1
|
Pogue BW, Gioux S, Gibbs SL. Introduction to the Special Issue on Molecular Guided Surgery. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:S13701. [PMID: 40343094 PMCID: PMC12058429 DOI: 10.1117/1.jbo.30.s1.s13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
The editorial completes the Special Issue on Molecular Guided Surgery for Volume 30 of the Journal of Biomedical Optics.
Collapse
Affiliation(s)
- Brian W Pogue
- University of Wisconsin School of Medicine & Public Health, Department of Medical Physics, Madison, Wisconsin, United States
| | | | - Summer L Gibbs
- Oregon Health & Science University, Biomedical Engineering Department, Portland, Oregon, United States
- Oregon Health & Science University, Knight Cancer Institute, Portland, Oregon, United States
| |
Collapse
|
2
|
Kriukova E, LaRochelle E, Pfefer TJ, Kanniyappan U, Gioux S, Pogue B, Ntziachristos V, Gorpas D. Impact of signal-to-noise ratio and contrast definition on the sensitivity assessment and benchmarking of fluorescence molecular imaging systems. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:S13703. [PMID: 39034959 PMCID: PMC11256003 DOI: 10.1117/1.jbo.30.s1.s13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Significance Standardization of fluorescence molecular imaging (FMI) is critical for ensuring quality control in guiding surgical procedures. To accurately evaluate system performance, two metrics, the signal-to-noise ratio (SNR) and contrast, are widely employed. However, there is currently no consensus on how these metrics can be computed. Aim We aim to examine the impact of SNR and contrast definitions on the performance assessment of FMI systems. Approach We quantified the SNR and contrast of six near-infrared FMI systems by imaging a multi-parametric phantom. Based on approaches commonly used in the literature, we quantified seven SNRs and four contrast values considering different background regions and/or formulas. Then, we calculated benchmarking (BM) scores and respective rank values for each system. Results We show that the performance assessment of an FMI system changes depending on the background locations and the applied quantification method. For a single system, the different metrics can vary up to ∼ 35 dB (SNR), ∼ 8.65 a . u . (contrast), and ∼ 0.67 a . u . (BM score). Conclusions The definition of precise guidelines for FMI performance assessment is imperative to ensure successful clinical translation of the technology. Such guidelines can also enable quality control for the already clinically approved indocyanine green-based fluorescence image-guided surgery.
Collapse
Affiliation(s)
- Elena Kriukova
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Technical University of Munich, School of Medicine and Health, Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
| | - Ethan LaRochelle
- QUEL Imaging, White River Junction, Vermont, United States
- Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire, United States
| | - T. Joshua Pfefer
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Udayakumar Kanniyappan
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Sylvain Gioux
- Intuitive Surgical, Aubonne, Switzerland
- University of Strasbourg, ICube Laboratory, Strasbourg, France
| | - Brian Pogue
- University of Wisconsin Madison, Department of Medical Physics, Madison, Wisconsin, United States
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Technical University of Munich, School of Medicine and Health, Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
- Technical University of Munich, Munich Institute of Robotics and Machine Intelligence (MIRMI), Munich, Germany
| | - Dimitris Gorpas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Technical University of Munich, School of Medicine and Health, Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
| |
Collapse
|
3
|
Tenditnaya A, Gabriels RY, Hooghiemstra WTR, Klemm U, Nagengast WB, Ntziachristos V, Gorpas D. Performance Assessment and Quality Control of Fluorescence Molecular Endoscopy With a Multi-Parametric Rigid Standard. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3710-3718. [PMID: 38717879 DOI: 10.1109/tmi.2024.3398816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Fluorescence molecular endoscopy (FME) is emerging as a "red-flag" technique with potential to deliver earlier, faster, and more personalized detection of disease in the gastrointestinal tract, including cancer, and to gain insights into novel drug distribution, dose finding, and response prediction. However, to date, the performance of FME systems is assessed mainly by endoscopists during a procedure, leading to arbitrary, potentially biased, and heavily subjective assessment. This approach significantly affects the repeatability of the procedures and the interpretation or comparison of the acquired data, representing a major bottleneck towards the clinical translation of the technology. Herein, we propose a robust methodology for FME performance assessment and quality control that is based on a novel multi-parametric rigid standard. This standard enables the characterization of an FME system's sensitivity through a single acquisition, performance comparison of multiple systems, and, for the first time, quality control of a system as a function of time and number of usages. We show the photostability of the standard experimentally and demonstrate how it can be used to characterize the performance of an FME system. Moreover, we showcase how the standard can be employed for quality control of a system. In this study, we find that the use of composite fluorescence standards before endoscopic procedures can ensure that an FME system meets the performance criteria and that components prone to performance degradation are replaced in time, avoiding disruption of clinical endoscopy logistics. This will help overcome a major barrier for the translation of FME into the clinics.
Collapse
|
4
|
Pogue BW, Zhu TC, Ntziachristos V, Wilson BC, Paulsen KD, Gioux S, Nordstrom R, Pfefer TJ, Tromberg BJ, Wabnitz H, Yodh A, Chen Y, Litorja M. AAPM Task Group Report 311: Guidance for performance evaluation of fluorescence-guided surgery systems. Med Phys 2024; 51:740-771. [PMID: 38054538 DOI: 10.1002/mp.16849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
The last decade has seen a large growth in fluorescence-guided surgery (FGS) imaging and interventions. With the increasing number of clinical specialties implementing FGS, the range of systems with radically different physical designs, image processing approaches, and performance requirements is expanding. This variety of systems makes it nearly impossible to specify uniform performance goals, yet at the same time, utilization of different devices in new clinical procedures and trials indicates some need for common knowledge bases and a quality assessment paradigm to ensure that effective translation and use occurs. It is feasible to identify key fundamental image quality characteristics and corresponding objective test methods that should be determined such that there are consistent conventions across a variety of FGS devices. This report outlines test methods, tissue simulating phantoms and suggested guidelines, as well as personnel needs and professional knowledge bases that can be established. This report frames the issues with guidance and feedback from related societies and agencies having vested interest in the outcome, coming from an independent scientific group formed from academics and international federal agencies for the establishment of these professional guidelines.
Collapse
Affiliation(s)
- Brian W Pogue
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Timothy C Zhu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Technical University of Munich, Helmholtz Zentrum Munich, Munich, Germany
| | - Brian C Wilson
- Department of Medical Biophysics, University of Toronto, University Health Network, Toronto, Ontario, Canada
| | - Keith D Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Sylvain Gioux
- Department of Biomedical Engineering, University of Strasbourg, Strasbourg, France
| | - Robert Nordstrom
- Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - T Joshua Pfefer
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Bruce J Tromberg
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Arjun Yodh
- Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu Chen
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Maritoni Litorja
- Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
5
|
Ochoa MI, Ruiz A, LaRochelle E, Reed M, Berber E, Poultsides G, Pogue BW. Assessment of open-field fluorescence guided surgery systems: implementing a standardized method for characterization and comparison. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:096007. [PMID: 37745774 PMCID: PMC10513724 DOI: 10.1117/1.jbo.28.9.096007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
Significance Fluorescence guided surgery (FGS) has demonstrated improvements in decision making and patient outcomes for a wide range of surgical procedures. Not only can FGS systems provide a higher level of structural perfusion accuracy in tissue reconstruction cases but they can also serve for real-time functional characterization. Multiple FGS devices have been Food and Drug administration (FDA) cleared for use in open and laparoscopic surgery. Despite the rapid growth of the field, there has been a lack standardization methods. Aim This work overviews commonalities inherent to optical imaging methods that can be exploited to produce such a standardization procedure. Furthermore, a system evaluation pipeline is proposed and executed through the use of photo-stable indocyanine green fluorescence phantoms. Five different FDA-approved open-field FGS systems are used and evaluated with the proposed method. Approach The proposed pipeline encompasses the following characterization: (1) imaging spatial resolution and sharpness, (2) sensitivity and linearity, (3) imaging depth into tissue, (4) imaging system DOF, (5) uniformity of illumination, (6) spatial distortion, (7) signal to background ratio, (8) excitation bands, and (9) illumination wavelength and power. Results The results highlight how such a standardization approach can be successfully implemented for inter-system comparisons as well as how to better understand essential features within each FGS setup. Conclusions Despite clinical use being the end goal, a robust yet simple standardization pipeline before clinical trials, such as the one presented herein, should benefit regulatory agencies, manufacturers, and end-users to better assess basic performance and improvements to be made in next generation FGS systems.
Collapse
Affiliation(s)
- Marien I. Ochoa
- University of Wisconsin Madison, Department of Medical Physics, Madison, Wisconsin, United States
| | - Alberto Ruiz
- QUEL Imaging, White River Junction, Vermont, United States
| | | | - Matthew Reed
- University of Wisconsin Madison, Department of Medical Physics, Madison, Wisconsin, United States
| | - Eren Berber
- Cleveland Clinic - Marymount Hospital, Garfield Heights, Ohio, United States
| | - George Poultsides
- Stanford Medicine, Department of Surgery, Stanford, California, United States
| | - Brian W. Pogue
- University of Wisconsin Madison, Department of Medical Physics, Madison, Wisconsin, United States
| |
Collapse
|
6
|
LaRochelle EPM, Streeter SS, Littler EA, Ruiz AJ. 3D-Printed Tumor Phantoms for Assessment of In Vivo Fluorescence Imaging Analysis Methods. Mol Imaging Biol 2023; 25:212-220. [PMID: 36307633 PMCID: PMC9970939 DOI: 10.1007/s11307-022-01783-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE Interventional fluorescence imaging is increasingly being utilized to quantify cancer biomarkers in both clinical and preclinical models, yet absolute quantification is complicated by many factors. The use of optical phantoms has been suggested by multiple professional organizations for quantitative performance assessment of fluorescence guidance imaging systems. This concept can be further extended to provide standardized tools to compare and assess image analysis metrics. PROCEDURES 3D-printed fluorescence phantoms based on solid tumor models were developed with representative bio-mimicking optical properties. Phantoms were produced with discrete tumors embedded with an NIR fluorophore of fixed concentration and either zero or 3% non-specific fluorophore in the surrounding material. These phantoms were first imaged by two fluorescence imaging systems using two methods of image segmentation, and four assessment metrics were calculated to demonstrate variability in the quantitative assessment of system performance. The same analysis techniques were then applied to one tumor model with decreasing tumor fluorophore concentrations. RESULTS These anatomical phantom models demonstrate the ability to use 3D printing to manufacture anthropomorphic shapes with a wide range of reduced scattering (μs': 0.24-1.06 mm-1) and absorption (μa: 0.005-0.14 mm-1) properties. The phantom imaging and analysis highlight variability in the measured sensitivity metrics associated with tumor visualization. CONCLUSIONS 3D printing techniques provide a platform for demonstrating complex biological models that introduce real-world complexities for quantifying fluorescence image data. Controlled iterative development of these phantom designs can be used as a tool to advance the field and provide context for consensus-building beyond performance assessment of fluorescence imaging platforms, and extend support for standardizing how quantitative metrics are extracted from imaging data and reported in literature.
Collapse
Affiliation(s)
- Ethan P M LaRochelle
- QUEL Imaging, 85 N. Main Street Suite 142, White River Junction, VT, 05001, USA.
| | - Samuel S Streeter
- QUEL Imaging, 85 N. Main Street Suite 142, White River Junction, VT, 05001, USA.,Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Eammon A Littler
- QUEL Imaging, 85 N. Main Street Suite 142, White River Junction, VT, 05001, USA
| | - Alberto J Ruiz
- QUEL Imaging, 85 N. Main Street Suite 142, White River Junction, VT, 05001, USA.,Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH, 03755, USA
| |
Collapse
|
7
|
Streeter SS, Hebert KA, Bateman LM, Ray GS, Dean RE, Geffken KT, Resnick CT, Austin DC, Bell JE, Sparks MB, Gibbs SL, Samkoe KS, Gitajn IL, Elliott JT, Henderson ER. Current and Future Applications of Fluorescence Guidance in Orthopaedic Surgery. Mol Imaging Biol 2023; 25:46-57. [PMID: 36447084 PMCID: PMC10106269 DOI: 10.1007/s11307-022-01789-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Fluorescence-guided surgery (FGS) is an evolving field that seeks to identify important anatomic structures or physiologic phenomena with helpful relevance to the execution of surgical procedures. Fluorescence labeling occurs generally via the administration of fluorescent reporters that may be molecularly targeted, enzyme-activated, or untargeted, vascular probes. Fluorescence guidance has substantially changed care strategies in numerous surgical fields; however, investigation and adoption in orthopaedic surgery have lagged. FGS shows the potential for improving patient care in orthopaedics via several applications including disease diagnosis, perfusion-based tissue healing capacity assessment, infection/tumor eradication, and anatomic structure identification. This review highlights current and future applications of fluorescence guidance in orthopaedics and identifies key challenges to translation and potential solutions.
Collapse
Affiliation(s)
- Samuel S Streeter
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
| | - Kendra A Hebert
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Logan M Bateman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.,Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA
| | - Gabrielle S Ray
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Ryan E Dean
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Kurt T Geffken
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Corey T Resnick
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Daniel C Austin
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - John-Erik Bell
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Michael B Sparks
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Summer L Gibbs
- Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kimberley S Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - I Leah Gitajn
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Jonathan Thomas Elliott
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.,Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA.,Dartmouth Cancer Center, Dartmouth Health, Lebanon, NH, 03756, USA
| | - Eric R Henderson
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.,Department of Orthopaedics, Dartmouth Health, Lebanon, NH, 03756, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA.,Dartmouth Cancer Center, Dartmouth Health, Lebanon, NH, 03756, USA
| |
Collapse
|
8
|
Dinh J, Yamashita A, Kang H, Gioux S, Choi HS. Optical Tissue Phantoms for Quantitative Evaluation of Surgical Imaging Devices. ADVANCED PHOTONICS RESEARCH 2023; 4:2200194. [PMID: 36643020 PMCID: PMC9838008 DOI: 10.1002/adpr.202200194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Optical tissue phantoms (OTPs) have been extensively applied to the evaluation of imaging systems and surgical training. Due to their human tissue-mimicking characteristics, OTPs can provide accurate optical feedback on the performance of image-guided surgical instruments, simulating the biological sizes and shapes of human organs, and preserving similar haptic responses of original tissues. This review summarizes the essential components of OTPs (i.e., matrix, scattering and absorbing agents, and fluorophores) and the various manufacturing methods currently used to create suitable tissue-mimicking phantoms. As photobleaching is a major challenge in OTP fabrication and its feedback accuracy, phantom photostability and how the photobleaching phenomenon can affect their optical properties are discussed. Consequently, the need for novel photostable OTPs for the quantitative evaluation of surgical imaging devices is emphasized.
Collapse
Affiliation(s)
- Jason Dinh
- Gordon Center for Medical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Atsushi Yamashita
- Gordon Center for Medical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sylvain Gioux
- Intuitive Surgical Sàrl, 1170 Aubonne, Switzerland
- ICube Laboratory, University of Strasbourg, 67081 Strasbourg, France
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
9
|
Schädel-Ebner S, Hirsch O, Gladytz T, Gutkelch D, Licha K, Berger J, Grosenick D. 3D-printed tissue-simulating phantoms for near-infrared fluorescence imaging of rheumatoid diseases. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:074702. [PMID: 35711096 PMCID: PMC9201974 DOI: 10.1117/1.jbo.27.7.074702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Fluorescence imaging of rheumatoid diseases with indocyanine green (ICG) is an emerging technique with unique potential for diagnosis and therapy. Device characterization, monitoring of the performance, and further developments of the technique require tissue-equivalent fluorescent phantoms of high stability with appropriate anatomical shapes. AIM Our investigations aim at the development of a three-dimensional (3D) printing technique to fabricate hand and finger models with appropriate optical properties in the near-infrared spectral range. These phantoms should have fluorescence properties similar to ICG, and excellent photostability and durability over years. APPROACH We modified a 3D printing methacrylate photopolymer by adding the fluorescent dye Lumogen IR 765 to the raw material. Reduced scattering and absorption coefficients were adjusted to values representative of the human hand by incorporating titanium dioxide powder and black ink. The properties of printed phantoms of various compositions were characterized using UV/Vis and fluorescence spectroscopy, and time-resolved measurements. Photostability and bleaching were investigated with a hand imager. For comparison, several phantoms with ICG as fluorescent dye were printed and characterized as well. RESULTS The spectral properties of Lumogen IR 765 are very similar to those of ICG. By optimizing the concentrations of Lumogen, titanium dioxide, and ink, anatomically shaped hand and vessel models with properties equivalent to in vivo investigations with a fluorescence hand imager could be printed. Phantoms with Lumogen IR 765 had an excellent photostability over up to 4 years. In contrast, phantoms printed with ICG showed significant bleaching and degradation of fluorescence over time. CONCLUSIONS 3D printing of phantoms with Lumogen IR 765 is a promising method for fabricating anatomically shaped fluorescent tissue models of excellent stability with spectral properties similar to ICG. The phantoms are well-suited to monitor the performance of hand imagers. Concepts can easily be transferred to other fluorescence imaging applications of ICG.
Collapse
Affiliation(s)
| | - Ole Hirsch
- Hochschule für angewandte Wissenschaft und Kunst Hildesheim/Holzminden/Göttingen (HAWK), Fakultät Ingenieurwissenschaften und Gesundheit, Göttingen, Germany
| | - Thomas Gladytz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), Berlin, Germany
| | - Dirk Gutkelch
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Kai Licha
- FEW Chemicals GmbH, Bitterfeld-Wolfen, Germany
| | | | - Dirk Grosenick
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| |
Collapse
|
10
|
Gorpas D, Wabnitz H, Pfefer TJ. Special Section Guest Editorial: Tissue Phantoms to Advance Biomedical Optical Systems. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:074701. [PMID: 35752879 PMCID: PMC9234512 DOI: 10.1117/1.jbo.27.7.074701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The editorial introduces the JBO Special Section on Tissue Phantoms to Advance Biomedical Optical Systems.
Collapse
Affiliation(s)
- Dimitris Gorpas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Technical University of Munich, Chair of Biological Imaging, Munich, Germany
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - T Joshua Pfefer
- Food and Drug Administration, Silver Spring, Maryland, United States
| |
Collapse
|
11
|
Wilson BC, Eu D. Optical Spectroscopy and Imaging in Surgical Management of Cancer Patients. TRANSLATIONAL BIOPHOTONICS 2022. [DOI: 10.1002/tbio.202100009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Brian C. Wilson
- Princess Margaret Cancer Centre/University Health Network 101 College Street Toronto Ontario Canada
- Department of Medical Biophysics, Faculty of Medicine University of Toronto Canada
| | - Donovan Eu
- Department of Otolaryngology‐Head and Neck Surgery‐Surgical Oncology, Princess Margaret Cancer Centre/University Health Network University of Toronto Canada
- Department of Otolaryngology‐Head and Neck Surgery National University Hospital System Singapore
| |
Collapse
|
12
|
Hacker L, Wabnitz H, Pifferi A, Pfefer TJ, Pogue BW, Bohndiek SE. Criteria for the design of tissue-mimicking phantoms for the standardization of biophotonic instrumentation. Nat Biomed Eng 2022; 6:541-558. [PMID: 35624150 DOI: 10.1038/s41551-022-00890-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/07/2022] [Indexed: 01/08/2023]
Abstract
A lack of accepted standards and standardized phantoms suitable for the technical validation of biophotonic instrumentation hinders the reliability and reproducibility of its experimental outputs. In this Perspective, we discuss general criteria for the design of tissue-mimicking biophotonic phantoms, and use these criteria and state-of-the-art developments to critically review the literature on phantom materials and on the fabrication of phantoms. By focusing on representative examples of standardization in diffuse optical imaging and spectroscopy, fluorescence-guided surgery and photoacoustic imaging, we identify unmet needs in the development of phantoms and a set of criteria (leveraging characterization, collaboration, communication and commitment) for the standardization of biophotonic instrumentation.
Collapse
Affiliation(s)
- Lina Hacker
- Department of Physics, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | | | | | - Brian W Pogue
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Sterkenburg AJ, Hooghiemstra WTR, Schmidt I, Ntziachristos V, Nagengast WB, Gorpas D. Standardization and implementation of fluorescence molecular endoscopy in the clinic. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210302SS-PERR. [PMID: 35170264 PMCID: PMC8847121 DOI: 10.1117/1.jbo.27.7.074704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/19/2022] [Indexed: 05/26/2023]
Abstract
SIGNIFICANCE Near-infrared fluorescence molecular endoscopy (NIR-FME) is an innovative technique allowing for in vivo visualization of molecular processes in hollow organs. Despite its potential for clinical translation, NIR-FME still faces challenges, for example, the lack of consensus in performing quality control and standardization of procedures and systems. This may hamper the clinical approval of the technology by authorities and its acceptance by endoscopists. Until now, several clinical trials using NIR-FME have been performed. However, most of these trials had different study designs, making comparison difficult. AIM We describe the need for standardization in NIR-FME, provide a pathway for setting up a standardized clinical study, and describe future perspectives for NIR-FME. Body: Standardization is challenging due to many parameters. Invariable parameters refer to the hardware specifications. Variable parameters refer to movement or tissue optical properties. Phantoms can be of aid when defining the influence of these variables or when standardizing a procedure. CONCLUSION There is a need for standardization in NIR-FME and hurdles still need to be overcome before a widespread clinical implementation of NIR-FME can be realized. When these hurdles are overcome, clinical outcomes can be compared and systems can be benchmarked, enabling clinical implementation.
Collapse
Affiliation(s)
- Andrea J. Sterkenburg
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Wouter T. R. Hooghiemstra
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Iris Schmidt
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Vasilis Ntziachristos
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
- Helmholtz Zentrum München (GmbH), Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Wouter B. Nagengast
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Dimitris Gorpas
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
- Helmholtz Zentrum München (GmbH), Institute of Biological and Medical Imaging, Neuherberg, Germany
| |
Collapse
|
14
|
Fundamentals and developments in fluorescence-guided cancer surgery. Nat Rev Clin Oncol 2022; 19:9-22. [PMID: 34493858 DOI: 10.1038/s41571-021-00548-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Fluorescence-guided surgery using tumour-targeted imaging agents has emerged over the past decade as a promising and effective method of intraoperative cancer detection. An impressive number of fluorescently labelled antibodies, peptides, particles and other molecules related to cancer hallmarks have been developed for the illumination of target lesions. New approaches are being implemented to translate these imaging agents into the clinic, although only a few have made it past early-phase clinical trials. For this translational process to succeed, target selection, imaging agents and their related detection systems and clinical implementation have to operate in perfect harmony to enable real-time intraoperative visualization that can benefit patients. Herein, we review key aspects of this imaging cascade and focus on imaging approaches and methods that have helped to shed new light onto the field of intraoperative fluorescence-guided cancer surgery with the singular goal of improving patient outcomes.
Collapse
|
15
|
Turchin I, Bano S, Kirillin M, Orlova A, Perekatova V, Plekhanov V, Sergeeva E, Kurakina D, Khilov A, Kurnikov A, Subochev P, Shirmanova M, Komarova A, Yuzhakova D, Gavrina A, Mallidi S, Hasan T. Combined Fluorescence and Optoacoustic Imaging for Monitoring Treatments against CT26 Tumors with Photoactivatable Liposomes. Cancers (Basel) 2021; 14:197. [PMID: 35008362 PMCID: PMC8750546 DOI: 10.3390/cancers14010197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
The newly developed multimodal imaging system combining raster-scan optoacoustic (OA) microscopy and fluorescence (FL) wide-field imaging was used for characterizing the tumor vascular structure with 38/50 μm axial/transverse resolution and assessment of photosensitizer fluorescence kinetics during treatment with novel theranostic agents. A multifunctional photoactivatable multi-inhibitor liposomal (PMILs) nano platform was engineered here, containing a clinically approved photosensitizer, Benzoporphyrin derivative (BPD) in the bilayer, and topoisomerase I inhibitor, Irinotecan (IRI) in its inner core, for a synergetic therapeutic impact. The optimized PMIL was anionic, with the hydrodynamic diameter of 131.6 ± 2.1 nm and polydispersity index (PDI) of 0.05 ± 0.01, and the zeta potential between -14.9 ± 1.04 to -16.9 ± 0.92 mV. In the in vivo studies on BALB/c mice with CT26 tumors were performed to evaluate PMILs' therapeutic efficacy. PMILs demonstrated the best inhibitory effect of 97% on tumor growth compared to the treatment with BPD-PC containing liposomes (PALs), 81%, or IRI containing liposomes (L-[IRI]) alone, 50%. This confirms the release of IRI within the tumor cells upon PMILs triggering by NIR light, which is additionally illustrated by FL monitoring demonstrating enhancement of drug accumulation in tumor initiated by PDT in 24 h after the treatment. OA monitoring revealed the largest alterations of the tumor vascular structure in the PMILs treated mice as compared to BPD-PC or IRI treated mice. The results were further corroborated with histological data that also showed a 5-fold higher percentage of hemorrhages in PMIL treated mice compared to the control groups. Overall, these results suggest that multifunctional PMILs simultaneously delivering PDT and chemotherapy agents along with OA and FL multi-modal imaging offers an efficient and personalized image-guided platform to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Ilya Turchin
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.B.); (S.M.); (T.H.)
| | - Mikhail Kirillin
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Anna Orlova
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Valeriya Perekatova
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Vladimir Plekhanov
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Ekaterina Sergeeva
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Daria Kurakina
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Aleksandr Khilov
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Alexey Kurnikov
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Pavel Subochev
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia; (M.K.); (A.O.); (V.P.); (V.P.); (E.S.); (D.K.); (A.K.); (A.K.); (P.S.)
| | - Marina Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (M.S.); (A.K.); (D.Y.); (A.G.)
| | - Anastasiya Komarova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (M.S.); (A.K.); (D.Y.); (A.G.)
| | - Diana Yuzhakova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (M.S.); (A.K.); (D.Y.); (A.G.)
| | - Alena Gavrina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia; (M.S.); (A.K.); (D.Y.); (A.G.)
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.B.); (S.M.); (T.H.)
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (S.B.); (S.M.); (T.H.)
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
16
|
Palma-Chavez J, Pfefer TJ, Agrawal A, Jokerst JV, Vogt WC. Review of consensus test methods in medical imaging and current practices in photoacoustic image quality assessment. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210176VSSR. [PMID: 34510850 PMCID: PMC8434148 DOI: 10.1117/1.jbo.26.9.090901] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/17/2021] [Indexed: 05/06/2023]
Abstract
SIGNIFICANCE Photoacoustic imaging (PAI) is a powerful emerging technology with broad clinical applications, but consensus test methods are needed to standardize performance evaluation and accelerate translation. AIM To review consensus image quality test methods for mature imaging modalities [ultrasound, magnetic resonance imaging (MRI), x-ray CT, and x-ray mammography], identify best practices in phantom design and testing procedures, and compare against current practices in PAI phantom testing. APPROACH We reviewed scientific papers, international standards, clinical accreditation guidelines, and professional society recommendations describing medical image quality test methods. Observations are organized by image quality characteristics (IQCs), including spatial resolution, geometric accuracy, imaging depth, uniformity, sensitivity, low-contrast detectability, and artifacts. RESULTS Consensus documents typically prescribed phantom geometry and material property requirements, as well as specific data acquisition and analysis protocols to optimize test consistency and reproducibility. While these documents considered a wide array of IQCs, reported PAI phantom testing focused heavily on in-plane resolution, depth of visualization, and sensitivity. Understudied IQCs that merit further consideration include out-of-plane resolution, geometric accuracy, uniformity, low-contrast detectability, and co-registration accuracy. CONCLUSIONS Available medical image quality standards provide a blueprint for establishing consensus best practices for photoacoustic image quality assessment and thus hastening PAI technology advancement, translation, and clinical adoption.
Collapse
Affiliation(s)
- Jorge Palma-Chavez
- University of California San Diego, Department of NanoEngineering, La Jolla, California, United States
| | - T. Joshua Pfefer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Anant Agrawal
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Jesse V. Jokerst
- University of California San Diego, Department of NanoEngineering, La Jolla, California, United States
- University of California San Diego, Department of Radiology, La Jolla, California, United States
- University of California San Diego, Materials Science and Engineering Program, La Jolla, California, United States
| | - William C. Vogt
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| |
Collapse
|
17
|
Hernandez Vargas S, Lin C, Tran Cao HS, Ikoma N, AghaAmiri S, Ghosh SC, Uselmann AJ, Azhdarinia A. Receptor-Targeted Fluorescence-Guided Surgery With Low Molecular Weight Agents. Front Oncol 2021; 11:674083. [PMID: 34277418 PMCID: PMC8279813 DOI: 10.3389/fonc.2021.674083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer surgery remains the primary treatment option for most solid tumors and can be curative if all malignant cells are removed. Surgeons have historically relied on visual and tactile cues to maximize tumor resection, but clinical data suggest that relapse occurs partially due to incomplete cancer removal. As a result, the introduction of technologies that enhance the ability to visualize tumors in the operating room represents a pressing need. Such technologies have the potential to revolutionize the surgical standard-of-care by enabling real-time detection of surgical margins, subclinical residual disease, lymph node metastases and synchronous/metachronous tumors. Fluorescence-guided surgery (FGS) in the near-infrared (NIRF) spectrum has shown tremendous promise as an intraoperative imaging modality. An increasing number of clinical studies have demonstrated that tumor-selective FGS agents can improve the predictive value of fluorescence over non-targeted dyes. Whereas NIRF-labeled macromolecules (i.e., antibodies) spearheaded the widespread clinical translation of tumor-selective FGS drugs, peptides and small-molecules are emerging as valuable alternatives. Here, we first review the state-of-the-art of promising low molecular weight agents that are in clinical development for FGS; we then discuss the significance, application and constraints of emerging tumor-selective FGS technologies.
Collapse
Affiliation(s)
- Servando Hernandez Vargas
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Therapeutics & Pharmacology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | | | - Hop S Tran Cao
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Naruhiko Ikoma
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Solmaz AghaAmiri
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sukhen C Ghosh
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Ali Azhdarinia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Therapeutics & Pharmacology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
18
|
Gorpas D, Ntziachristos V, Tian J. Principles and Practice of Intraoperative Fluorescence Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Abstract
Optical imaging offers a high potential for noninvasive detection and therapy of cancer in humans. Recent advances in instrumentation for diffuse optical imaging have led to new capabilities for the detection of cancer in highly scattering tissue such as the female breast. In particular, fluorescence imaging was made applicable as a sensitive technique to image molecular probes in vivo. We review recent developments in the detection of breast cancer and fluorescence-guided surgery of the breast by contrast agents available for application on humans. Detection of cancer has been investigated with the unspecific contrast agents "indocyanine green" and "omocianine" so far. Hereby, indocyanine green was found to offer high potential for the differentiation of malignant and benign lesions by exploiting vessel permeability for macromolecules as a cancer-specific feature. Tumor-specific molecular targeting and activatable probes have been investigated in clinical trials for fluorescence-guided tumor margin detection. In this application, high spatial resolution can be achieved, since tumor regions are visualized mainly at the tissue surface. As another example of superficial tumor tissue, imaging of lesions in the gastrointestinal tract is discussed. Promising results have been obtained on high-risk patients with Barrett´s esophagus and with ulcerative colitis by administering 5-aminolevulinic acid which induces accumulation of protoporphyrin IX serving as a tumor-specific fluorescent marker. Time-gated fluorescence imaging and spectroscopy are effective ways to suppress underlying background from tissue autofluorescence. Furthermore, recently developed tumor-specific molecular probes have been demonstrated to be superior to white-light endoscopy offering new ways for early detection of malignancies in the gastrointestinal tract.
Collapse
|
20
|
Daly MJ, Chan H, Muhanna N, Akens MK, Wilson BC, Irish JC, Jaffray DA. Intraoperative cone-beam CT spatial priors for diffuse optical fluorescence tomography. ACTA ACUST UNITED AC 2019; 64:215007. [DOI: 10.1088/1361-6560/ab4917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Pruimboom T, van Kuijk SMJ, Qiu SS, van den Bos J, Wieringa FP, van der Hulst RRWJ, Schols RM. Optimizing Indocyanine Green Fluorescence Angiography in Reconstructive Flap Surgery: A Systematic Review and Ex Vivo Experiments. Surg Innov 2019; 27:103-119. [PMID: 31347468 DOI: 10.1177/1553350619862097] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background. Indocyanine green angiography (ICGA) offers the potential to provide objective data for evaluating tissue perfusion of flaps and reduce the incidence of postoperative necrosis. Consensus on ICGA protocols and information on factors that have an influence on fluorescence intensity is lacking. The aim of this article is to provide a comprehensive insight of in vivo and ex vivo evaluation of factors influencing the fluorescence intensity when using ICGA during reconstructive flap surgery. Methods. A systematic literature search was conducted to provide a comprehensive overview of currently used ICGA protocols in reconstructive flap surgery. Additionally, ex vivo experiments were performed to further investigate the practical influence of potentially relevant factors. Results. Factors that are considered important in ICGA protocols, as well as factors that might influence fluorescence intensity are scarcely reported. The ex vivo experiments demonstrated that fluorescence intensity was significantly related to dose, working distance, angle, penetration depth, and ambient light. Conclusions. This study identified factors that significantly influence the fluorescence intensity of ICGA. Applying a weight-adjusted ICG dose seems preferable over a fixed dose, recommended working distances are advocated, and the imaging head during ICGA should be positioned in an angle of 60° to 90° without significantly influencing the fluorescence intensity. All of these factors should be considered and reported when using ICGA for tissue perfusion assessment during reconstructive flap surgery.
Collapse
Affiliation(s)
- Tim Pruimboom
- Department of Plastic, Reconstructive and Hand Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sander M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Shan S Qiu
- Department of Plastic, Reconstructive and Hand Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jacqueline van den Bos
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Fokko P Wieringa
- Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Imec Connected Health Solutions, Eindhoven, The Netherlands
| | - René R W J van der Hulst
- Department of Plastic, Reconstructive and Hand Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rutger M Schols
- Department of Plastic, Reconstructive and Hand Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
22
|
Daly MJ, Wilson BC, Irish JC, Jaffray DA. Navigated non-contact fluorescence tomography. ACTA ACUST UNITED AC 2019; 64:135021. [DOI: 10.1088/1361-6560/ab1f33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
van den Bos J, Schols RM, van Kuijk SMJ, Wieringa FP, Stassen LPS. Technical Note: Are Currently Used Measurements of Fluorescence Intensity in Near Infrared Fluorescence Imaging During Laparoscopic Cholecystectomy Comparable? J Laparoendosc Adv Surg Tech A 2019; 29:1549-1555. [PMID: 31259650 DOI: 10.1089/lap.2019.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aims: To investigate whether different calculation methods to express fluorescence intensity (FI) as target-to-background (BG) ratio are comparable and which method(s) match with human perception. Materials and Methods: Comparison of three calculation methods from current literature (OsiriX®, ImageJ®, and Photoshop®) to objectify FI during laparoscopic cholecystectomy measured at the exact same locations within recorded images of two categories: ex vivo and in vivo. Currently applied formulas to present FI in relation to the BG signal are compared with the subjective assessment by the human observers. These three formulas are Signal contrast = (FI in fluorescence regions-FI in BG)/255; Target-to-background ratio = (FI of target-FI of BG)/FI of BG; Signal-to-background ratio = FI of cystic duct/FI of liver and Target-to-background ratio = (FI of target-noise)/(FI of BG-noise). Results: In our evaluation OsiriX and ImageJ provided similar results, whereas OsiriX values were structurally slightly lower compared with ImageJ. Values obtained through Photoshop were less evidently related to those obtained with OsiriX and ImageJ. The formula Target-to-background ratio = (FI of target-noise)/(FI of BG-noise) was less corresponding with human perception compared with the other used formulas. Conclusions: FI results based on measurements using the programs OsiriX and ImageJ are similar, allowing for comparison of results between these programs. Results using Photoshop differ significantly, making direct comparison impossible. This is an important finding when interpreting study results. We propose to report both target and BG FI in articles, so that proper interpretation between articles can be made.
Collapse
Affiliation(s)
- Jacqueline van den Bos
- Department of Surgery, Reconstructive, and Hand Surgery, Maastricht University Medical Center, Maastricht, The Netherlands.,School of Nutrition, Toxicology, and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Rutger M Schols
- Department of Plastic, Reconstructive, and Hand Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sander M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), Maastricht Universitair Medisch Centrum+, Maastricht, Limburg, The Netherlands
| | - Fokko P Wieringa
- School of Nutrition, Toxicology, and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,IMEC The Netherlands, Eindhoven, The Netherlands
| | - Laurents P S Stassen
- Department of Surgery, Reconstructive, and Hand Surgery, Maastricht University Medical Center, Maastricht, The Netherlands.,School of Nutrition, Toxicology, and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
24
|
Hernot S, van Manen L, Debie P, Mieog JSD, Vahrmeijer AL. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol 2019; 20:e354-e367. [DOI: 10.1016/s1470-2045(19)30317-1] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
|
25
|
Valdes PA, Juvekar P, Agar NYR, Gioux S, Golby AJ. Quantitative Wide-Field Imaging Techniques for Fluorescence Guided Neurosurgery. Front Surg 2019; 6:31. [PMID: 31245380 PMCID: PMC6563771 DOI: 10.3389/fsurg.2019.00031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/15/2019] [Indexed: 11/26/2022] Open
Abstract
Fluorescence guided surgery (FGS) has fueled the development of novel technologies aimed at maximizing the utility of fluorescence imaging to help clinicians diagnose and in certain cases treat diseases across a breadth of disciplines such as dermatology, gynecology, oncology, ophthalmology, and neurosurgery. In neurosurgery, the goal of FGS technologies is to provide the neurosurgeon with additional information which can serve as a visual aid to better identify tumor tissue and associated margins. Yet, current clinical FGS technologies are qualitative in nature, limiting the ability to make accurate, reliable, and repeatable measurements. To this end, developments in fluorescence quantification are needed to overcome current limitations of FGS. Here we present an overview of the recent developments in quantitative fluorescence guidance technologies and conclude with the most recent developments aimed at wide-field quantitative fluorescence imaging approaches in neurosurgery.
Collapse
Affiliation(s)
- Pablo A Valdes
- Department of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Parikshit Juvekar
- Department of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Nathalie Y R Agar
- Department of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Sylvain Gioux
- ICube Laboratory, University of Strasbourg, Télécom Physique Strasbourg, Alsace, France
| | - Alexandra J Golby
- Department of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
26
|
The Dilemma of Cure and Damage in Oligodendroglioma: Ways to Tip the Balance Away from the Damage. Cancers (Basel) 2018; 10:cancers10110431. [PMID: 30424475 PMCID: PMC6265865 DOI: 10.3390/cancers10110431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022] Open
Abstract
Current treatments for oligodendrogliomas are powerful but have a negative impact on the rest of the body. The bone marrow is damaged by the chemotherapeutics, but other parts of the body are also affected. In this paper, the current treatment method and its collateral damage is described. Therefore, therapies are needed that are more effective against the tumor while having less negative effects on the patient’s quality of life. Some potential therapies include optimal removal of the tumor by fluorescent-guided surgery (FGS), intraoperative desorption electrospray ionization-mass spectrometry (DESI-MS), better monitoring of the effects of therapy by pseudo-coloring shades of gray of MRI pictures, and using recent data from RNA sequencing of single cells and immunotherapy. These are all open new ways of treating this tumor. The RNA sequencing of single tumor cells unravels specific tumor antigens present in the differentiation status of the cancer cell. Stem cell antigens were expressed in dividing cells, while hypoxia inducible factor-α (HIF-1α) is expressed in all tumor cells. Cancer stem cell antigens can be loaded on dendritic cells to induce cytotoxic T-cells directed to cancer stem cells. These recent discoveries suggest a better quality of life with the same overall survival.
Collapse
|