, Villagran Asiares A, McIntosh L, van Marwick S, Schachoff S, Nekolla SG. PET/MR Technology: Advancement and Challenges. Semin Nucl Med 2021; 52:340-355. [PMID: 34969520 DOI: 10.1053/j.semnuclmed.2021.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023]
Abstract
When this article was written, it coincided with the 11th anniversary of the installation of our PET/MR device in Munich. In fact, this was the first fully integrated device to be in clinical use. During this time, we have observed many interesting behaviors, to put it kindly. However, it is more critical that in this process, our understanding of the system also improved - including the advantages and limitations from a technical, logistical, and medical perspective. The last decade of PET/MRI research has certainly been characterized by most sites looking for a "key application." There were many ideas in this context and before and after the devices became available, some of which were based on the earlier work with integrating data from single devices. These involved validating classical PET methods with MRI (eg, perfusion or oncology diagnostics). More important, however, were the scenarios where intermodal synergies could be expected. In this review, we look back on this decade-long journey, at the challenges overcome and those still to come.
Collapse
Affiliation(s)
- Borjana Bogdanovic
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Esteban Lucas Solari
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alberto Villagran Asiares
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Lachlan McIntosh
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sandra van Marwick
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sylvia Schachoff
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephan G Nekolla
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
9
|
Lamare F, Bousse A, Thielemans K, Liu C, Merlin T, Fayad H, Visvikis D. PET respiratory motion correction: quo vadis? Phys Med Biol 2021; 67. [PMID: 34915465 DOI: 10.1088/1361-6560/ac43fc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022]
Abstract
Positron emission tomography (PET) respiratory motion correction has been a subject of great interest for the last twenty years, prompted mainly by the development of multimodality imaging devices such as PET/computed tomography (CT) and PET/magnetic resonance imaging (MRI). PET respiratory motion correction involves a number of steps including acquisition synchronization, motion estimation and finally motion correction. The synchronization steps include the use of different external device systems or data driven approaches which have been gaining ground over the last few years. Patient specific or generic motion models using the respiratory synchronized datasets can be subsequently derived and used for correction either in the image space or within the image reconstruction process. Similar overall approaches can be considered and have been proposed for both PET/CT and PET/MRI devices. Certain variations in the case of PET/MRI include the use of MRI specific sequences for the registration of respiratory motion information. The proposed review includes a comprehensive coverage of all these areas of development in field of PET respiratory motion for different multimodality imaging devices and approaches in terms of synchronization, estimation and subsequent motion correction. Finally, a section on perspectives including the potential clinical usage of these approaches is included.
Collapse
Affiliation(s)
- Frederic Lamare
- Nuclear Medicine Department, University Hospital Centre Bordeaux Hospital Group South, ., Bordeaux, Nouvelle-Aquitaine, 33604, FRANCE
| | - Alexandre Bousse
- LaTIM, INSERM UMR1101, Université de Bretagne Occidentale, ., Brest, Bretagne, 29285, FRANCE
| | - Kris Thielemans
- University College London Institute of Nuclear Medicine, UCL Hospital, Tower 5, 235 Euston Road, London, NW1 2BU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Chi Liu
- Department of Diagnostic Radiology, Yale University School of Medicine Department of Radiology and Biomedical Imaging, PO Box 208048, 801 Howard Avenue, New Haven, Connecticut, 06520-8042, UNITED STATES
| | - Thibaut Merlin
- LaTIM, INSERM UMR1101, Universite de Bretagne Occidentale, ., Brest, Bretagne, 29285, FRANCE
| | - Hadi Fayad
- Weill Cornell Medicine - Qatar, ., Doha, ., QATAR
| | - Dimitris Visvikis
- LaTIM, UMR1101, Universite de Bretagne Occidentale, INSERM, Brest, Bretagne, 29285, FRANCE
| |
Collapse
|
10
|
Mohammadi I, Castro IF, Rahmim A, Veloso JFCA. Motion in nuclear cardiology imaging: types, artifacts, detection and correction techniques. Phys Med Biol 2021; 67. [PMID: 34826826 DOI: 10.1088/1361-6560/ac3dc7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/26/2021] [Indexed: 11/12/2022]
Abstract
In this paper, the authors review the field of motion detection and correction in nuclear cardiology with single photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging systems. We start with a brief overview of nuclear cardiology applications and description of SPECT and PET imaging systems, then explaining the different types of motion and their related artefacts. Moreover, we classify and describe various techniques for motion detection and correction, discussing their potential advantages including reference to metrics and tasks, particularly towards improvements in image quality and diagnostic performance. In addition, we emphasize limitations encountered in different motion detection and correction methods that may challenge routine clinical applications and diagnostic performance.
Collapse
Affiliation(s)
- Iraj Mohammadi
- Department of Physics, University of Aveiro, Aveiro, PORTUGAL
| | - I Filipe Castro
- i3n Physics Department, Universidade de Aveiro, Aveiro, PORTUGAL
| | - Arman Rahmim
- Radiology and Physics, The University of British Columbia, Vancouver, British Columbia, CANADA
| | | |
Collapse
|
11
|
Chen C, Margolis DJ. Prostate-Specific Membrane Antigen (PSMA) PET: A Counterpart to Prostate MRI. Semin Roentgenol 2021; 56:376-383. [PMID: 34688340 DOI: 10.1053/j.ro.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Christine Chen
- Department of Radiology, Weill Cornell Medical College: Weill Cornell Medicine, 1300 York Ave, New York, NY 10065.
| | - Daniel J Margolis
- Department of Radiology, Weill Cornell Medical College: Weill Cornell Medicine, 1300 York Ave, New York, NY 10065
| |
Collapse
|
12
|
Kure AJ, Savas H, Hijaz TA, Hussaini SF, Korutz AW. Advancements in Positron Emission Tomography/Magnetic Resonance Imaging and Applications to Diagnostic Challenges in Neuroradiology. Semin Ultrasound CT MR 2021; 42:434-451. [PMID: 34537113 DOI: 10.1053/j.sult.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Since the clinical adoption of magnetic resonance (MR) in medical imaging, MR has proven to be a workhorse in diagnostic neuroradiology, with the ability to provide superb anatomic detail as well as additional functional and physiologic data, depending on the techniques utilized. Positron emission tomography/computed tomography has also shown irreplaceable diagnostic value in certain disease processes of the central nervous system by providing molecular and metabolic information through the development of numerous disease-specific PET tracers, many of which can be utilized as a diagnostic technique in and of themselves or can provide a valuable adjunct to information derived from MR. Despite these advances, many challenges still remain in neuroradiology, particularly in malignancy, neurodegenerative disease, epilepsy, and cerebrovascular disease. Through improvements in attenuation correction, motion correction, and PET detectors, combining the 2 modalities of PET and MR through simultaneous imaging has proven feasible and allows for improved spatial and temporal resolution without compromising either of the 2 individual modalities. The complementary information offered by both technologies has provided increased diagnostic accuracy in both research and many clinical applications in neuroradiology.
Collapse
Affiliation(s)
- Andrew J Kure
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Hatice Savas
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Tarek A Hijaz
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Syed F Hussaini
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Alexander W Korutz
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| |
Collapse
|
13
|
Polycarpou I, Soultanidis G, Tsoumpas C. Synergistic motion compensation strategies for positron emission tomography when acquired simultaneously with magnetic resonance imaging. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200207. [PMID: 34218675 PMCID: PMC8255946 DOI: 10.1098/rsta.2020.0207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 05/04/2023]
Abstract
Subject motion in positron emission tomography (PET) is a key factor that degrades image resolution and quality, limiting its potential capabilities. Correcting for it is complicated due to the lack of sufficient measured PET data from each position. This poses a significant barrier in calculating the amount of motion occurring during a scan. Motion correction can be implemented at different stages of data processing either during or after image reconstruction, and once applied accurately can substantially improve image quality and information accuracy. With the development of integrated PET-MRI (magnetic resonance imaging) scanners, internal organ motion can be measured concurrently with both PET and MRI. In this review paper, we explore the synergistic use of PET and MRI data to correct for any motion that affects the PET images. Different types of motion that can occur during PET-MRI acquisitions are presented and the associated motion detection, estimation and correction methods are reviewed. Finally, some highlights from recent literature in selected human and animal imaging applications are presented and the importance of motion correction for accurate kinetic modelling in dynamic PET-MRI is emphasized. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.
Collapse
Affiliation(s)
- Irene Polycarpou
- Department of Health Sciences, European University of Cyprus, Nicosia, Cyprus
| | - Georgios Soultanidis
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charalampos Tsoumpas
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Imaging Science Department, University of Leeds, West Yorkshire, UK
- Invicro, London, UK
| |
Collapse
|
14
|
Brown R, Kolbitsch C, Delplancke C, Papoutsellis E, Mayer J, Ovtchinnikov E, Pasca E, Neji R, da Costa-Luis C, Gillman AG, Ehrhardt MJ, McClelland JR, Eiben B, Thielemans K. Motion estimation and correction for simultaneous PET/MR using SIRF and CIL. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200208. [PMID: 34218674 DOI: 10.1098/rsta.2020.0208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/07/2021] [Indexed: 05/10/2023]
Abstract
SIRF is a powerful PET/MR image reconstruction research tool for processing data and developing new algorithms. In this research, new developments to SIRF are presented, with focus on motion estimation and correction. SIRF's recent inclusion of the adjoint of the resampling operator allows gradient propagation through resampling, enabling the MCIR technique. Another enhancement enabled registering and resampling of complex images, suitable for MRI. Furthermore, SIRF's integration with the optimization library CIL enables the use of novel algorithms. Finally, SPM is now supported, in addition to NiftyReg, for registration. Results of MR and PET MCIR reconstructions are presented, using FISTA and PDHG, respectively. These demonstrate the advantages of incorporating motion correction and variational and structural priors. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.
Collapse
Affiliation(s)
- Richard Brown
- Institute of Nuclear Medicine, University College London, London, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Christoph Kolbitsch
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | | | - Evangelos Papoutsellis
- Scientific Computing Department, STFC, UKRI, Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
- Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, UK
| | - Johannes Mayer
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Evgueni Ovtchinnikov
- Scientific Computing Department, STFC, UKRI, Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
| | - Edoardo Pasca
- Scientific Computing Department, STFC, UKRI, Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- MR Research Collaborations, Siemens Healthcare, Frimley, UK
| | - Casper da Costa-Luis
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Ashley G Gillman
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Townsville, Australia
| | - Matthias J Ehrhardt
- Department of Mathematical Sciences, University of Bath, Bath, UK
- Institute for Mathematical Innovation, University of Bath, UK
| | - Jamie R McClelland
- Centre for Medical Image Computing, University College London, UK
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Bjoern Eiben
- Centre for Medical Image Computing, University College London, UK
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Kris Thielemans
- Institute of Nuclear Medicine, University College London, London, UK
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| |
Collapse
|
15
|
Driscoll B, Vines D, Shek T, Publicover J, Yeung I, Breen S, Jaffray D. 4D-CT Attenuation Correction in Respiratory-Gated PET for Hypoxia Imaging: Is It Really Beneficial? ACTA ACUST UNITED AC 2021; 6:241-249. [PMID: 32548302 PMCID: PMC7289254 DOI: 10.18383/j.tom.2019.00027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previous literature has shown that 4D respiratory-gated positron emission tomography (PET) is beneficial for quantitative analysis and defining targets for boosting therapy. However the case for addition of a phase-matched 4D-computed tomography (CT) for attenuation correction (AC) is less clear. We seek to validate the use of 4D-CT for AC and investigate the impact of motion correction for low signal-to-background PET imaging of hypoxia using radiotracers such as FAZA and FMISO. A new insert for the Modus Medicals' QUASAR™ Programmable Respiratory Motion Phantom was developed in which a 3D-printed sphere was placed within the "lung" compartment while an additional compartment is added to simulate muscle/blood compartment required for hypoxia quantification. Experiments are performed at 4:1 or 2:1 signal-to-background ratio consistent with clinical FAZA and FMISO imaging. Motion blur was significant in terms of SUVmax, mean, and peak for motion ≥1 cm and could be significantly reduced (from 20% to 8% at 2-cm motion) for all 4D-PET-gated reconstructions. The effect of attenuation method on precision was significant (σ2 hCT-AC = 5.5%/4.7%/2.7% vs σ2 4D-CT-AC = 0.5%/0.6%/0.7% [max%/peak%/mean% variance]). The simulated hypoxic fraction also significantly decreased under conditions of 2-cm amplitude motion from 55% to 20% and was almost fully recovered (HF = 0.52 for phase-matched 4D-CT) using gated PET. 4D-gated PET is valuable under conditions of low radiotracer uptake found in hypoxia imaging. This work demonstrates the importance of using 4D-CT for AC when performing gated PET based on its significantly improved precision over helical CT.
Collapse
Affiliation(s)
- Brandon Driscoll
- Quantitative Imaging for Personalized Cancer Medicine Program-Techna Institute, University Health Network, Toronto, ON, Canada
| | - Douglass Vines
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada; and.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Tina Shek
- Quantitative Imaging for Personalized Cancer Medicine Program-Techna Institute, University Health Network, Toronto, ON, Canada
| | - Julia Publicover
- Quantitative Imaging for Personalized Cancer Medicine Program-Techna Institute, University Health Network, Toronto, ON, Canada
| | - Ivan Yeung
- Quantitative Imaging for Personalized Cancer Medicine Program-Techna Institute, University Health Network, Toronto, ON, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada; and.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Stephen Breen
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada; and.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - David Jaffray
- Quantitative Imaging for Personalized Cancer Medicine Program-Techna Institute, University Health Network, Toronto, ON, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada; and.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Kyme AZ, Fulton RR. Motion estimation and correction in SPECT, PET and CT. Phys Med Biol 2021; 66. [PMID: 34102630 DOI: 10.1088/1361-6560/ac093b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/08/2021] [Indexed: 11/11/2022]
Abstract
Patient motion impacts single photon emission computed tomography (SPECT), positron emission tomography (PET) and X-ray computed tomography (CT) by giving rise to projection data inconsistencies that can manifest as reconstruction artifacts, thereby degrading image quality and compromising accurate image interpretation and quantification. Methods to estimate and correct for patient motion in SPECT, PET and CT have attracted considerable research effort over several decades. The aims of this effort have been two-fold: to estimate relevant motion fields characterizing the various forms of voluntary and involuntary motion; and to apply these motion fields within a modified reconstruction framework to obtain motion-corrected images. The aims of this review are to outline the motion problem in medical imaging and to critically review published methods for estimating and correcting for the relevant motion fields in clinical and preclinical SPECT, PET and CT. Despite many similarities in how motion is handled between these modalities, utility and applications vary based on differences in temporal and spatial resolution. Technical feasibility has been demonstrated in each modality for both rigid and non-rigid motion, but clinical feasibility remains an important target. There is considerable scope for further developments in motion estimation and correction, and particularly in data-driven methods that will aid clinical utility. State-of-the-art machine learning methods may have a unique role to play in this context.
Collapse
Affiliation(s)
- Andre Z Kyme
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, AUSTRALIA
| | - Roger R Fulton
- Sydney School of Health Sciences, The University of Sydney, Sydney, New South Wales, AUSTRALIA
| |
Collapse
|
17
|
Nogami M, Zeng F, Inukai J, Watanabe Y, Nishio M, Kanda T, Ueno YR, Sofue K, Kono AK, Hori M, Ohnishi A, Kubo K, Kurimoto T, Murakami T. Physiological skin FDG uptake: A quantitative and regional distribution assessment using PET/MRI. PLoS One 2021; 16:e0249304. [PMID: 33770111 PMCID: PMC7997016 DOI: 10.1371/journal.pone.0249304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/16/2021] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To retrospectively assess the repeatability of physiological F-18 labeled fluorodeoxyglucose (FDG) uptake in the skin on positron emission tomography/magnetic resonance imaging (PET/MRI) and explore its regional distribution and relationship with sex and age. METHODS Out of 562 examinations with normal FDG distribution on whole-body PET/MRI, 74 repeated examinations were evaluated to assess the repeatability and regional distribution of physiological skin uptake. Furthermore, 224 examinations were evaluated to compare differences in the uptake due to sex and age. Skin segmentation on PET was performed as body-surface contouring on an MR-based attenuation correction map using an off-line reconstruction software. Bland-Altman plots were created for the repeatability assessment. Kruskal-Wallis test was performed to compare the maximum standardized uptake value (SUVmax) with regional distribution, age, and sex. RESULTS The limits of agreement for the difference in SUVmean and SUVmax of the skin were less than 30%. The highest SUVmax was observed in the face (3.09±1.04), followed by the scalp (2.07±0.53). The SUVmax in the face of boys aged 0-9 years and 10-20 years (1.33±0.64 and 2.05±1.00, respectively) and girls aged 0-9 years (0.98±0.38) was significantly lower than that of men aged ≥20 years and girls aged ≥10 years (p<0.001). In women, the SUVmax of the face (2.31±0.71) of ≥70-year-olds was significantly lower than that of 30-39-year-olds (3.83±0.82) (p<0.05). CONCLUSION PET/MRI enabled the quantitative analysis of skin FDG uptake with repeatability. The degree of physiological FDG uptake in the skin was the highest in the face and varied between sexes. Although attention to differences in body habitus between age groups is needed, skin FDG uptake also depended on age.
Collapse
Affiliation(s)
- Munenobu Nogami
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Feibi Zeng
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Junko Inukai
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiaki Watanabe
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mizuho Nishio
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomonori Kanda
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiko R. Ueno
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keitaro Sofue
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsushi K. Kono
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masatoshi Hori
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akihito Ohnishi
- Department of Radiology, Kakogawa Central City Hospital, Kakogawa, Japan
| | - Kazuhiro Kubo
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Takamichi Murakami
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
18
|
Moradi F, Brunsing RL, Sheth VR, Iagaru A. Positron Emission Tomography–Magnetic Resonance Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Marin T, Djebra Y, Han PK, Chemli Y, Bloch I, El Fakhri G, Ouyang J, Petibon Y, Ma C. Motion correction for PET data using subspace-based real-time MR imaging in simultaneous PET/MR. Phys Med Biol 2020; 65:235022. [PMID: 33263317 DOI: 10.1088/1361-6560/abb31d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Image quality of positron emission tomography (PET) reconstructions is degraded by subject motion occurring during the acquisition. Magnetic resonance (MR)-based motion correction approaches have been studied for PET/MR scanners and have been successful at capturing regular motion patterns, when used in conjunction with surrogate signals (e.g. navigators) to detect motion. However, handling irregular respiratory motion and bulk motion remains challenging. In this work, we propose an MR-based motion correction method relying on subspace-based real-time MR imaging to estimate motion fields used to correct PET reconstructions. We take advantage of the low-rank characteristics of dynamic MR images to reconstruct high-resolution MR images at high frame rates from highly undersampled k-space data. Reconstructed dynamic MR images are used to determine motion phases for PET reconstruction and estimate phase-to-phase nonrigid motion fields able to capture complex motion patterns such as irregular respiratory and bulk motion. MR-derived binning and motion fields are used for PET reconstruction to generate motion-corrected PET images. The proposed method was evaluated on in vivo data with irregular motion patterns. MR reconstructions accurately captured motion, outperforming state-of-the-art dynamic MR reconstruction techniques. Evaluation of PET reconstructions demonstrated the benefits of the proposed method in terms of motion artifacts reduction, improving the contrast-to-noise ratio by up to a factor 3 and achieveing a target-to-background ratio up to 90% superior compared to standard/uncorrected methods. The proposed method can improve the image quality of motion-corrected PET reconstructions in clinical applications.
Collapse
Affiliation(s)
- Thibault Marin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA, 02114, United States of America. Harvard Medical School, Boston MA, 02115, United States of America. Equal contribution
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gallezot JD, Lu Y, Naganawa M, Carson RE. Parametric Imaging With PET and SPECT. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2908633] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Sun T, Petibon Y, Han PK, Ma C, Kim SJW, Alpert NM, El Fakhri G, Ouyang J. Body motion detection and correction in cardiac PET: Phantom and human studies. Med Phys 2019; 46:4898-4906. [PMID: 31508827 DOI: 10.1002/mp.13815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Patient body motion during a cardiac positron emission tomography (PET) scan can severely degrade image quality. We propose and evaluate a novel method to detect, estimate, and correct body motion in cardiac PET. METHODS Our method consists of three key components: motion detection, motion estimation, and motion-compensated image reconstruction. For motion detection, we first divide PET list-mode data into 1-s bins and compute the center of mass (COM) of the coincidences' distribution in each bin. We then compute the covariance matrix within a 25-s sliding window over the COM signals inside the window. The sum of the eigenvalues of the covariance matrix is used to separate the list-mode data into "static" (i.e., body motion free) and "moving" (i.e. contaminated by body motion) frames. Each moving frame is further divided into a number of evenly spaced sub-frames (referred to as "sub-moving" frames), in which motion is assumed to be negligible. For motion estimation, we first reconstruct the data in each static and sub-moving frame using a rapid back-projection technique. We then select the longest static frame as the reference frame and estimate elastic motion transformations to the reference frame from all other static and sub-moving frames using nonrigid registration. For motion-compensated image reconstruction, we reconstruct all the list-mode data into a single image volume in the reference frame by incorporating the estimated motion transformations in the PET system matrix. We evaluated the performance of our approach in both phantom and human studies. RESULTS Visually, the motion-corrected (MC) PET images obtained using the proposed method have better quality and fewer motion artifacts than the images reconstructed without motion correction (NMC). Quantitative analysis indicates that MC yields higher myocardium to blood pool concentration ratios. MC also yields sharper myocardium than NMC. CONCLUSIONS The proposed body motion correction method improves image quality of cardiac PET.
Collapse
Affiliation(s)
- Tao Sun
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Yoann Petibon
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Paul K Han
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Chao Ma
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Sally J W Kim
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Nathaniel M Alpert
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jinsong Ouyang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
22
|
Spangler-Bickell MG, Khalighi MM, Hoo C, DiGiacomo PS, Maclaren J, Aksoy M, Rettmann D, Bammer R, Zaharchuk G, Zeineh M, Jansen F. Rigid Motion Correction for Brain PET/MR Imaging using Optical Tracking. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019; 3:498-503. [PMID: 31396580 PMCID: PMC6686883 DOI: 10.1109/trpms.2018.2878978] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A significant challenge during high-resolution PET brain imaging on PET/MR scanners is patient head motion. This challenge is particularly significant for clinical patient populations who struggle to remain motionless in the scanner for long periods of time. Head motion also affects the MR scan data. An optical motion tracking technique, which has already been demonstrated to perform MR motion correction during acquisition, is used with a list-mode PET reconstruction algorithm to correct the motion for each recorded event and produce a corrected reconstruction. The technique is demonstrated on real Alzheimer's disease patient data for the GE SIGNA PET/MR scanner.
Collapse
Affiliation(s)
| | | | - Charlotte Hoo
- PET/MR engineering, GE Healthcare, Waukesha, WI, USA
| | | | | | - Murat Aksoy
- Radiology, Stanford University, Palo Alto, CA, USA
| | - Dan Rettmann
- Applied Science Lab, GE Healthcare, Rochester, MN, USA
| | | | | | | | - Floris Jansen
- PET/MR engineering, GE Healthcare, Waukesha, WI, USA
| |
Collapse
|
23
|
Sossi V, Cheng JC, Klyuzhin IS. Imaging in Neurodegeneration: Movement Disorders. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2018.2871760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
A systematic performance evaluation of head motion correction techniques for 3 commercial PET scanners using a reproducible experimental acquisition protocol. Ann Nucl Med 2019; 33:459-470. [DOI: 10.1007/s12149-019-01353-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022]
|
25
|
Marchesseau S, Totman JJ, Fadil H, Leek FAA, Chaal J, Richards M, Chan M, Reilhac A. Cardiac motion and spillover correction for quantitative PET imaging using dynamic MRI. Med Phys 2019; 46:726-737. [PMID: 30575047 DOI: 10.1002/mp.13345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Cardiac positron emission tomography/magnetic resonance imaging (PET/MRI) acquisition presents novel clinical applications thanks to the combination of viability and metabolic imaging (PET) and functional and structural imaging (MRI). However, the resolution of PET, as well as cardiac and respiratory motion in nongated cardiac imaging acquisition protocols, leads to a reduction in image quality and severe quantitative bias. Respiratory or cardiac motion is customarily addressed with gated reconstruction which results in higher noise. METHODS Inspired by a method that has been used in brain PET, a practical correction approach, designed to overcome these existing limitations for quantitative PET imaging, was developed and applied in the context of cardiac PET/MRI. The correction approach for PET data consists of computing the mean density map of each underlying moving region, as obtained with MRI, and translating them to the PET space taking into account the PET spatial and temporal resolution. Using these tissue density maps, the method then constructs a system of linear equations that models the activity recovery and cross-contamination coefficients, which can be solved for the true activity values. Physical and numerical cardiac phantoms were employed in order to quantify the proposed correction. The full correction pipeline was then used to assess differences in metabolic function between scar and healthy myocardium in eight patients with recent acute myocardial infarction using [11 C]-acetate. Data from ten additional patients, injected with [18 F]-FDG, were used to compare the method to the standard electrocardiography (ECG)-gated approach. RESULTS The proposed method resulted in better recovery (from 32% to 95% on the simulated phantom model) and less residual activity than the standard approach. Higher signal-to-noise and contrast-to-noise ratios than ECG-gating were also witnessed (Signal-to-noise ratio (SNR) increased from 2.92 to 5.24, contrast-to-noise ratio (CNR) increased from 62.9 to 145.9 when compared to a four-gate reconstruction). Finally, the relevance of this correction using [11 C]-acetate PET patient data, for which erroneous physiological conclusions could have been made based on the uncorrected data, was established as the correction led to the expected clinical results. CONCLUSIONS An efficient and simple method to correct for the quantitative biases in PET measurements caused by cardiac motion has been developed. Validation experiments using phantom and patient data showed improved accuracy and reliability with this approach when compared to simpler strategies such as gated acquisition or optimal regions of interest (ROI).
Collapse
Affiliation(s)
| | - John J Totman
- Clinical Imaging Research Centre, A*STAR-NUS, 117599, Singapore
| | - Hakim Fadil
- Clinical Imaging Research Centre, A*STAR-NUS, 117599, Singapore
| | | | - Jasper Chaal
- Clinical Imaging Research Centre, A*STAR-NUS, 117599, Singapore
| | - Mark Richards
- Cardiovascular Research Institute, National University of Singapore, 119228, Singapore.,Christchurch Heart Institute, University of Otago, Christchurch, 8140, New Zealand
| | - Mark Chan
- Department of Medicine, Yong Loo Lin SoM, National University of Singapore, 117597, Singapore
| | | |
Collapse
|