1
|
Ortiz R, Faddegon B. Creating uniform cluster dose spread-out Bragg peaks for proton and carbon beams. Med Phys 2024; 51:4482-4488. [PMID: 38376446 PMCID: PMC467039 DOI: 10.1002/mp.16991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Preliminary data have shown a close association of the generalized ionization cluster size dose (in short, cluster dose) with cell survival, independent of particle type, and energy, when cluster dose is derived from an ionization detail parameter preferred for its association with cell survival. Such results suggest cluster dose has the potential to replace RBE-weighted dose in proton and ion beam radiotherapy treatment plan optimization, should a uniform cluster dose lead to comparable biological effects. However, further preclinical investigations are warranted to confirm this premise. PURPOSE To present an analytical approach to create uniform cluster dose spread-out Bragg peaks (SOBP) for evaluation of the potential of cluster dose to result in uniform biological effect. METHODS We modified the coefficients of the Bortfeld and Schlegel weight formula, an analytical method typically used for the creation of radiation dose SOBP in particle therapy, to produce uniform cluster dose SOBP of different widths (1-5 cm) at relevant clinical proton and carbon beam energies. Optimum parameters were found by minimization of the ratio between the maximum and minimum cluster dose in the SOBP region using the Nelder-Mead method. RESULTS The coefficients of the Bortfeld and Schlegel weight formula leading to uniform cluster dose SOBPs were determined for each combination of beam energy and SOBP width studied. The uniformity of the resulting cluster dose SOBPs, calculated as the relative difference between the maximum and minimum cluster dose within the SOBP, was within 0.3%-3.5% for the evaluated proton beams and 1.3%-3.4% for the evaluated carbon beams. CONCLUSIONS The modifications to the analytical approach to create radiation dose SOBPs resulted in uniform cluster dose proton and carbon SOBPs over a wide range of beam energies and SOBP widths. Such SOBPs should prove valuable in preclinical investigations for the selection of nanodosimetric quantities to be used in proton and ion therapy treatment planning.
Collapse
Affiliation(s)
- Ramon Ortiz
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94115, USA
| | - Bruce Faddegon
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94115, USA
| |
Collapse
|
2
|
Mao H, Zhang H, Luo Y, Yang J, Liu Y, Zhang S, Chen W, Li Q, Dai Z. Primary study of the relative and compound biological effectiveness model for boron neutron capture therapy based on nanodosimetry. Med Phys 2024; 51:3076-3092. [PMID: 38408025 DOI: 10.1002/mp.16998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/31/2023] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND The current radiobiological model employed for boron neutron capture therapy (BNCT) treatment planning, which relies on microdosimetry, fails to provide an accurate representation the biological effects of BNCT. The precision in calculating the relative biological effectiveness (RBE) and compound biological effectiveness (CBE) plays a pivotal role in determining the therapeutic efficacy of BNCT. Therefore, this study focuses on how to improve the accuracy of the biological effects of BNCT. PURPOSE The purpose of this study is to propose new radiation biology models based on nanodosimetry to accurately assess RBE and CBE for BNCT. METHODS Nanodosimetry, rooted in ionization cluster size distributions (ICSD), introduces a novel approach to characterize radiation quality by effectively delineating RBE through the ion track structure at the nanoscale. In the context of prior research, this study presents a computational model for the nanoscale assessment of RBE and CBE. We establish a simplified model of DNA chromatin fiber using the Monte Carlo code TOPAS-nBio to evaluate the applicability of ICSD to BNCT and compute nanodosimetric parameters. RESULTS Our investigation reveals that both homogeneous and heterogeneous nanodosimetric parameters, as well as the corresponding biological model coefficients α and β, along with RBE values, exhibit variations in response to varying intracellular 10B concentrations. Notably, the nanodosimetric parameterM 1 C 2 $M_1^{{{\mathrm{C}}}_2}$ effectively captures the fluctuations in model coefficients α and RBE. CONCLUSION Our model facilitates a nanoscale analysis of BNCT, enabling predictions of nanodosimetric quantities for secondary ions as well as RBE, CBE, and other essential biological metrics related to the distribution of boron. This contribution significantly enhances the precision of RBE calculations and holds substantial promise for future applications in treatment planning.
Collapse
Affiliation(s)
- Haijun Mao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Hui Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingfen Yang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinuo Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Future Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shichao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Putian Lanhai Nuclear Medicine Research Center, Putian, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Putian Lanhai Nuclear Medicine Research Center, Putian, China
| | - Zhongying Dai
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Track Structure of Light Ions: The Link to Radiobiology. Int J Mol Sci 2023; 24:ijms24065826. [PMID: 36982899 PMCID: PMC10056035 DOI: 10.3390/ijms24065826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
It is generally recognized that the biological response to irradiation by light ions is initiated by complex damages at the DNA level. In turn, the occurrence of complex DNA damages is related to spatial and temporal distribution of ionization and excitation events, i.e., the particle track structure. It is the aim of the present study to investigate the correlation between the distribution of ionizations at the nanometric scale and the probability to induce biological damage. By means of Monte Carlo track structure simulations, the mean ionization yield M1 and the cumulative probabilities F1, F2, and F3 of at least one, two and three ionizations, respectively, were calculated in spherical volumes of water-equivalent diameters equal to 1, 2, 5 and 10 nm. When plotted as a function of M1, the quantities F1, F2 and F3 are distributed along almost unique curves, largely independent of particle type and velocity. However, the shape of the curves depends on the size of the sensitive volume. When the site size is 1 nm, biological cross sections are strongly correlated to combined probabilities of F2 and F3 calculated in the spherical volume, and the proportionality factor is the saturation value of biological cross sections.
Collapse
|
4
|
Li Y, Li X, Yang J, Wang S, Tang M, Xia J, Gao Y. Flourish of Proton and Carbon Ion Radiotherapy in China. Front Oncol 2022; 12:819905. [PMID: 35237518 PMCID: PMC8882681 DOI: 10.3389/fonc.2022.819905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Proton and heavy ion therapy offer superior relative biological effectiveness (RBE) in the treatment of deep-seated tumors compared with conventional photon radiotherapy due to its Bragg-peak feature of energy deposition in organs. Many proton and carbon ion therapy centers are active all over the world. At present, five particle radiotherapy institutes have been built and are receiving patient in China, mainly including Wanjie Proton Therapy Center (WPTC), Shanghai Proton Heavy Ion Center (SPHIC), Heavy Ion Cancer Treatment Center (HIMM), Chang Gung Memorial Hospital (CGMH), and Ruijin Hospital affiliated with Jiao Tong University. Many cancer patients have benefited from ion therapy, showing unique advantages over surgery and chemotherapy. By the end of 2020, nearly 8,000 patients had been treated with proton, carbon ion or carbon ion combined with proton therapy. So far, there is no systemic review for proton and carbon ion therapy facility and clinical outcome in China. We reviewed the development of proton and heavy ion therapy, as well as providing the representative clinical data and future directions for particle therapy in China. It has important guiding significance for the design and construction of new particle therapy center and patients’ choice of treatment equipment.
Collapse
Affiliation(s)
- Yue Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- *Correspondence: Yue Li,
| | - Xiaoman Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiancheng Yang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Sicheng Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Meitang Tang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jiawen Xia
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Huizhou Research Center of Ion Science, Chinese Academy of Sciences, Huizhou, China
| | - Yunzhe Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Li Z, Li Q, Wang X, Li S, Chen W, Jin X, Liu X, Dai Z, Liu X, Zheng X, Li P, Zhang H, Zhang Q, Luo H, Liu R. Carbon Ion Radiotherapy Acts as the Optimal Treatment Strategy for Unresectable Liver Cancer During the Coronavirus Disease 2019 Crisis. Front Public Health 2021; 9:767617. [PMID: 34957022 PMCID: PMC8695803 DOI: 10.3389/fpubh.2021.767617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/05/2021] [Indexed: 12/30/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has greatly disrupted the normal treatment of patients with liver cancer and increased their risk of death. The weight of therapeutic safety was significantly amplified for decision-making to minimize the risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Herein, the safety and effectiveness of carbon ion radiotherapy (CIRT) for unresectable liver cancer (ULC) were evaluated, and Chinese experiences were shared to solve the predicament of ULC treatment caused by SARS-CoV-2. Worldwide studies were collected to evaluate CIRT for ULC as the world has become a community due to the COVID-19 pandemic. We not only searched five international databases including the Cochrane Library, Web of Science, PubMed, Embase, and Scopus but also performed supplementary retrieval with other sources. Chinese experiences of fighting against COVID-19 were introduced based on the advancements of CIRT in China and a prospective clinical trial of CIRT for treating ULC. A total of 19 studies involving 813 patients with ULC were included in the systematic review. The qualitative synthetic evaluation showed that compared with transarterial chemoembolization (TACE), CIRT could achieve superior overall survival, local control, and relative hepatic protection. The systematic results indicated that non-invasive CIRT could significantly minimize harms to patients with ULC and concurrently obtain superior anti-cancer effectiveness. According to the Chinese experience, CIRT allows telemedicine within the hospital (TMIH) to keep a sufficient person-to-person physical distance in the whole process of treatment for ULC, which is significant for cutting off the transmission route of SARS-CoV-2. Additionally, CIRT could maximize the utilization rate of hospitalization and outpatient care (UHO). Collectively, CIRT for ULC patients not only allows TMIH and the maximized UHO but also has the compatible advantages of safety and effectiveness. Therefore, CIRT should be identified as the optimal strategy for treating appropriate ULC when we need to minimize the risk of SARS-CoV-2 infection and to improve the capacity of medical service in the context of the unprecedented COVID-19 crisis.
Collapse
Affiliation(s)
- Zheng Li
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohu Wang
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Sha Li
- The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinguo Liu
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhongying Dai
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Zheng
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ping Li
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hui Zhang
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Lanzhou Heavy Ion Hospital, Lanzhou, China
| |
Collapse
|
10
|
Repair characteristics and time-dependent effects in response to heavy-ion beam irradiation in Saccharomyces cerevisiae: a comparison with X-ray irradiation. Appl Microbiol Biotechnol 2020; 104:4043-4057. [PMID: 32144474 DOI: 10.1007/s00253-020-10464-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
Heavy-ion beam (HIB) irradiation has been widely used in microbial mutation breeding. However, a global cellular response to such radiation remains mostly uncharacterised. In this study, we used transcriptomics to analyse the damage repair response in Saccharomyces cerevisiae following a semi-lethal HIB irradiation (80 Gy), which induced a significant number of DNA double-strand breaks. Our analysis of differentially expressed genes (DEGs) from 50 to 150 min post-irradiation revealed that upregulated genes were significantly enriched for gene ontology and Kyoto encyclopaedia of genes and genomes terms related to damage repair response. Based on the number of DEGs, their annotation, and their relative expression, we established that the peak of the damage repair response occurred 75 min post-irradiation. Moreover, we exploited the data from our recent study on X-ray irradiation-induced repair to compare the transcriptional patterns induced by semi-lethal HIB and X-ray irradiations. Although these two radiations have different properties, we found a significant overlap (> 50%) for the DEGs associated with five typical DNA repair pathways and, in both cases, identified homologous recombination repair (HRR) as the predominant repair pathway. Nevertheless, when we compared the relative enrichment of the five DNA repair pathways at the key time point of the repair process, we found that the relative enrichment of HRR was higher after HIB irradiation than after X-ray irradiation. Additionally, the peak stage of HRR following HIB irradiation was ahead of that following X-ray irradiation. Since mutations occur during the DNA repair process, uncovering detailed repair characteristics should further the understanding of the associated mutagenesis features.
Collapse
|