1
|
Schwartz FR. Photon-counting CT for Chest Imaging-What Have We Learned So Far? J Comput Assist Tomogr 2025:00004728-990000000-00449. [PMID: 40249279 DOI: 10.1097/rct.0000000000001756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/10/2025] [Indexed: 04/19/2025]
Abstract
CT imaging has advanced significantly, with dual-energy CT (DECT) marking a milestone by using 2 energy spectra for enhanced tissue characterization. The latest innovation is photon-counting detectors (PCD), which offer superior spatial resolution, contrast-to-noise ratio (CNR), and potential for reduced radiation dose compared with traditional energy-integrating detectors (EID). Photon-counting CT (PCD-CT), which directly counts individual photons using semiconductors, has important implications for chest imaging, especially for complex disease processes that benefit from imaging at higher spatial resolution. PCD-CT achieves improved spatial resolution by eliminating the blurring effects associated with EID scintillators. Enhanced CNR is achieved through energy discrimination and selective use of photon energies, which also helps to minimize electronic noise. PCD-CT facilitates significant radiation dose reduction, particularly valuable for patients who receive regular follow-ups, like in lung cancer screening. In addition, PCD-CT provides spectral capabilities in every scan, unlike DECT, which requires preselecting a specific spectral scan mode. In chest imaging, PCD-CT shows promise in detecting and definitively characterizing infectious diseases, interstitial lung disease, malignancies, and vascular conditions at low radiation doses, offering higher diagnostic accuracy and patient safety. Despite these advancements, challenges remain in optimizing spectral imaging and integrating PCD-CT into routine clinical workflows, necessitating ongoing research and development.
Collapse
|
2
|
Zimmerman J, Poludniowski G. Assessment of Photon-Counting Computed Tomography for Quantitative Imaging in Radiation Therapy. Int J Radiat Oncol Biol Phys 2025; 121:1316-1327. [PMID: 39549761 DOI: 10.1016/j.ijrobp.2024.11.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/15/2024] [Accepted: 11/03/2024] [Indexed: 11/18/2024]
Abstract
PURPOSE To test a first-generation clinical photon-counting computed tomography (PCCT) scanner's capabilities to characterize materials in an anthropomorphic head phantom for radiation therapy purposes. METHODS AND MATERIALS A CIRS 731-HN head-and-neck phantom (CIRS/SunNuclear) was scanned on a NAEOTOM Alpha PCCT and a SOMATOM Definition AS+ with single-energy and dual-energy CT techniques (SECT and DECT, respectively), both scanners manufactured by Siemens (Siemens Healthineers). A method was developed to derive relative electron density (RED) and effective atomic number (EAN) from linear attenuation coefficients (LACs) of virtual mono-energetic images and applied for the PCCT and DECT data. For DECT, Siemens' syngo.via "Rho/Z"-algorithm was also used. Proton stopping-power ratios (SPRs) were calculated based on RED/EAN with the Bethe equation. For SECT, a stoichiometric calibration to SPR was used. Nine materials in the phantom were segmented, excluding border pixels. Distributions and root-mean-square deviations within the material regions were evaluated for LAC, RED/EAN, and SPR, respectively. Two example ray projections were also examined for LAC, SPR, and water-equivalent thickness, for illustrations of a more treatment-like scenario. RESULTS There was a tendency toward narrower distributions for PCCT compared with both DECT methods for the investigated quantities, observed across all materials for RED only. Likewise the scored root-mean-square deviations showed overall superiority for PCCT with a few exceptions: for water-like materials, EAN and SPR were comparable between the modalities; for titanium, the RED and SPR estimates were inferior for PCCT. The PCCT data gave the smallest deviations from theoretic along the more complex example ray profile, whereas the more standard projection showed similar results between the modalities. CONCLUSIONS This study shows promising results for tissue characterization in a human-like geometry for radiation therapy purposes using PCCT. The significance of improvements for clinical practice remains to be demonstrated.
Collapse
Affiliation(s)
- Jens Zimmerman
- Department of Nuclear Medicine and Medical Physics, Karolinska University Hospital, Stockholm, Sweden; Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Gavin Poludniowski
- Department of Nuclear Medicine and Medical Physics, Karolinska University Hospital, Stockholm, Sweden; Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
García-Figueiras R, Baleato-González S. Quantitative multi-energy CT in oncology: State of the art and future directions. Eur J Radiol 2025; 182:111840. [PMID: 39581021 DOI: 10.1016/j.ejrad.2024.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/03/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Multi-energy computed tomography (CT) involves acquisition of two or more CT measurements with distinct energy spectra. Using the differential attenuation of tissues and materials at different X-ray energies, multi-energy CT allows distinction of tissues and materials. Multi-energy technology encompasses different types of CT systems, such as dual-energy CT and photon-counting CT, that can use information from the energy and type of material present in acquired images to create multiple datasets. These scanners have overcome many of the limitations of conventional CT, making it possible to improve the diagnostic performance of CT and expand its use to new applications through better tissue characterization and multiple quantitative parameters. Quantitative imaging biomarkers based on multi-energy CT have enormous potential in oncologic imaging, from the diagnosis and characterization of tumor phenotypes to the evaluation of the response to treatment. Nevertheless, implementing these techniques in clinical practice remains challenging. This article reviews the basic principles underlying multi-energy CT and the most recent technical developments in these systems together with their advantages and limitations to establish the value of quantitative imaging derived from multi-energy CT in the field of oncology.
Collapse
Affiliation(s)
- Roberto García-Figueiras
- Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain.
| | - Sandra Baleato-González
- Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Shah KD, Zhou J, Roper J, Dhabaan A, Al-Hallaq H, Pourmorteza A, Yang X. Photon-Counting CT in Cancer Radiotherapy: Technological Advances and Clinical Benefits. ARXIV 2024:arXiv:2410.20236v3. [PMID: 39575116 PMCID: PMC11581100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Photon-counting computed tomography (PCCT) marks a significant advancement over conventional energy-integrating detector (EID) CT systems. This review highlights PCCT's superior spatial and contrast resolution, reduced radiation dose, and multi-energy imaging capabilities, which address key challenges in radiotherapy, such as accurate tumor delineation, precise dose calculation, and treatment response monitoring. PCCT's improved anatomical clarity enhances tumor targeting while minimizing damage to surrounding healthy tissues. Additionally, metal artifact reduction (MAR) and quantitative imaging capabilities optimize workflows, enabling adaptive radiotherapy and radiomics-driven personalized treatment. Emerging clinical applications in brachytherapy and radiopharmaceutical therapy (RPT) show promising outcomes, although challenges like high costs and limited software integration remain. With advancements in artificial intelligence (AI) and dedicated radiotherapy packages, PCCT is poised to transform precision, safety, and efficacy in cancer radiotherapy, marking it as a pivotal technology for future clinical practice.
Collapse
Affiliation(s)
- Keyur D. Shah
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
- Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
- Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
- Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Anees Dhabaan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
- Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Hania Al-Hallaq
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
- Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Amir Pourmorteza
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
- Department of Radiology and Imaging Sciences and Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | | |
Collapse
|
5
|
Homayounieh F, Gopal N, Firouzabadi FD, Sahbaee P, Yazdian P, Nikpanah M, Do M, Wang M, Gautam R, Ball MW, Pritchard WF, Jones EC, Wen H, Linehan WM, Turkbey EB, Malayeri AA. A Prospective Study of the Diagnostic Performance of Photon-Counting CT Compared With MRI in the Characterization of Renal Masses. Invest Radiol 2024; 59:774-781. [PMID: 38767436 PMCID: PMC11560711 DOI: 10.1097/rli.0000000000001087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
OBJECTIVES The aim of this study was to assess the interreader reliability and per-RCC sensitivity of high-resolution photon-counting computed tomography (PCCT) in the detection and characterization of renal masses in comparison to MRI. MATERIALS AND METHODS This prospective study included 24 adult patients (mean age, 52 ± 14 years; 14 females) who underwent PCCT (using an investigational whole-body CT scanner) and abdominal MRI within a 3-month time interval and underwent surgical resection (partial or radical nephrectomy) with histopathology (n = 70 lesions). Of the 24 patients, 17 had a germline mutation and the remainder were sporadic cases. Two radiologists (R1 and R2) assessed the PCCT and corresponding MRI studies with a 3-week washout period between reviews. Readers recorded the number of lesions in each patient and graded each targeted lesion's characteristic features, dimensions, and location. Data were analyzed using a 2-sample t test, Fisher exact test, and weighted kappa. RESULTS In patients with von Hippel-Lindau mutation, R1 identified a similar number of lesions suspicious for neoplasm on both modalities (51 vs 50, P = 0.94), whereas R2 identified more suspicious lesions on PCCT scans as compared with MRI studies (80 vs 56, P = 0.12). R1 and R2 characterized more lesions as predominantly solid in MRIs (R1: 58/70 in MRI vs 52/70 in PCCT, P < 0.001; R2: 60/70 in MRI vs 55/70 in PCCT, P < 0.001). R1 and R2 performed similarly in detecting neoplastic lesions on PCCT and MRI studies (R1: 94% vs 90%, P = 0.5; R2: 73% vs 79%, P = 0.13). CONCLUSIONS The interreader reliability and per-RCC sensitivity of PCCT scans acquired on an investigational whole-body PCCT were comparable to MRI scans in detecting and characterizing renal masses. CLINICAL RELEVANCE STATEMENT PCCT scans have comparable performance to MRI studies while allowing for improved characterization of the internal composition of lesions due to material decomposition analysis. Future generations of this imaging modality may reveal additional advantages of PCCT over MRI.
Collapse
Affiliation(s)
- Fatemeh Homayounieh
- Radiology and Imaging Sciences, Clinical Center, National Institute of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - Nikhil Gopal
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - Fatemeh Dehghani Firouzabadi
- Radiology and Imaging Sciences, Clinical Center, National Institute of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | | | - Pouria Yazdian
- Radiology and Imaging Sciences, Clinical Center, National Institute of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - Moozhan Nikpanah
- Radiology and Imaging Sciences, Clinical Center, National Institute of Health, 10 Center Drive, Bethesda, MD 20814, USA
- Department of Radiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Michael Do
- Radiology and Imaging Sciences, Clinical Center, National Institute of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - Muyang Wang
- Laboratory of Imaging Physics, National Heart, Lung and Blood Institute, National Institute of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - Rabindra Gautam
- Radiology and Imaging Sciences, Clinical Center, National Institute of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - Mark W. Ball
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - William F. Pritchard
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institute of Health, 10 Center Drive, Bethesda, MD 20814 USA
| | - Elizabeth C. Jones
- Radiology and Imaging Sciences, Clinical Center, National Institute of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - Han Wen
- Laboratory of Imaging Physics, National Heart, Lung and Blood Institute, National Institute of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - W. Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - Evrim B. Turkbey
- Radiology and Imaging Sciences, Clinical Center, National Institute of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - Ashkan A. Malayeri
- Radiology and Imaging Sciences, Clinical Center, National Institute of Health, 10 Center Drive, Bethesda, MD 20814, USA
| |
Collapse
|
6
|
Layman RR, Leng S, Boedeker KL, Burk LM, Dang H, Duan X, Jacobsen MC, Li B, Li K, Little K, Madhav P, Miller J, Nute JL, Giraldo JCR, Ruchala KJ, Tao S, Varchena V, Vedantham S, Zeng R, Zhang D. AAPM Task Group Report 299: Quality control in multi-energy computed tomography. Med Phys 2024; 51:7012-7037. [PMID: 39072826 DOI: 10.1002/mp.17322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 07/30/2024] Open
Abstract
Multi-energy computed tomography (MECT) offers the opportunity for advanced visualization, detection, and quantification of select elements (e.g., iodine) or materials (e.g., fat) beyond the capability of standard single-energy computed tomography (CT). However, the use of MECT requires careful consideration as substantially different hardware and software approaches have been used by manufacturers, including different sets of user-selected or hidden parameters that affect the performance and radiation dose of MECT. Another important consideration when designing MECT protocols is appreciation of the specific tasks being performed; for instance, differentiating between two different materials or quantifying a specific element. For a given task, it is imperative to consider both the radiation dose and task-specific image quality requirements. Development of a quality control (QC) program is essential to ensure the accuracy and reproducibility of these MECT applications. Although standard QC procedures have been well established for conventional single-energy CT, the substantial differences between single-energy CT and MECT in terms of system implementations, imaging protocols, and clinical tasks warrant QC tests specific to MECT. This task group was therefore charged with developing a systematic QC program designed to meet the needs of MECT applications. In this report, we review the various MECT approaches that are commercially available, including information about hardware implementation, MECT image types, image reconstruction, and postprocessing techniques that are unique to MECT. We address the requirements for MECT phantoms, review representative commercial MECT phantoms, and offer guidance regarding homemade MECT phantoms. We discuss the development of MECT protocols, which must be designed carefully with proper consideration of MECT technology, imaging task, and radiation dose. We then outline specific recommended QC tests in terms of general image quality, radiation dose, differentiation and quantification tasks, and diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Rick R Layman
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Laurel M Burk
- U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Xinhui Duan
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Megan C Jacobsen
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Baojun Li
- Department of Radiology, Boston University Medical Center, Boston, Massachusetts, USA
| | - Ke Li
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin Little
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | | | - Jessica Miller
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessica L Nute
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | - Shengzhen Tao
- Department of Radiology, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Rongping Zeng
- U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Da Zhang
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Gadsbøll EL, Aurumskjöld ML, Holmquist F, Baubeta E. Virtual non-contrast images in photon-counting computed tomography: impact of different contrast phases. Acta Radiol 2024; 65:1147-1152. [PMID: 39140849 DOI: 10.1177/02841851241271202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
BACKGROUND Photon-counting computed tomography (PCCT) enables new ways of image reconstruction, e.g. material decomposition and creation of virtual non-contrast (VNC) series with higher resolution and lower radiation dose than standard computed tomography (CT). Clinical experiences of this are limited. PURPOSE To compare true non-contrast (TNC) series with VNC series derived from non-enhanced (VNCu), arterial phase (VNCa) and portal venous phase (VNCv) in clinically approved PCCT. MATERIAL AND METHODS A total of 45 clinical, tri-phasic abdominal CT scans from the PCCT Naetom Alpha, between February 2022 and November 2022, were retrospectively assessed. Placing a region of interest in six different locations in each VNC series - right liver parenchyma, left liver parenchyma, spleen, aorta, erector spinae muscle, and in the subcutaneous fat - absolute Hounsfield values (HU) and standard deviations (SD) were collected. Differences in HU (ΔHU) were compared and statistically analyzed. RESULTS Statistically significant differences between VNC and TNC were seen in all measurements, with the largest difference in the subcutaneous fat and the smallest difference in the erector spinae muscle. Only small differences were seen between VNCa and VNCv, where the largest differences were seen in the left and right liver lobes. CONCLUSION VNC images from the first-generation clinically approved PCCT showed a significant difference between VNC and TNC images. The differences vary with the type of tissue. Only small differences were seen depending from which contrast phase the VNC was derived.
Collapse
Affiliation(s)
- Eva Laurin Gadsbøll
- Department of Imaging and Functional Medicine, Skåne University Hospital, Lund, Sweden
| | - Marie-Louise Aurumskjöld
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Fredrik Holmquist
- Department of Imaging and Functional Medicine, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences, Diagnostic Radiology, Lund University, Lund, Sweden
| | - Erik Baubeta
- Department of Imaging and Functional Medicine, Skåne University Hospital, Lund, Sweden
- Department of Translational Medicine, Diagnostic Radiology, Lund University, Malmö, Sweden
| |
Collapse
|
8
|
Chen Y, Wu T, Zhu Y, Chen J, Gao C, Wu L. Trends and hotspots of energy-based imaging in thoracic disease: a bibliometric analysis. Insights Imaging 2024; 15:209. [PMID: 39143273 PMCID: PMC11324624 DOI: 10.1186/s13244-024-01788-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024] Open
Abstract
OBJECTIVE To conduct a bibliometric analysis of the prospects and obstacles associated with dual- and multi-energy CT in thoracic disease, emphasizing its current standing, advantages, and areas requiring attention. METHODS The Web of Science Core Collection was queried for relevant publications in dual- and multi-energy CT and thoracic applications without a limit on publication date or language. The Bibliometrix packages, VOSviewer, and CiteSpace were used for data analysis. Bibliometric techniques utilized were co-authorship analyses, trend topics, thematic map analyses, thematic evolution analyses, source's production over time, corresponding author's countries, and a treemap of authors' keywords. RESULTS A total of 1992 publications and 7200 authors from 313 different sources were examined in this study. The first available document was published in November 1982, and the most cited article was cited 1200 times. Siemens AG in Germany emerged as the most prominent author affiliation, with a total of 221 published articles. The most represented scientific journals were the "European Radiology" (181 articles, h-index = 46), followed by the "European Journal of Radiology" (148 articles, h-index = 34). Most of the papers were from Germany, the USA, or China. Both the keyword and topic analyses showed the history of dual- and multi-energy CT and the evolution of its application hotspots in the chest. CONCLUSION Our study illustrates the latest advances in dual- and multi-energy CT and its increasingly prominent applications in the chest, especially in lung parenchymal diseases and coronary artery diseases. Photon-counting CT and artificial intelligence will be the emerging hot technologies that continue to develop in the future. CRITICAL RELEVANCE STATEMENT This study aims to provide valuable insights into energy-based imaging in chest disease, validating the clinical application of multi-energy CT together with photon-counting CT and effectively increasing utilization in clinical practice. KEY POINTS Bibliometric analysis is fundamental to understanding the current and future state of dual- and multi-energy CT. Research trends and leading topics included coronary artery disease, pulmonary embolism, and radiation dose. All analyses indicate a growing interest in the use of energy-based imaging techniques for thoracic applications.
Collapse
Affiliation(s)
- Yufan Chen
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Wu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yangtong Zhu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiawei Chen
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chen Gao
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Linyu Wu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
9
|
Zhang X, Bao S, Wang M, Xu Z, Yan F, Yang W. Stability and accuracy of fat quantification on photon-counting detector CT with various scan settings: A phantom study. Eur J Radiol 2024; 177:111545. [PMID: 38878499 DOI: 10.1016/j.ejrad.2024.111545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE Fat deposition is an important marker of many metabolic diseases. As a noninvasive and convenient examination method, CT has been widely used for fat quantification. With the clinical application of photon-counting detector (PCD)-CT, we aimed to investigate the accuracy, stability, and dose level of PCD-CT using various scan settings for fat quantification. MATERIALS AND METHODS Eleven agar-based lipid-containing phantoms (vials with different fat fractions [FFs]; range: 0 %-100 %) were scanned using PCD-CT. Three scanning types (sequence scan, regular spiral scan with a pitch of 0.8, and high-pitch spiral scan with a pitch of 3.2), four tube voltages (90, 120, 140, and 100 kV with a tin filter), and three image quality (IQ) levels (IQ levels of 20, 40, and 80) were alternated, and each scan setting was used twice. For each scan, a 70-keV image was generated using the same reconstruction parameters. A regular spiral scan at 120 kV with IQ80 was used to transfer the CT numbers of all scans to the FF. Intraclass correlation coefficient (ICC) and Bland-Altman analysis were implemented for accuracy and agreement evaluation, and group differences were compared using analysis of variance. RESULTS Excellent agreement and accuracy of FF derived by PCD-CT with all scan settings was demonstrated by high ICCs (>0.9; range: 0.929-0.998, p < 0.017) and low bias (<5% range: -2.9 %-5%). The root mean square error (RMSE) between the PCD-CT-acquired FF and the reference standard ranged from 1.0 % to 5.0 %, among which the high-pitch scan at 120 kV with IQ20 accounted for the lowest RMSE (1.0 %). The spiral scan at 120 kV with IQ20 and IQ80 yielded the lowest bias (mean value: 1.19 % and 1.23 %, respectively). CONCLUSION Fat quantification using PCD-CT reconstructed at 70 keV was accurate and stable under various scan settings. PCD-CT has great potential for fat quantification using ultralow radiation doses.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shouyu Bao
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengzhen Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihan Xu
- Siemens Healthineers CT Collaboration, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Yang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Liu LP, Pasyar P, Sandvold OF, Sahbaee P, Litt HI, Noël PB. Long-term quantitative stability of a first-generation dual-source photon-counting CT. CONFERENCE PROCEEDINGS. INTERNATIONAL CONFERENCE ON IMAGE FORMATION IN X-RAY COMPUTED TOMOGRAPHY 2024; 2024:479-482. [PMID: 39963576 PMCID: PMC11832022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The introduction of the first clinical photon-counting CT (PCCT) presents an opportunity to improve and expand quantitative imaging to new applications with its high spatial resolution and stellar quantitative capabilities. Despite this potential, PCCT employs a photon-counting detector that introduces unknowns including temporal stability that is critical to separating biological changes from scanner changes and variation in longitudinal studies. For the purpose of determining the temporal stability of a first-generation dual-source PCCT, a phantom was subjected to near-weekly scans across a two-year period, in both single-source and dual-source modes. Virtual monoenergetic images (VMI) at 40, 70, 100, and 190 keV and iodine density maps were analyzed to determine changes in relative error and noise both related and unrelated to software/hardware changes. VMIs demonstrated improvements in quantification for dual-source mode associated with software and hardware updates but otherwise illustrated invariance with variation ranging from 0.03 to 0.08%. VMI noise similarly exhibited stability between and with major scanner updates with a maximum change of 4 HU. Iodine density maps also displayed stability between scanner updates with variation up to 0.1 mg/mL but significant improvements in quantification, especially in dual-source mode, that allowed relative error in single-source and dual-source modes to match at -0.04 and -0.02 mg/mL, respectively. Spectral results in PCCT showed temporal stability over time that improved quantification accuracy particularly for dual-source mode. This stability will boost confidence in quantitative metrics such as in longitudinal studies and thus facilitate more clinical applications that may change the workflow of diagnostic radiology.
Collapse
Affiliation(s)
- Leening P Liu
- Department of Bioengineering and Department of Radiology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Pouyan Pasyar
- Department of Bioengineering and Department of Radiology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Olivia F Sandvold
- Department of Bioengineering and Department of Radiology, Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Harold I Litt
- Department of Radiology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Peter B Noël
- Department of Radiology, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
11
|
García-Figueiras R, Oleaga L, Broncano J, Tardáguila G, Fernández-Pérez G, Vañó E, Santos-Armentia E, Méndez R, Luna A, Baleato-González S. What to Expect (and What Not) from Dual-Energy CT Imaging Now and in the Future? J Imaging 2024; 10:154. [PMID: 39057725 PMCID: PMC11278514 DOI: 10.3390/jimaging10070154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Dual-energy CT (DECT) imaging has broadened the potential of CT imaging by offering multiple postprocessing datasets with a single acquisition at more than one energy level. DECT shows profound capabilities to improve diagnosis based on its superior material differentiation and its quantitative value. However, the potential of dual-energy imaging remains relatively untapped, possibly due to its intricate workflow and the intrinsic technical limitations of DECT. Knowing the clinical advantages of dual-energy imaging and recognizing its limitations and pitfalls is necessary for an appropriate clinical use. The aims of this paper are to review the physical and technical bases of DECT acquisition and analysis, to discuss the advantages and limitations of DECT in different clinical scenarios, to review the technical constraints in material labeling and quantification, and to evaluate the cutting-edge applications of DECT imaging, including artificial intelligence, qualitative and quantitative imaging biomarkers, and DECT-derived radiomics and radiogenomics.
Collapse
Affiliation(s)
- Roberto García-Figueiras
- Department of Radiology, Hospital Clínico Universitario de Santiago, Choupana, 15706 Santiago de Compostela, Spain
| | - Laura Oleaga
- Department of Radiology, Hospital Clinic, C. de Villarroel, 170, 08036 Barcelona, Spain
| | | | - Gonzalo Tardáguila
- Department of Radiology, Hospital Ribera Povisa, Rúa de Salamanca, 5, Vigo, 36211 Pontevedra, Spain
| | | | - Eliseo Vañó
- Department of Radiology, Hospital Universitario Nuestra Señora, del Rosario, C. del Príncipe de Vergara, 53, 28006 Madrid, Spain
| | - Eloísa Santos-Armentia
- Department of Radiology, Hospital Ribera Povisa, Rúa de Salamanca, 5, Vigo, 36211 Pontevedra, Spain
| | - Ramiro Méndez
- Department of Radiology, Hospital Universitario Nuestra Señora, del Rosario, C. del Príncipe de Vergara, 53, 28006 Madrid, Spain
- Department of Radiology, Hospital Universitario Clínico San Carlos, Calle del Prof Martín Lagos, 28040 Madrid, Spain
| | | | - Sandra Baleato-González
- Department of Radiology, Hospital Clínico Universitario de Santiago, Choupana, 15706 Santiago de Compostela, Spain
| |
Collapse
|
12
|
Nakao M, Ozawa S, Miura H, Yamada K, Hayata M, Hayashi K, Kawahara D, Nakashima T, Ochi Y, Okumura T, Kunimoto H, Kawakubo A, Kusaba H, Nozaki H, Habara K, Tohyama N, Nishio T, Nakamura M, Minemura T, Okamoto H, Ishikawa M, Kurooka M, Shimizu H, Hotta K, Saito M, Nakano M, Tsuneda M, Nagata Y. CT number calibration audit in photon radiation therapy. Med Phys 2024; 51:1571-1582. [PMID: 38112216 DOI: 10.1002/mp.16887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/29/2023] [Accepted: 11/26/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Inadequate computed tomography (CT) number calibration curves affect dose calculation accuracy. Although CT number calibration curves registered in treatment planning systems (TPSs) should be consistent with human tissues, it is unclear whether adequate CT number calibration is performed because CT number calibration curves have not been assessed for various types of CT number calibration phantoms and TPSs. PURPOSE The purpose of this study was to investigate CT number calibration curves for mass density (ρ) and relative electron density (ρe ). METHODS A CT number calibration audit phantom was sent to 24 Japanese photon therapy institutes from the evaluating institute and scanned using their individual clinical CT scan protocols. The CT images of the audit phantom and institute-specific CT number calibration curves were submitted to the evaluating institute for analyzing the calibration curves registered in the TPSs at the participating institutes. The institute-specific CT number calibration curves were created using commercial phantom (Gammex, Gammex Inc., Middleton, WI, USA) or CIRS phantom (Computerized Imaging Reference Systems, Inc., Norfolk, VA, USA)). At the evaluating institute, theoretical CT number calibration curves were created using a stoichiometric CT number calibration method based on the CT image, and the institute-specific CT number calibration curves were compared with the theoretical calibration curve. Differences in ρ and ρe over the multiple points on the curve (Δρm and Δρe,m , respectively) were calculated for each CT number, categorized for each phantom vendor and TPS, and evaluated for three tissue types: lung, soft tissues, and bones. In particular, the CT-ρ calibration curves for Tomotherapy TPSs (ACCURAY, Sunnyvale, CA, USA) were categorized separately from the Gammex CT-ρ calibration curves because the available tissue-equivalent materials (TEMs) were limited by the manufacturer recommendations. In addition, the differences in ρ and ρe for the specific TEMs (ΔρTEM and Δρe,TEM , respectively) were calculated by subtracting the ρ or ρe of the TEMs from the theoretical CT-ρ or CT-ρe calibration curve. RESULTS The mean ± standard deviation (SD) of Δρm and Δρe,m for the Gammex phantom were -1.1 ± 1.2 g/cm3 and -0.2 ± 1.1, -0.3 ± 0.9 g/cm3 and 0.8 ± 1.3, and -0.9 ± 1.3 g/cm3 and 1.0 ± 1.5 for lung, soft tissues, and bones, respectively. The mean ± SD of Δρm and Δρe,m for the CIRS phantom were 0.3 ± 0.8 g/cm3 and 0.9 ± 0.9, 0.6 ± 0.6 g/cm3 and 1.4 ± 0.8, and 0.2 ± 0.5 g/cm3 and 1.6 ± 0.5 for lung, soft tissues, and bones, respectively. The mean ± SD of Δρm for Tomotherapy TPSs was 2.1 ± 1.4 g/cm3 for soft tissues, which is larger than those for other TPSs. The mean ± SD of Δρe,TEM for the Gammex brain phantom (BRN-SR2) was -1.8 ± 0.4, implying that the tissue equivalency of the BRN-SR2 plug was slightly inferior to that of other plugs. CONCLUSIONS Latent deviations between human tissues and TEMs were found by comparing the CT number calibration curves of the various institutes.
Collapse
Affiliation(s)
- Minoru Nakao
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Department of Radiation Oncology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
| | - Shuichi Ozawa
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Department of Radiation Oncology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
| | - Hideharu Miura
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Department of Radiation Oncology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| | - Kiyoshi Yamada
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| | - Masahiro Hayata
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| | - Kosuke Hayashi
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| | - Daisuke Kawahara
- Department of Radiation Oncology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
| | - Takeo Nakashima
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Radiation Therapy Section, Department of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Yusuke Ochi
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Radiation Therapy Section, Department of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Takuro Okumura
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Radiation Therapy Section, Department of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Haruhide Kunimoto
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Radiation Therapy Department, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Atsushi Kawakubo
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Radiation Therapy Department, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Hayate Kusaba
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Radiation Therapy Department, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Hiroshige Nozaki
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Division of Radiology, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Kosaku Habara
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Division of Radiology, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Naoki Tohyama
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Division of Medical Physics, Tokyo Bay Makuhari Clinic for Advanced Imaging, Cancer Screening, and High-Precision Radiotherapy, Chiba, Japan
| | - Teiji Nishio
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mitsuhiro Nakamura
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University, Kyoto, Japan
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiyuki Minemura
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Division of Medical Support and Partnership, Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Hiroyuki Okamoto
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, Tokyo, Japan
| | - Masayori Ishikawa
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Faculty of Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Masahiko Kurooka
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Department of Radiation Therapy, Tokyo Medical University Hospital, Tokyo, Japan
| | - Hidetoshi Shimizu
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Aichi, Japan
| | - Kenji Hotta
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Radiation Safety and Quality Assurance division, National Cancer Center Hospital East, Chiba, Japan
- Particle Therapy Division, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Masahide Saito
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| | - Masahiro Nakano
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Department of Radiation Oncology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Masato Tsuneda
- Medical Physics Working Group in Japan Clinical Oncology Group - Radiation Therapy Study Group, Tokyo, Japan
- Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasushi Nagata
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
- Department of Radiation Oncology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Technical Support Working Group in Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| |
Collapse
|
13
|
Richtsmeier D, Rodesch PA, Iniewski K, Bazalova-Carter M. Material decomposition with a prototype photon-counting detector CT system: expanding a stoichiometric dual-energy CT method via energy bin optimization and K-edge imaging. Phys Med Biol 2024; 69:055001. [PMID: 38306974 DOI: 10.1088/1361-6560/ad25c8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
Objective.Computed tomography (CT) has advanced since its inception, with breakthroughs such as dual-energy CT (DECT), which extracts additional information by acquiring two sets of data at different energies. As high-flux photon-counting detectors (PCDs) become available, PCD-CT is also becoming a reality. PCD-CT can acquire multi-energy data sets in a single scan by spectrally binning the incident x-ray beam. With this, K-edge imaging becomes possible, allowing high atomic number (high-Z) contrast materials to be distinguished and quantified. In this study, we demonstrated that DECT methods can be converted to PCD-CT systems by extending the method of Bourqueet al(2014). We optimized the energy bins of the PCD for this purpose and expanded the capabilities by employing K-edge subtraction imaging to separate a high-atomic number contrast material.Approach.The method decomposes materials into their effective atomic number (Zeff) and electron density relative to water (ρe). The model was calibrated and evaluated using tissue-equivalent materials from the RMI Gammex electron density phantom with knownρevalues and elemental compositions. TheoreticalZeffvalues were found for the appropriate energy ranges using the elemental composition of the materials.Zeffvaried slightly with energy but was considered a systematic error. Anex vivobovine tissue sample was decomposed to evaluate the model further and was injected with gold chloride to demonstrate the separation of a K-edge contrast agent.Main results.The mean root mean squared percent errors on the extractedZeffandρefor PCD-CT were 0.76% and 0.72%, respectively and 1.77% and 1.98% for DECT. The tissue types in theex vivobovine tissue sample were also correctly identified after decomposition. Additionally, gold chloride was separated from theex vivotissue sample with K-edge imaging.Significance.PCD-CT offers the ability to employ DECT material decomposition methods, along with providing additional capabilities such as K-edge imaging.
Collapse
Affiliation(s)
- Devon Richtsmeier
- Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Pierre-Antoine Rodesch
- Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Kris Iniewski
- Redlen Techologies, 1763 Sean Heights, Saanichton, British Columbia V8M 1X6, Canada
| | - Magdalena Bazalova-Carter
- Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
14
|
Thompson EA, Jacobsen MC, Fuentes DT, Layman RR, Cressman ENK. Quantitative dual-energy computed tomography with cesium as a novel contrast agent for localization of thermochemical ablation in phantoms and ex vivo models. Med Phys 2023; 50:7879-7890. [PMID: 37409792 PMCID: PMC10770302 DOI: 10.1002/mp.16558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Thermochemical ablation (TCA) is a minimally invasive therapy under development for hepatocellular carcinoma. TCA simultaneously delivers an acid (acetic acid, AcOH) and base (sodium hydroxide, NaOH) directly into the tumor, where the acid/base chemical reaction produces an exotherm that induces local ablation. However, AcOH and NaOH are not radiopaque, making monitoring TCA delivery difficult. PURPOSE We address the issue of image guidance for TCA by utilizing cesium hydroxide (CsOH) as a novel theranostic component of TCA that is detectable and quantifiable with dual-energy CT (DECT). MATERIALS AND METHODS To quantify the minimum concentration of CsOH that can be positively identified by DECT, the limit of detection (LOD) was established in an elliptical phantom (Multi-Energy CT Quality Assurance Phantom, Kyoto Kagaku, Kyoto, Japan) with two DECT technologies: a dual-source system (SOMATOM Force, Siemens Healthineers, Forchheim, Germany) and a split-filter, single-source system (SOMATOM Edge, Siemens Healthineers). The dual-energy ratio (DER) and LOD of CsOH were determined for each system. Cesium concentration quantification accuracy was evaluated in a gelatin phantom before quantitative mapping was performed in ex vivo models. RESULTS On the dual-source system, the DER and LOD were 2.94 and 1.36-mM CsOH, respectively. For the split-filter system, the DER and LOD were 1.41- and 6.11-mM CsOH, respectively. The signal on cesium maps in phantoms tracked linearly with concentration (R2 = 0.99) on both systems with an RMSE of 2.56 and 6.72 on the dual-source and split-filter system, respectively. In ex vivo models, CsOH was detected following delivery of TCA at all concentrations. CONCLUSIONS DECT can be used to detect and quantify the concentration of cesium in phantom and ex vivo tissue models. When incorporated in TCA, CsOH performs as a theranostic agent for quantitative DECT image-guidance.
Collapse
Affiliation(s)
- Emily A Thompson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Megan C Jacobsen
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David T Fuentes
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rick R Layman
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Erik N K Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
15
|
Vecsey-Nagy M, Varga-Szemes A, Emrich T, Zsarnoczay E, Nagy N, Fink N, Schmidt B, Nowak T, Kiss M, Vattay B, Boussoussou M, Kolossváry M, Kubovje A, Merkely B, Maurovich-Horvat P, Szilveszter B. Calcium scoring on coronary computed angiography tomography with photon-counting detector technology: Predictors of performance. J Cardiovasc Comput Tomogr 2023; 17:328-335. [PMID: 37635032 DOI: 10.1016/j.jcct.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/10/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Obtaining accurate coronary artery calcium (CAC) score measurements from CCTA datasets with virtual non-iodine (VNI) algorithms would reduce acquisition time and radiation dose. We aimed to assess the agreement of VNI-derived and conventional true non-contrast (TNC)-based CAC scores and to identify the predictors of accuracy. METHODS CCTA datasets were acquired with either 120 or 140 kVp. CAC scores and volumes were calculated from TNC and VNI images in 197 consecutive patients undergoing CCTA. CAC density score, mean volume/lesion, aortic Hounsfield units and standard deviations were then measured. Finally, percentage deviation (VNI - TNC/TNC∗100) of CTA-derived CAC scores from non-enhanced scans was calculated for each patient. Predictors (including anthropometric and acquisition parameters, as well as CAC characteristics) of the degree of discrepancy were evaluated using linear regression analysis. RESULTS While the agreement between TNC and VNI was substantial (mean bias, 6.6; limits of agreement, 178.5/145.3), a non-negligible proportion of patients (36/197, 18.3%) were falsely reclassified as CAC score = 0 on VNI. The use of higher tube voltage significantly decreased the percentage deviation relative to TNC-based values (β = -0.21 [95%CI: 0.38 to -0.03], p = 0.020) and a higher CAC density score also proved to be an independent predictor of a smaller difference (β = -0.22 [95%CI: 0.37 to -0.07], p = 0.006). CONCLUSION The performance of VNI-based calcium scoring may be improved by increased tube voltage protocols, while the accuracy may be compromised for calcified lesions of lower density. The implementation of VNI in clinical routine, however, needs to be preceded by a solution for detecting smaller lesions as well.
Collapse
Affiliation(s)
- M Vecsey-Nagy
- Heart and Vascular Center of Semmelweis University, Budapest, Hungary; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - A Varga-Szemes
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - T Emrich
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA; Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - E Zsarnoczay
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA; Medical Imaging Center of Semmelweis University, Budapest, Hungary
| | - N Nagy
- Medical Imaging Center of Semmelweis University, Budapest, Hungary
| | - N Fink
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - B Schmidt
- Siemens Healthcare GmbH, Forchheim, Germany
| | - T Nowak
- Siemens Healthcare GmbH, Forchheim, Germany
| | - M Kiss
- Siemens Healthcare GmbH, Forchheim, Germany
| | - B Vattay
- Heart and Vascular Center of Semmelweis University, Budapest, Hungary
| | - M Boussoussou
- Heart and Vascular Center of Semmelweis University, Budapest, Hungary
| | - M Kolossváry
- Gottsegen National Cardiovascular Center, Budapest, Hungary; Physiological Controls Research Center, Budapest, Hungary
| | - A Kubovje
- Medical Imaging Center of Semmelweis University, Budapest, Hungary
| | - B Merkely
- Heart and Vascular Center of Semmelweis University, Budapest, Hungary
| | | | - B Szilveszter
- Heart and Vascular Center of Semmelweis University, Budapest, Hungary.
| |
Collapse
|
16
|
Pepe A, Crimì F, Vernuccio F, Cabrelle G, Lupi A, Zanon C, Gambato S, Perazzolo A, Quaia E. Medical Radiology: Current Progress. Diagnostics (Basel) 2023; 13:2439. [PMID: 37510183 PMCID: PMC10378672 DOI: 10.3390/diagnostics13142439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Recently, medical radiology has undergone significant improvements in patient management due to advancements in image acquisition by the last generation of machines, data processing, and the integration of artificial intelligence. In this way, cardiovascular imaging is one of the fastest-growing radiological subspecialties. In this study, a compressive review was focused on addressing how and why CT and MR have gained a I class indication in most cardiovascular diseases, and the potential impact of tissue and functional characterization by CT photon counting, quantitative MR mapping, and 4-D flow. Regarding rectal imaging, advances in cancer imaging using diffusion-weighted MRI sequences for identifying residual disease after neoadjuvant chemoradiotherapy and [18F] FDG PET/MRI were provided for high-resolution anatomical and functional data in oncological patients. The results present a large overview of the approach to the imaging of diffuse and focal liver diseases by US elastography, contrast-enhanced US, quantitative MRI, and CT for patient risk stratification. Italy is currently riding the wave of these improvements. The development of large networks will be crucial to create high-quality databases for patient-centered precision medicine using artificial intelligence. Dedicated radiologists with specific training and a close relationship with the referring clinicians will be essential human factors.
Collapse
Affiliation(s)
- Alessia Pepe
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| | - Filippo Crimì
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| | - Federica Vernuccio
- Department of Radiology, University Hospital of Padua, 35128 Padua, Italy
| | - Giulio Cabrelle
- Department of Radiology, University Hospital of Padua, 35128 Padua, Italy
| | - Amalia Lupi
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| | - Chiara Zanon
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| | - Sebastiano Gambato
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| | - Anna Perazzolo
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
- Institute of Radiology, Department of Medicine, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, University of Udine, 33100 Udine, Italy
| | - Emilio Quaia
- Institute of Radiology, University Hospital of Padua-DIMED, Padua University Hospital, University of Padua, 35122 Padua, Italy
| |
Collapse
|
17
|
Abstract
ABSTRACT Computed tomography (CT) images display anatomic structures across 3 dimensions and are highly quantitative; they are the reference standard for 3-dimensional geometric measurements and are used for 3-dimensional printing of anatomic models and custom implants, as well as for radiation therapy treatment planning. The pixel intensity in CT images represents the linear x-ray attenuation coefficient of the imaged materials after linearly scaling the coefficients into a quantity known as CT numbers that is conveyed in Hounsfield units. When measured with the same scanner model, acquisition, and reconstruction parameters, the mean CT number of a material is highly reproducible, and quantitative applications of CT scanning that rely on the measured CT number, such as for assessing bone mineral density or coronary artery calcification, are well established. However, the strong dependence of CT numbers on x-ray beam spectra limits quantitative applications and standardization from achieving robust widespread success. This article reviews several quantitative applications of CT and the challenges they face, and describes the benefits brought by photon-counting detector (PCD) CT technology. The discussed benefits of PCD-CT include that it is inherently multienergy, expands material decomposition capabilities, and improves spatial resolution and geometric quantification. Further, the utility of virtual monoenergetic images to standardize CT numbers is discussed, as virtual monoenergetic images can be the default image type in PCD-CT due to the full-time spectral nature of the technology.
Collapse
Affiliation(s)
- Cynthia H. McCollough
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| | - Kishore Rajendran
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| |
Collapse
|
18
|
Iovea M, Stanciulescu A, Hermann E, Neagu M, Duliu OG. Multi-Energy and Fast-Convergence Iterative Reconstruction Algorithm for Organic Material Identification Using X-ray Computed Tomography. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1654. [PMID: 36837279 PMCID: PMC9962467 DOI: 10.3390/ma16041654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
In order to significantly reduce the computing time while, at the same time, keeping the accuracy and precision when determining the local values of the density and effective atomic number necessary for identifying various organic material, including explosives and narcotics, a specialized multi-stage procedure based on a multi-energy computed tomography investigation within the 20-160 keV domain was elaborated. It consisted of a compensation for beam hardening and other non-linear effects that affect the energy dependency of the linear attenuation coefficient (LAC) in the chosen energy domain, followed by a 3D fast reconstruction algorithm capable of reconstructing the local LAC values for 64 energy values from 19.8 to 158.4 keV, and, finally, the creation of a set of algorithms permitting the simultaneous determination of the density and effective atomic number of the investigated materials. This enabled determining both the density and effective atomic number of complex objects in approximately 24 s, with an accuracy and precision of less than 3%, which is a significantly better performance with respect to the reported literature values.
Collapse
Affiliation(s)
- Mihai Iovea
- Accent Pro 2000 srl, 25A, Mărășești Str., 077125 Magurele (Ilfov), Romania
| | | | - Edward Hermann
- Accent Pro 2000 srl, 25A, Mărășești Str., 077125 Magurele (Ilfov), Romania
| | - Marian Neagu
- Accent Pro 2000 srl, 25A, Mărășești Str., 077125 Magurele (Ilfov), Romania
| | - Octavian G. Duliu
- Accent Pro 2000 srl, 25A, Mărășești Str., 077125 Magurele (Ilfov), Romania
- Department of Structure of Matter, Earth and Atmospheric Physics, Astrophysics, Faculty of Physics, University of Bucharest, 405, Atomistilor Str., 077125 Magurele (Ilfov), Romania
- Geological Institute of Romania, 1, Caransebes Str., 012271 Bucharest, Romania
| |
Collapse
|
19
|
Muter S, Abd Z, Saeed R. Renal stone density on native CT-scan as a predictor of treatment outcomes in shock wave lithotripsy. J Med Life 2022; 15:1579-1584. [PMID: 36762325 PMCID: PMC9884350 DOI: 10.25122/jml-2022-0153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/06/2022] [Indexed: 02/11/2023] Open
Abstract
Extracorporeal shock wave lithotripsy (ESWL) is considered a standard treatment for nephrolith or kidney stones measuring less than 20 mm. Anatomical, machine-related, and stone factors play pivotal roles in treatment outcomes, the latter being the leading role. This paper examined the relationship between stone density on native CT scans and ESWL treatment to remove renal stones concerning several treatments. One hundred and twenty patients (64 males and 56 females) were enrolled and completed the study from April 2019 to September 2020. Inclusion criteria were a single renal pelvis stone of 5-20 mm to be treated for the first time in adult patients with no urinary or musculoskeletal anatomical abnormalities. We assessed patients' renal function and obtained stone characteristics using a native CT scan. Patients were then scheduled for ESWL by the same machine and operator under fluoroscopy, with two-week intervals between treatment sessions when more than one treatment session was required. Before each new session, a new KUB-US was performed to reevaluate the stone. One hundred and twenty patient records were analyzed, 64 (53.3%) males and 56 (46.7%) females, with a mean age of 38.6 years and a mean stone size of 13.15 mm. Treatment with ESWL cleared stones in 76 (63.3%) patients, while 44 (36.7%) failed the treatment. The mean stone density in patients whose stones were cleared was significantly lower (661 vs. 1001) (P<0.001). Estimating renal calculus (or kidney stone) density on a native CT scan might help prognosticate ESWL treatment outcomes regarding stone clearance rates and the number of sessions required to clear a stone.
Collapse
Affiliation(s)
- Samir Muter
- Department of Surgery, College of Medicine, University of Baghdad, Baghdad, Iraq
| | - Ziad Abd
- Department of Surgery, College of Medicine, University of Anbar, Al-Ramadi, Iraq,Corresponding Author: Ziad Abd, Department of Surgery, College of Medicine, University of Anbar, Al-Ramadi, Iraq. E-mail:
| | - Ruya Saeed
- Department of Community Medicine, College of Medicine, University of Anbar, Al-Ramadi, Iraq
| |
Collapse
|
20
|
Zhao X, Li Y, Han Y, Chen P, Wei J. Statistical iterative spectral CT imaging method based on blind separation of polychromatic projections. OPTICS EXPRESS 2022; 30:18219-18237. [PMID: 36221628 DOI: 10.1364/oe.456184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/02/2022] [Indexed: 06/16/2023]
Abstract
Spectral computed tomography (CT) can provide narrow-energy-width reconstructed images, thereby suppressing beam hardening artifacts and providing rich attenuation information for component characterization. We propose a statistical iterative spectral CT imaging method based on blind separation of polychromatic projections to improve the accuracy of narrow-energy-width image decomposition. For direct inversion in blind scenarios, we introduce the system matrix into the X-ray multispectral forward model to reduce indirect errors. A constrained optimization problem with edge-preserving regularization is established and decomposed into two sub-problems to be alternately solved. Experiments indicate that the novel algorithm obtains more accurate narrow-energy-width images than the state-of-the-art method.
Collapse
|
21
|
Zhou Z, Ren L, Rajendran K, Diehn FE, Fletcher JG, McCollough CH, Yu L. Simultaneous dual-contrast imaging using energy-integrating-detector multi-energy CT: An in vivo feasibility study. Med Phys 2022; 49:1458-1467. [PMID: 35018658 DOI: 10.1002/mp.15448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To demonstrate the feasibility of simultaneous dual-contrast imaging in a large animal using a newly developed dual-source energy-integrating-detector (EID) based multi-energy computed tomography (MECT) system. METHODS Two imaging tasks that may have potential clinical applications were investigated: head/neck (HN) CT angiography (CTA)/CT venography (CTV) with iodine and gadolinium, and small bowel imaging with iodine and bismuth in domestic swine. Dual-source x-ray beam configurations of 70 kV+Au120/Sn120 kV and 70 kV+Au140/Sn140 kV were used for the HN-CTA/CTV and small bowel imaging studies, respectively. A test bolus scan was performed for each study. The ROIs in the carotid artery and jugular vein for HN-CTA/CTV imaging and abdominal aorta for small bowel imaging were used to determine the time-attenuation curves, based on which the timing for contrast injection and the CT scan was determined. In the HN-CTA/CTV study, a MECT scan was performed at the time point corresponding to the optimal arterial enhancement by iodine and the optimal venous enhancement by gadolinium. In the small bowel imaging study, A MECT scan was performed at the optimal time point to simultaneously capture the mesenteric arterial enhancement of iodine and the enteric enhancement of bismuth. Image-based material decomposition was performed to decompose different materials for each study. To quantitatively characterize contrast material separation and misclassification, two ROIs on left common carotid artery and left internal jugular vein in HN-CTA/CTV imaging and three ROIs on superior mesenteric artery, ileal lumen, and collapsed ileum (ileal wall) in small bowel imaging were placed to measure the mean concentration values and the standard deviations. RESULTS In the HN-CTA/CTV study, common carotid arteries containing iodine and internal/external jugular veins containing gadolinium were clearly delineated from each other. Fine vessels such as cephalic veins and branches of external jugular veins were noticeable but clear visualization was hindered by image noise in gadolinium-specific (CTV) images, as reviewed by a neuro radiologist. In the small bowel imaging study, the mesenteric arteries and collapsed bowel wall containing iodine and the small bowel loops containing bismuth were clearly distinctive from each other in the iodine- and bismuth-specific images after material decomposition, as reviewed by an abdominal radiologist. Quantitative analyses showed that the misclassifications between the two contrast materials were less than 1.7 mg/mL and 0.1 mg/mL for CTA/CTV and small bowel imaging studies, respectively. CONCLUSIONS Feasibility of simultaneous CTA/CTV imaging in head and neck with iodine and gadolinium and simultaneous imaging of arterial and enteric phases of small bowel with iodine and bismuth, using a dual-source EID-MECT system, was demonstrated in a swine study. Compared to iodine and gadolinium in CTA/CTV, better delineation and classification of iodine and bismuth in small bowel imaging were achieved mainly due to wider separation between the corresponding two K-edge energies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhongxing Zhou
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, US
| | - Liqiang Ren
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, US
| | | | - Felix E Diehn
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, US
| | - Joel G Fletcher
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, US
| | | | - Lifeng Yu
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, US
| |
Collapse
|
22
|
Cester D, Eberhard M, Alkadhi H, Euler A. Virtual monoenergetic images from dual-energy CT: systematic assessment of task-based image quality performance. Quant Imaging Med Surg 2022; 12:726-741. [PMID: 34993114 DOI: 10.21037/qims-21-477] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Background To compare task-based image quality (TB-IQ) among virtual monoenergetic images (VMI) and linear-blended images (LBI) from dual-energy CT as a function of contrast task, radiation dose, size, and lesion diameter. Methods A TB-IQ phantom (Mercury Phantom 4.0, Sun Nuclear Corporation) was imaged on a third-generation dual-source dual-energy CT with 100/Sn150 kVp at three volume CT dose levels (5, 10, 15 mGy). Three size sections (diameters 16, 26, 36 cm) with subsections for image noise and spatial resolution analysis were used. High-contrast tasks (e.g., calcium-containing stone and vascular lesion) were emulated using bone and iodine inserts. A low-contrast task (e.g., low-contrast lesion or hematoma) was emulated using a polystyrene insert. VMI at 40-190 keV and LBI were reconstructed. Noise power spectrum (NPS) determined the noise magnitude and texture. Spatial resolution was assessed using the task-transfer function (TTF) of the three inserts. The detectability index (d') served as TB-IQ metric. Results Noise magnitude increased with increasing phantom size, decreasing dose, and decreasing VMI-energy. Overall, noise magnitude was higher for VMI at 40-60 keV compared to LBI (range of noise increase, 3-124%). Blotchier noise texture was found for low and high VMIs (40-60 keV, 130-190 keV) compared to LBI. No difference in spatial resolution was observed for high contrast tasks. d' increased with increasing dose level or lesion diameter and decreasing size. For high-contrast tasks, d' was higher at 40-80 keV and lower at high VMIs. For the low-contrast task, d' was higher for VMI at 70-90 keV and lower at 40-60 keV. Conclusions Task-based image quality differed among VMI-energy and LBI dependent on the contrast task, dose level, phantom size, and lesion diameter. Image quality could be optimized by tailoring VMI-energy to the contrast task. Considering the clinical relevance of iodine, VMIs at 50-60 keV could be proposed as an alternative to LBI.
Collapse
Affiliation(s)
- Davide Cester
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Eberhard
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hatem Alkadhi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - André Euler
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|