1
|
Wong LM, Ai QYH, Leung HS, So TYT, Hung KF, Chan YT, King AD. Decoding the Rotation Effect: A Retrospective Analysis of Lesion Orientation and Its Impact on Wavelet-Based Radiomics Feature Extraction and Lung Cancer Classification. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-025-01520-8. [PMID: 40329153 DOI: 10.1007/s10278-025-01520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 05/08/2025]
Abstract
Wavelet decomposition (WD), widely used in radiomics, redistributes information among derived wavelet components when the input is rotated. This redistribution may alter predictions for the same lesion when scanned at different angles. Despite its potential significance, this vulnerability has frequently been overlooked in radiomic studies while its impact remains poorly understood. Therefore, this study aims to investigate how variations in lesion orientation affect both WD and non-WD radiomic feature values, and subsequently, model performance. We analyzed CT radiomics of primary non-small-cell lung cancer (NSCLC). Prior to feature extraction, we introduced random rotations ranging from 5° to 80° to the tumors. Their effects were quantified by evaluating the percentage difference ( % Δ ) between the rotated and unrotated feature values, and validated using Spearman's rank test. Additionally, radiomics models were trained to discriminate between three histological subtypes of NSCLC using the original features, and then tested on rotated inputs. The correlation between the model accuracies and the degree of rotation was again evaluated using Spearman's rank test. Four-hundred nineteen NSCLC patients (mean age: 68.1 ± 10.1, 289 men) were evaluated. Significant correlations between feature values and rotations (Spearman's correlation [CC] magnitude ≥ 0.1, p < .05) were found in 23.7% (176/744) of the WD and 0.5% (5/930) of the non-WD texture features. Significant association between performance and rotation was observed in WD-based models built to discriminate between NSCLC histological subtypes (CC = - 0.44, p < .001) but not in non-WD-based models (CC = 0.03, p = 0.07). Input lesion orientation affects radiomic feature values and model reproducibility. WD features exhibited significantly greater instability to orientation variations compared to non-WD features.
Collapse
Affiliation(s)
- Lun Matthew Wong
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, LG/F, Cancer Centre, Shatin, New Territory, HKSAR, China.
| | - Qi-Yong Hemis Ai
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, LG/F, Cancer Centre, Shatin, New Territory, HKSAR, China
- Department of Diagnostic Radiology, School of Clinical Medicine, The University of Hong Kong, HKSAR, China
| | - Ho Sang Leung
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Hospital Authority - New Territory East Cluster, HKSAR, China
| | - Tifffany Yuen-Tung So
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, LG/F, Cancer Centre, Shatin, New Territory, HKSAR, China
| | - Kuo Feng Hung
- Department of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, HKSAR, China
| | - Yuet-Ting Chan
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, LG/F, Cancer Centre, Shatin, New Territory, HKSAR, China
| | - Ann Dorothy King
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, LG/F, Cancer Centre, Shatin, New Territory, HKSAR, China
| |
Collapse
|
2
|
Wang YF, Tadimalla S, Holloway L, Thiruthaneeswaran N, Haworth A. Anatomical zone and tissue type impacts the repeatability of quantitative MRI parameters and radiomic features for longitudinal monitoring of treatment response in the prostate. MAGMA (NEW YORK, N.Y.) 2025:10.1007/s10334-025-01231-9. [PMID: 39985650 DOI: 10.1007/s10334-025-01231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/24/2025]
Abstract
OBJECTIVE To (1) establish the repeatability coefficient (%RC) of region of interest (ROI) and voxel-wise measurements of a comprehensive range of quantitative MRI (qMRI) parameters and radiomic features in the prostate, and (2) assess the impact of different tissue types (benign vs tumor) and anatomical zones (peripheral, PZ, and non-peripheral, nPZ) on the %RCs. METHODS Test-retest qMRI was acquired in ten prostate cancer patients and six healthy volunteers. Parametric maps of apparent diffusion coefficient (ADC), diffusion coefficient (D), perfusion fraction (f), hypoxia score (HS), longitudinal relaxation time (T1), and observed transverse relaxation rate (R2*) were calculated. Fifty-nine radiomic feature maps were calculated from each of the parametric maps and T2-weighted images. The %RCs between tissue type and anatomical zones were compared using the Student's t test at 95% significance level. RESULTS The %RC of ADC, D and HS, and up to 118 (out of all 413) radiomic features was significantly different between either anatomical zones, or between tumor and benign tissue, or both. CONCLUSIONS DWI-derived parameters and a portion of their radiomic features require %RCs to be established specifically for anatomical zones, tumor and benign tissues. The remaining qMRI parameters and features can have a single threshold for the whole prostate.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.
| | - Sirisha Tadimalla
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- Sydney West Radiation Oncology, Westmead Hospital, Wentworthville, NSW, Australia
| | - Lois Holloway
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- Liverpool and Macarthur Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, Australia
| | - Niluja Thiruthaneeswaran
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- Sydney West Radiation Oncology, Westmead Hospital, Wentworthville, NSW, Australia
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- Sydney West Radiation Oncology, Westmead Hospital, Wentworthville, NSW, Australia
| |
Collapse
|
3
|
Wan Q, Lindsay C, Zhang C, Kim J, Chen X, Li J, Huang RY, Reardon DA, Young GS, Qin L. Comparative analysis of deep learning and radiomic signatures for overall survival prediction in recurrent high-grade glioma treated with immunotherapy. Cancer Imaging 2025; 25:5. [PMID: 39838503 PMCID: PMC11752626 DOI: 10.1186/s40644-024-00818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Radiomic analysis of quantitative features extracted from segmented medical images can be used for predictive modeling of prognosis in brain tumor patients. Manual segmentation of the tumor components is time-consuming and poses significant reproducibility issues. We compare the prediction of overall survival (OS) in recurrent high-grade glioma(HGG) patients undergoing immunotherapy, using deep learning (DL) classification networks along with radiomic signatures derived from manual and convolutional neural networks (CNN) automated segmentation. MATERIALS AND METHODS We retrospectively retrieved 154 cases of recurrent HGG from multiple centers. Tumor segmentation was performed by expert radiologists and a convolutional neural network (CNN). From the segmented tumors, 2553 radiomic features were extracted for each case. A robust feature subset was selected using intraclass correlation coefficient analysis between manual and automated segmentations. The data was divided into a 9:1 ratio and validated through ten-fold cross-validation and tested on a rotating test set. Features selection was done by the Kruskal-Wallis test. The Radiomics-based OS predictions, generated using Support Vector Machine (SVM), were compared between the two segmentation approaches and against OS prediction by the CNN model adapted for classification. Model efficacy was evaluated using the area under the receiver operating characteristic curve (AUC). RESULTS The clinical model AUC for OS prediction was 0.640 ± 0.013 (mean ± 95% confidence interval) in the training set and 0.610 ± 0.131 in the test set. The radiomics prediction of OS based on manual segmentation outperformed automatic segmentation (AUC of 0.662 ± 0.122 vs. 0.471 ± 0.086, respectively) in the test set. Robust features improved the performance of manual segmentation to AUC of 0.700 ± 0.102, of automated segmentation to 0.554 ± 0.085. The CNN prognosis model demonstrated promising results, with an average AUC of 0.755 ± 0.071 for training sets and 0.700 ± 0.101 for the test set. CONCLUSION Manual segmentation-derived radiomic features outperformed automated segmentation-derived features for predicting OS in recurrent high-grade glioma patients undergoing immunotherapy. The end-to-end CNN prognosis model performed similarly to radiomics modeling using manual-segmentation-derived features without the need for segmentation. The potential time-saving must be weighed against the lower interpretability of end-to-end black box modeling.
Collapse
Affiliation(s)
- Qi Wan
- Department of Radiology, the Key Laboratory of Advanced Interdisciplinary Studies Center, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Department of Imaging, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Clifford Lindsay
- Department of Radiology, Division of Biomedical Imaging and Bioengineering, UMass Chan Medical School, Worcester, MA, USA
| | - Chenxi Zhang
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jisoo Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xin Chen
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jing Li
- Department of Radiology, the Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, China
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Geoffrey S Young
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Lei Qin
- Department of Imaging, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Lippitt WL, Maier LA, Fingerlin TE, Lynch DA, Yadav R, Rieck J, Hill AC, Liao SY, Mroz MM, Barkes BQ, Ju Chae K, Jeon Hwang H, Carlson NE. The textures of sarcoidosis: quantifying lung disease through variograms. Phys Med Biol 2025; 70:025004. [PMID: 39700622 PMCID: PMC11726058 DOI: 10.1088/1361-6560/ada19c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/13/2024] [Accepted: 12/19/2024] [Indexed: 12/21/2024]
Abstract
Objective. Sarcoidosis is a granulomatous disease affecting the lungs in over 90% of patients. Qualitative assessment of chest CT by radiologists is standard clinical practice and reliable quantification of disease from CT would support ongoing efforts to identify sarcoidosis phenotypes. Standard imaging feature engineering techniques such as radiomics suffer from extreme sensitivity to image acquisition and processing, potentially impeding generalizability of research to clinical populations. In this work, we instead investigate approaches to engineering variogram-based features with the intent to identify a robust, generalizable pipeline for image quantification in the study of sarcoidosis.Approach. For a cohort of more than 300 individuals with sarcoidosis, we investigated 24 feature engineering pipelines differing by decisions for image registration to a template lung, empirical and model variogram estimation methods, and feature harmonization for CT scanner model, and subsequently 48 sets of phenotypes produced through unsupervised clustering. We then assessed sensitivity of engineered features, phenotypes produced through unsupervised clustering, and sarcoidosis disease signal strength to pipeline.Main results. We found that variogram features had low to mild association with scanner model and associations were reduced by image registration. For each feature type, features were also typically robust to all pipeline decisions except image registration. Strength of disease signal as measured by association with pulmonary function testing and some radiologist visual assessments was strong (optimistic AUC ≈ 0.9,p≪0.0001in models for architectural distortion, conglomerate mass, fibrotic abnormality, and traction bronchiectasis) and fairly consistent across engineering approaches regardless of registration and harmonization for CT scanner.Significance. Variogram-based features appear to be a suitable approach to image quantification in support of generalizable research in pulmonary sarcoidosis.
Collapse
Affiliation(s)
- William L Lippitt
- Dept of Biostatistics and Informatics, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Lisa A Maier
- Dept of Medicine, National Jewish Health, Denver, CO, United States of America
- Dept of Medicine, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
- Dept of Environmental and Occupational Health, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Tasha E Fingerlin
- Dept of Biostatistics and Informatics, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
- Dept of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States of America
| | - David A Lynch
- Dept of Radiology, National Jewish Health, Denver, CO, United States of America
| | - Ruchi Yadav
- Dept of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, United States of America
| | - Jared Rieck
- Dept of Biostatistics and Informatics, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Andrew C Hill
- Dept of Biostatistics and Informatics, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Shu-Yi Liao
- Dept of Medicine, National Jewish Health, Denver, CO, United States of America
- Dept of Medicine, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Margaret M Mroz
- Dept of Medicine, National Jewish Health, Denver, CO, United States of America
| | - Briana Q Barkes
- Dept of Medicine, National Jewish Health, Denver, CO, United States of America
| | - Kum Ju Chae
- Dept of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeollabuk-do, Republic of Korea
| | - Hye Jeon Hwang
- Dept of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 86 Asanbyeongwon-Gil, Songpa-Gu, Seoul, Republic of Korea
| | - Nichole E Carlson
- Dept of Biostatistics and Informatics, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
5
|
Marfisi D, Giannelli M, Marzi C, Del Meglio J, Barucci A, Masturzo L, Vignali C, Mascalchi M, Traino A, Casolo G, Diciotti S, Tessa C. Test-retest repeatability of myocardial radiomic features from quantitative cardiac magnetic resonance T1 and T2 mapping. Magn Reson Imaging 2024; 113:110217. [PMID: 39067653 DOI: 10.1016/j.mri.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/14/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Radiomics of cardiac magnetic resonance (MR) imaging has proved to be potentially useful in the study of various myocardial diseases. Therefore, assessing the repeatability degree in radiomic features measurement is of fundamental importance. The aim of this study was to assess test-retest repeatability of myocardial radiomic features extracted from quantitative T1 and T2 maps. A representative group of 24 subjects (mean age 54 ± 18 years) referred for clinical cardiac MR imaging were enrolled in the study. For each subject, T1 and T2 mapping through MOLLI and T2-prepared TrueFISP acquisition sequences, respectively, were performed at 1.5 T. Then, 98 radiomic features of different classes (shape, first-order, second-order) were extracted from a region of interest encompassing the whole left ventricle myocardium in a short axis slice. The repeatability was assessed performing different and complementary analyses: intraclass correlation coefficient (ICC) and limits of agreement (LOA) (i.e., the interval within which 95% of the percentage differences between two repeated measures are expected to lie). Radiomic features were characterized by a relatively wide range of repeatability degree in terms of both ICC and LOA. Overall, 44.9% and 38.8% of radiomic features showed ICC values > 0.75 for T1 and T2 maps, respectively, while 25.5% and 23.4% of radiomic features showed LOA between ±10%. A subset of radiomic features for T1 (Mean, Median, 10Percentile, 90Percentile, RootMeanSquared, Imc2, RunLengthNonUniformityNormalized, RunPercentage and ShortRunEmphasis) and T2 (MaximumDiameter, RunLengthNonUniformityNormalized, RunPercentage, ShortRunEmphasis) maps presented both ICC > 0.75 and LOA between ±5%. Overall, radiomic features extracted from T1 maps showed better repeatability performance than those extracted from T2 maps, with shape features characterized by better repeatability than first-order and textural features. Moreover, only a limited subset of 9 and 4 radiomic features for T1 and T2 maps, respectively, showed high repeatability degree in terms of both ICC and LOA. These results confirm the importance of assessing test-retest repeatability degree in radiomic feature estimation and might be useful for a more effective/reliable use of myocardial T1 and T2 mapping radiomics in clinical or research studies.
Collapse
Affiliation(s)
- Daniela Marfisi
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", 56126 Pisa, Italy
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", 56126 Pisa, Italy.
| | - Chiara Marzi
- Department of Statistics, Computer Science, Applications "Giuseppe Parenti", University of Florence, 50134 Florence, Italy
| | - Jacopo Del Meglio
- Unit of Cardiology, Azienda USL Toscana Nord Ovest, Versilia Hospital, 55041 Lido di Camaiore, Italy
| | - Andrea Barucci
- Institute of Applied Physics "Nello Carrara" (IFAC), Council of National Research (CNR), 50019 Sesto Fiorentino, Italy
| | - Luigi Masturzo
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", 56126 Pisa, Italy
| | - Claudio Vignali
- Unit of Radiology, Azienda USL Toscana Nord Ovest, Versilia Hospital, 55041 Lido di Camaiore, Italy
| | - Mario Mascalchi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50121 Florence, Italy; Clinical Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy
| | - Antonio Traino
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", 56126 Pisa, Italy
| | - Giancarlo Casolo
- Unit of Cardiology, Azienda USL Toscana Nord Ovest, Versilia Hospital, 55041 Lido di Camaiore, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, 47522 Cesena, Italy
| | - Carlo Tessa
- Unit of Radiology, Azienda USL Toscana Nord Ovest, Apuane Hospital, 54100 Massa, Italy
| |
Collapse
|
6
|
Gong J, Wang Q, Li J, Yang Z, Zhang J, Teng X, Sun H, Cai J, Zhao L. Using high-repeatable radiomic features improves the cross-institutional generalization of prognostic model in esophageal squamous cell cancer receiving definitive chemoradiotherapy. Insights Imaging 2024; 15:239. [PMID: 39373828 PMCID: PMC11458848 DOI: 10.1186/s13244-024-01816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
OBJECTIVES Repeatability is crucial for ensuring the generalizability and clinical utility of radiomics-based prognostic models. This study aims to investigate the repeatability of radiomic feature (RF) and its impact on the cross-institutional generalizability of the prognostic model for predicting local recurrence-free survival (LRFS) and overall survival (OS) in esophageal squamous cell cancer (ESCC) receiving definitive (chemo) radiotherapy (dCRT). METHODS Nine hundred and twelve patients from two hospitals were included as training and external validation sets, respectively. Image perturbations were applied to contrast-enhanced computed tomography to generate perturbed images. Six thousand five hundred ten RFs from different feature types, bin widths, and filters were extracted from the original and perturbed images separately to evaluate RF repeatability by intraclass correlation coefficient (ICC). The high-repeatable and low-repeatable RF groups grouped by the median ICC were further analyzed separately by feature selection and multivariate Cox proportional hazards regression model for predicting LRFS and OS. RESULTS First-order statistical features were more repeatable than texture features (median ICC: 0.70 vs 0.42-0.62). RFs from LoG had better repeatability than that of wavelet (median ICC: 0.70-0.84 vs 0.14-0.64). Features with smaller bin widths had higher repeatability (median ICC of 8-128: 0.65-0.47). For both LRFS and OS, the performance of the models based on high- and low-repeatable RFs remained stable in the training set with similar C-index (LRFS: 0.65 vs 0.67, p = 0.958; OS: 0.64 vs 0.65, p = 0.651), while the performance of the model based on the low-repeatable group was significantly lower than that based on the high-repeatable group in the external validation set (LRFS: 0.61 vs 0.67, p = 0.013; OS: 0.56 vs 0.63, p = 0.013). CONCLUSIONS Applying high-repeatable RFs in modeling could safeguard the cross-institutional generalizability of the prognostic model in ESCC. CRITICAL RELEVANCE STATEMENT The exploration of repeatable RFs in different diseases and different types of imaging is conducive to promoting the proper use of radiomics in clinical research. KEY POINTS The repeatability of RFs impacts the generalizability of the radiomic model. The high-repeatable RFs safeguard the cross-institutional generalizability of the model. Smaller bin width helps improve the repeatability of RFs.
Collapse
Affiliation(s)
- Jie Gong
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qifeng Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Li
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhi Yang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hongfei Sun
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Lina Zhao
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
7
|
Yu H, Tang B, Fu Y, Wei W, He Y, Dai G, Xiao Q. Quantifying the reproducibility and longitudinal repeatability of radiomics features in magnetic resonance Image-Guide accelerator Imaging: A phantom study. Eur J Radiol 2024; 181:111735. [PMID: 39276402 DOI: 10.1016/j.ejrad.2024.111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE This study aimed to quantitatively evaluate the inter-platform reproducibility and longitudinal acquisition repeatability of MRI radiomics features in Fluid-Attenuated Inversion Recovery (FLAIR), T2-weighted (T2W), and T1-weighted (T1W) sequences on MR-Linac systems using an American College of Radiology (ACR) phantom. MATERIALS AND METHODS This study used two MR-Linac systems (A and B) in different cancer centers. The ACR phantom was scanned on system A daily for 30 consecutive days to evaluate longitudinal repeatability. Additionally, retest data were collected after repositioning the phantom. Inter-platform reproducibility was assessed by conducting scans under identical conditions using system B. Regions of interest were delineated on the T1W sequence from system A and mapped to other sequences via rigid registration. Intra-observer and inter-observer comparisons were conducted. Repeatability and reproducibility were assessed using the intraclass correlation coefficient (ICC) and coefficient of variation (CV). Robust radiomics features were identified based on ICC>0.9 and CV<10 %. RESULTS Analysis showed that a higher proportion of radiomics features derived from longitudinal FLAIR sequence (51.65 %) met robustness criteria compared to T2W (48.35 %) and T1W (43.96 %). Additionally, more inter-platform features from the FLAIR sequence (62.64 %) were robust compared to T2W (42.86 %) and T1W (39.56 %). Test-retest and intra-observer repeatability were excellent across all sequences, with a median ICC of 0.99 and CV<5%. However, inter-observer reproducibility was inferior, especially for the T1W sequence. CONCLUSIONS Different sequences show variations in repeatability and reproducibility. The FLAIR sequence demonstrated advantages in both longitudinal repeatability and inter-platform reproducibility. Caution is warranted when interpreting data, particularly in longitudinal or multiplatform radiomics studies.
Collapse
Affiliation(s)
- Hang Yu
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Bin Tang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory Of Sichuan Province, Sichuan Cancer Hospital& Institute, Chengdu, Sichuan, China
| | - Yuchuan Fu
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China.
| | - Weige Wei
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Yisong He
- Medical Physics Laboratory, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Guyu Dai
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Qing Xiao
- Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| |
Collapse
|
8
|
Sadeghi M, Abdalvand N, Mahdavi SR, Abdollahi H, Qasempour Y, Mohammadian F, Birgani MJT, Hosseini K, Hazbavi M. Magnetic Resonance Image Radiomic Reproducibility: The Impact of Preprocessing on Extracted Features from Gross and High-Risk Clinical Tumor Volumes in Cervical Cancer Patients before Brachytherapy. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:23. [PMID: 39234589 PMCID: PMC11373798 DOI: 10.4103/jmss.jmss_57_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/09/2022] [Accepted: 03/14/2023] [Indexed: 09/06/2024]
Abstract
Background Radiomic feature reproducibility assessment is critical in radiomics-based image biomarker discovery. This study aims to evaluate the impact of preprocessing parameters on the reproducibility of magnetic resonance image (MRI) radiomic features extracted from gross tumor volume (GTV) and high-risk clinical tumor volume (HR-CTV) in cervical cancer (CC) patients. Methods This study included 99 patients with pathologically confirmed cervical cancer who underwent an MRI prior to receiving brachytherapy. The GTV and HR-CTV were delineated on T2-weighted MRI and inputted into 3D Slicer for radiomic analysis. Before feature extraction, all images were preprocessed to a combination of several parameters of Laplacian of Gaussian (1 and 2), resampling (0.5 and 1), and bin width (5, 10, 25, and 50). The reproducibility of radiomic features was analyzed using the intra-class correlation coefficient (ICC). Results Almost all shapes and first-order features had ICC values > 0.95. Most second-order texture features were not reproducible (ICC < 0.95) in GTV and HR-CTV. Furthermore, 20% of all neighboring gray-tone difference matrix texture features had ICC > 0.90 in both GTV and HR-CTV. Conclusion The results presented here showed that MRI radiomic features are vulnerable to changes in preprocessing, and this issue must be understood and applied before any clinical decision-making. Features with ICC > 0.90 were considered the most reproducible features. Shape and first-order radiomic features were the most reproducible features in both GTV and HR-CTV. Our results also showed that GTV and HR-CTV radiomic features had similar changes against preprocessing sets.
Collapse
Affiliation(s)
- Mahdi Sadeghi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Abdalvand
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seied Rabi Mahdavi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Abdollahi
- Student Research Committee, Department of Radiology Technology, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Younes Qasempour
- Student Research Committee, Department of Radiology Technology, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Mohammadian
- Department of Radiation Oncology, Golestan Hospital, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Tahmasebi Birgani
- Department of Radiation Oncology, Golestan Hospital, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Khadijeh Hosseini
- Department of Radiation Oncology, Golestan Hospital, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Maryam Hazbavi
- Department of Radiation Oncology, Golestan Hospital, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Hajianfar G, Hosseini SA, Bagherieh S, Oveisi M, Shiri I, Zaidi H. Impact of harmonization on the reproducibility of MRI radiomic features when using different scanners, acquisition parameters, and image pre-processing techniques: a phantom study. Med Biol Eng Comput 2024; 62:2319-2332. [PMID: 38536580 PMCID: PMC11604802 DOI: 10.1007/s11517-024-03071-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/05/2024] [Indexed: 07/31/2024]
Abstract
This study investigated the impact of ComBat harmonization on the reproducibility of radiomic features extracted from magnetic resonance images (MRI) acquired on different scanners, using various data acquisition parameters and multiple image pre-processing techniques using a dedicated MRI phantom. Four scanners were used to acquire an MRI of a nonanatomic phantom as part of the TCIA RIDER database. In fast spin-echo inversion recovery (IR) sequences, several inversion durations were employed, including 50, 100, 250, 500, 750, 1000, 1500, 2000, 2500, and 3000 ms. In addition, a 3D fast spoiled gradient recalled echo (FSPGR) sequence was used to investigate several flip angles (FA): 2, 5, 10, 15, 20, 25, and 30 degrees. Nineteen phantom compartments were manually segmented. Different approaches were used to pre-process each image: Bin discretization, Wavelet filter, Laplacian of Gaussian, logarithm, square, square root, and gradient. Overall, 92 first-, second-, and higher-order statistical radiomic features were extracted. ComBat harmonization was also applied to the extracted radiomic features. Finally, the Intraclass Correlation Coefficient (ICC) and Kruskal-Wallis's (KW) tests were implemented to assess the robustness of radiomic features. The number of non-significant features in the KW test ranged between 0-5 and 29-74 for various scanners, 31-91 and 37-92 for three times tests, 0-33 to 34-90 for FAs, and 3-68 to 65-89 for IRs before and after ComBat harmonization, with different image pre-processing techniques, respectively. The number of features with ICC over 90% ranged between 0-8 and 6-60 for various scanners, 11-75 and 17-80 for three times tests, 3-83 to 9-84 for FAs, and 3-49 to 3-63 for IRs before and after ComBat harmonization, with different image pre-processing techniques, respectively. The use of various scanners, IRs, and FAs has a great impact on radiomic features. However, the majority of scanner-robust features is also robust to IR and FA. Among the effective parameters in MR images, several tests in one scanner have a negligible impact on radiomic features. Different scanners and acquisition parameters using various image pre-processing might affect radiomic features to a large extent. ComBat harmonization might significantly impact the reproducibility of MRI radiomic features.
Collapse
Affiliation(s)
- Ghasem Hajianfar
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Seyyed Ali Hosseini
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Sara Bagherieh
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Oveisi
- Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
- University Research and Innovation Center, Óbuda University, Budapest, Hungary.
| |
Collapse
|
10
|
Trojani V, Bassi MC, Verzellesi L, Bertolini M. Impact of Preprocessing Parameters in Medical Imaging-Based Radiomic Studies: A Systematic Review. Cancers (Basel) 2024; 16:2668. [PMID: 39123396 PMCID: PMC11311340 DOI: 10.3390/cancers16152668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Lately, radiomic studies featuring the development of a signature to use in prediction models in diagnosis or prognosis outcomes have been increasingly published. While the results are shown to be promising, these studies still have many pitfalls and limitations. One of the main issues of these studies is that radiomic features depend on how the images are preprocessed before their computation. Since, in widely known and used software for radiomic features calculation, it is possible to set these preprocessing parameters before the calculation of the radiomic feature, there are ongoing studies assessing the stability and repeatability of radiomic features to find the most suitable preprocessing parameters for every used imaging modality. MATERIALS AND METHODS We performed a comprehensive literature search using four electronic databases: PubMed, Cochrane Library, Embase, and Scopus. Mesh terms and free text were modeled in search strategies for databases. The inclusion criteria were studies where preprocessing parameters' influence on feature values and model predictions was addressed. Records lacking information on image acquisition parameters were excluded, and any eligible studies with full-text versions were included in the review process, while conference proceedings and monographs were disregarded. We used the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2) tool to investigate the risk of bias. We synthesized our data in a table divided by the imaging modalities subgroups. RESULTS After applying the inclusion and exclusion criteria, we selected 43 works. This review examines the impact of preprocessing parameters on the reproducibility and reliability of radiomic features extracted from multimodality imaging (CT, MRI, CBCT, and PET/CT). Standardized preprocessing is crucial for consistent radiomic feature extraction. Key preprocessing steps include voxel resampling, normalization, and discretization, which influence feature robustness and reproducibility. In total, 44% of the included works studied the effects of an isotropic voxel resampling, and most studies opted to employ a discretization strategy. From 2021, several studies started selecting the best set of preprocessing parameters based on models' best performance. As for comparison metrics, ICC was the most used in MRI studies in 58% of the screened works. CONCLUSIONS From our work, we highlighted the need to harmonize the use of preprocessing parameters and their values, especially in light of future studies of prospective studies, which are still lacking in the current literature.
Collapse
Affiliation(s)
- Valeria Trojani
- Medical Physics, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy; (L.V.); (M.B.)
| | | | - Laura Verzellesi
- Medical Physics, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy; (L.V.); (M.B.)
| | - Marco Bertolini
- Medical Physics, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy; (L.V.); (M.B.)
| |
Collapse
|
11
|
Sun Y, Zhang Y, Gan J, Zhou H, Guo S, Wang X, Zhang C, Zheng W, Zhao X, Li X, Wang L, Ning S. Comprehensive quantitative radiogenomic evaluation reveals novel radiomic subtypes with distinct immune pattern in glioma. Comput Biol Med 2024; 177:108636. [PMID: 38810473 DOI: 10.1016/j.compbiomed.2024.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 04/07/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Accurate classification of gliomas is critical to the selection of immunotherapy, and MRI contains a large number of radiomic features that may suggest some prognostic relevant signals. We aim to predict new subtypes of gliomas using radiomic features and characterize their survival, immune, genomic profiles and drug response. METHODS We initially obtained 341 images of 36 patients from the CPTAC dataset for the development of deep learning models. Further 1812 images of 111 patients from TCGA_GBM and 152 images of 53 patients from TCGA_LGG were collected for testing and validation. A deep learning method based on Mask R-CNN was developed to identify new subtypes of glioma patients and compared the survival status, immune infiltration patterns, genomic signatures, specific drugs, and predictive models of different subtypes. RESULTS 200 glioma patients (mean age, 33 years ± 19 [standard deviation]) were enrolled. The accuracy of the deep learning model for identifying tumor regions achieved 88.3 % (98/111) in the test set and 83 % (44/53) in the validation set. The sample was divided into two subtypes based on radiomic features showed different prognostic outcomes (hazard ratio, 2.70). According to the results of the immune infiltration analysis, the subtype with a poorer prognosis was defined as the immunosilencing radiomic (ISR) subtype (n = 43), and the other subtype was the immunoactivated radiomic (IAR) subtype (n = 53). Subtype-specific genomic signatures distinguished celllines into ISR celllines (n = 9) and control celllines (n = 13), and identified eight ISR-specific drugs, four of which were validated by the OCTAD database. Three machine learning-based classifiers showed that radiomic and genomic co-features better predicted the radiomic subtypes of gliomas. CONCLUSIONS These findings provide insights into how radiogenomic could identify specific subtypes that predict prognosis, immune and drug sensitivity in a non-invasive manner.
Collapse
Affiliation(s)
- Yue Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yakun Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jing Gan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Hanxiao Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Shuang Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xinyue Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Caiyu Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Wen Zheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xiaoxi Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Li Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
12
|
Lippitt WL, Maier LA, Fingerlin TE, Lynch DA, Yadav R, Rieck J, Hill AC, Liao SY, Mroz MM, Barkes BQ, Chae KJ, Hwang HJ, Carlson NE. The textures of sarcoidosis: quantifying lung disease through variograms. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.20.24307618. [PMID: 38826353 PMCID: PMC11142277 DOI: 10.1101/2024.05.20.24307618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Objective Sarcoidosis is a granulomatous disease affecting the lungs in over 90% of patients. Qualitative assessment of chest CT by radiologists is standard clinical practice and reliable quantification of disease from CT would support ongoing efforts to identify sarcoidosis phenotypes. Standard imaging feature engineering techniques such as radiomics suffer from extreme sensitivity to image acquisition and processing, potentially impeding generalizability of research to clinical populations. In this work, we instead investigate approaches to engineering variogram-based features with the intent to identify a robust, generalizable pipeline for image quantification in the study of sarcoidosis. Approach For a cohort of more than 300 individuals with sarcoidosis, we investigated 24 feature engineering pipelines differing by decisions for image registration to a template lung, empirical and model variogram estimation methods, and feature harmonization for CT scanner model, and subsequently 48 sets of phenotypes produced through unsupervised clustering. We then assessed sensitivity of engineered features, phenotypes produced through unsupervised clustering, and sarcoidosis disease signal strength to pipeline. Main results We found that variogram features had low to mild association with scanner model and associations were reduced by image registration. For each feature type, features were also typically robust to all pipeline decisions except image registration. Strength of disease signal as measured by association with pulmonary function testing and some radiologist visual assessments was strong (optimistic AUC ≈ 0.9, p ≪ 0.0001 in models for architectural distortion, conglomerate mass, fibrotic abnormality, and traction bronchiectasis) and fairly consistent across engineering approaches regardless of registration and harmonization for CT scanner. Significance Variogram-based features appear to be a suitable approach to image quantification in support of generalizable research in pulmonary sarcoidosis.
Collapse
Affiliation(s)
- William L Lippitt
- Dept of Biostatistics and Informatics, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lisa A Maier
- Dept of Medicine, National Jewish Health, Denver, CO, USA
- Dept of Medicine, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Dept of Environmental and Occupational Health, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tasha E Fingerlin
- Dept of Biostatistics and Informatics, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Dept of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - David A Lynch
- Dept of Radiology, National Jewish Health, Denver, CO, USA
| | - Ruchi Yadav
- Dept of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - Jared Rieck
- Dept of Biostatistics and Informatics, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew C Hill
- Dept of Biostatistics and Informatics, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shu-Yi Liao
- Dept of Medicine, National Jewish Health, Denver, CO, USA
- Dept of Medicine, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - Kum Ju Chae
- Dept of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeollabuk-do, Korea
| | - Hye Jeon Hwang
- Dept of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 86 Asanbyeongwon-Gil, Songpa-Gu, Seoul, Korea
| | - Nichole E Carlson
- Dept of Biostatistics and Informatics, Uni. of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
13
|
Khodabakhshi Z, Gabrys H, Wallimann P, Guckenberger M, Andratschke N, Tanadini-Lang S. Magnetic resonance imaging radiomic features stability in brain metastases: Impact of image preprocessing, image-, and feature-level harmonization. Phys Imaging Radiat Oncol 2024; 30:100585. [PMID: 38799810 PMCID: PMC11127267 DOI: 10.1016/j.phro.2024.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Background and purpose Magnetic resonance imaging (MRI) scans are highly sensitive to acquisition and reconstruction parameters which affect feature stability and model generalizability in radiomic research. This work aims to investigate the effect of image pre-processing and harmonization methods on the stability of brain MRI radiomic features and the prediction performance of radiomic models in patients with brain metastases (BMs). Materials and methods Two T1 contrast enhanced brain MRI data-sets were used in this study. The first contained 25 BMs patients with scans at two different time points and was used for features stability analysis. The effect of gray level discretization (GLD), intensity normalization (Z-score, Nyul, WhiteStripe, and in house-developed method named N-Peaks), and ComBat harmonization on features stability was investigated and features with intraclass correlation coefficient >0.8 were considered as stable. The second data-set containing 64 BMs patients was used for a classification task to investigate the informativeness of stable features and the effects of harmonization methods on radiomic model performance. Results Applying fixed bin number (FBN) GLD, resulted in higher number of stable features compare to fixed bin size (FBS) discretization (10 ± 5.5 % higher). `Harmonization in feature domain improved the stability for non-normalized and normalized images with Z-score and WhiteStripe methods. For the classification task, keeping the stable features resulted in good performance only for normalized images with N-Peaks along with FBS discretization. Conclusions To develop a robust MRI based radiomic model we recommend using an intensity normalization method based on a reference tissue (e.g N-Peaks) and then using FBS discretization.
Collapse
Affiliation(s)
- Zahra Khodabakhshi
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hubert Gabrys
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Philipp Wallimann
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Li X, Cheng Y, Han X, Cui B, Li J, Yang H, Xu G, Lin Q, Xiao X, Tang J, Lu J. Exploring the association of glioma tumor residuals from incongruent [ 18F]FET PET/MR imaging with tumor proliferation using a multiparametric MRI radiomics nomogram. Eur J Nucl Med Mol Imaging 2024; 51:779-796. [PMID: 37864593 DOI: 10.1007/s00259-023-06468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
PURPOSE The study aimed to using multiparametric MRI radiomics to predict glioma tumor residuals (TRFET over MR) derived from incongruent [18F]fluoroethyl-L-tyrosine ([18F]FET) PET/MR imaging. METHODS One hundred ten patients with gliomas who underwent [18F]FET PET/MR scanning were retrospectively analyzed. The TRFET over MR was identified by the discrepancy-PET that the extent of resection (EOR) based on MRI subtracted the biological tumor volume on PET images. The MRI parameters and radiomics features were extracted based on EOR and selected by the least absolute shrinkage and selection operator to construct radiomics score (Rad-score). The correlation network analysis of all features was analyzed by Spearman's correlation tests. The methods for evaluating the clinical usefulness consisted of the receiver operating characteristic curve, the calibration curve, and decision curve analysis. RESULTS The Rad-score of the patients with the TRFET over MR was significantly higher than those with the non TRFET over MR (p < 0.001). The Rad-score was significantly correlated with the discrepancy-PET (r = 0.72, p < 0.001), Ki-67 level (r = 0.76, p < 0.001), and epidermal growth factor receptor (EGFR) of gliomas (r = 0.75, p < 0.001), respectively. Moreover, there was a difference of the correlation network analysis between the TRPET over MR group and non TRFET over MR group. The nomogram combing Rad-score and clinical features had the greatest performance in predicting TRFET over MR (AUC = 0.90/0.87, training/testing). There was a significant difference in prognosis (median OS, 17 m vs. 43 m) between patients with TRFET over MR and non TRFET over MR based on nomogram prediction (p < 0.001). CONCLUSION The nomogram based on MRI radiomics would predict gliomas tumor residuals caused by the absence of 18F-PET PET examination and adjust EOR to improve prognosis.
Collapse
Affiliation(s)
- Xiaoran Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Ye Cheng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xin Han
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Bixiao Cui
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Jing Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Hongwei Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Geng Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qingtang Lin
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xinru Xiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Tang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Abbaspour S, Barahman M, Abdollahi H, Arabalibeik H, Hajainfar G, Babaei M, Iraji H, Barzegartahamtan M, Ay MR, Mahdavi SR. Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study. Biomed Phys Eng Express 2023; 10:015017. [PMID: 37995359 DOI: 10.1088/2057-1976/ad0f3e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Purpose.This study aims to predict radiotherapy-induced rectal and bladder toxicity using computed tomography (CT) and magnetic resonance imaging (MRI) radiomics features in combination with clinical and dosimetric features in rectal cancer patients.Methods.A total of sixty-three patients with locally advanced rectal cancer who underwent three-dimensional conformal radiation therapy (3D-CRT) were included in this study. Radiomics features were extracted from the rectum and bladder walls in pretreatment CT and MR-T2W-weighted images. Feature selection was performed using various methods, including Least Absolute Shrinkage and Selection Operator (Lasso), Minimum Redundancy Maximum Relevance (MRMR), Chi-square (Chi2), Analysis of Variance (ANOVA), Recursive Feature Elimination (RFE), and SelectPercentile. Predictive modeling was carried out using machine learning algorithms, such as K-nearest neighbor (KNN), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), Gradient Boosting (XGB), and Linear Discriminant Analysis (LDA). The impact of the Laplacian of Gaussian (LoG) filter was investigated with sigma values ranging from 0.5 to 2. Model performance was evaluated in terms of the area under the receiver operating characteristic curve (AUC), accuracy, precision, sensitivity, and specificity.Results.A total of 479 radiomics features were extracted, and 59 features were selected. The pre-MRI T2W model exhibited the highest predictive performance with an AUC: 91.0/96.57%, accuracy: 90.38/96.92%, precision: 90.0/97.14%, sensitivity: 93.33/96.50%, and specificity: 88.09/97.14%. These results were achieved with both original image and LoG filter (sigma = 0.5-1.5) based on LDA/DT-RF classifiers for proctitis and cystitis, respectively. Furthermore, for the CT data, AUC: 90.71/96.0%, accuracy: 90.0/96.92%, precision: 88.14/97.14%, sensitivity: 93.0/96.0%, and specificity: 88.09/97.14% were acquired. The highest values were achieved using XGB/DT-XGB classifiers for proctitis and cystitis with LoG filter (sigma = 2)/LoG filter (sigma = 0.5-2), respectively. MRMR/RFE-Chi2 feature selection methods demonstrated the best performance for proctitis and cystitis in the pre-MRI T2W model. MRMR/MRMR-Lasso yielded the highest model performance for CT.Conclusion.Radiomics features extracted from pretreatment CT and MR images can effectively predict radiation-induced proctitis and cystitis. The study found that LDA, DT, RF, and XGB classifiers, combined with MRMR, RFE, Chi2, and Lasso feature selection algorithms, along with the LoG filter, offer strong predictive performance. With the inclusion of a larger training dataset, these models can be valuable tools for personalized radiotherapy decision-making.
Collapse
Affiliation(s)
- Samira Abbaspour
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maedeh Barahman
- Department of Radiation Oncology, Firoozgar Hospital, Firoozgar Clinical Research Development Center (FCRDC), Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Abdollahi
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Hossein Arabalibeik
- Research Center for Science and Technology in Medicine (RCSTM), Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Hajainfar
- Rajaie Cardiovascular Medical & Research Center, Iran University of Medical Science, Tehran, Iran
| | - Mohammadreza Babaei
- Department of Interventional Radiology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Iraji
- Department of Interventional Radiology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Barzegartahamtan
- Clinical Research Development Unit, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ay
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seied Rabi Mahdavi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Hajianfar G, Haddadi Avval A, Hosseini SA, Nazari M, Oveisi M, Shiri I, Zaidi H. Time-to-event overall survival prediction in glioblastoma multiforme patients using magnetic resonance imaging radiomics. LA RADIOLOGIA MEDICA 2023; 128:1521-1534. [PMID: 37751102 PMCID: PMC10700216 DOI: 10.1007/s11547-023-01725-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/05/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE Glioblastoma Multiforme (GBM) represents the predominant aggressive primary tumor of the brain with short overall survival (OS) time. We aim to assess the potential of radiomic features in predicting the time-to-event OS of patients with GBM using machine learning (ML) algorithms. MATERIALS AND METHODS One hundred nineteen patients with GBM, who had T1-weighted contrast-enhanced and T2-FLAIR MRI sequences, along with clinical data and survival time, were enrolled. Image preprocessing methods included 64 bin discretization, Laplacian of Gaussian (LOG) filters with three Sigma values and eight variations of Wavelet Transform. Images were then segmented, followed by the extraction of 1212 radiomic features. Seven feature selection (FS) methods and six time-to-event ML algorithms were utilized. The combination of preprocessing, FS, and ML algorithms (12 × 7 × 6 = 504 models) was evaluated by multivariate analysis. RESULTS Our multivariate analysis showed that the best prognostic FS/ML combinations are the Mutual Information (MI)/Cox Boost, MI/Generalized Linear Model Boosting (GLMB) and MI/Generalized Linear Model Network (GLMN), all of which were done via the LOG (Sigma = 1 mm) preprocessing method (C-index = 0.77). The LOG filter with Sigma = 1 mm preprocessing method, MI, GLMB and GLMN achieved significantly higher C-indices than other preprocessing, FS, and ML methods (all p values < 0.05, mean C-indices of 0.65, 0.70, and 0.64, respectively). CONCLUSION ML algorithms are capable of predicting the time-to-event OS of patients using MRI-based radiomic and clinical features. MRI-based radiomics analysis in combination with clinical variables might appear promising in assisting clinicians in the survival prediction of patients with GBM. Further research is needed to establish the applicability of radiomics in the management of GBM in the clinic.
Collapse
Affiliation(s)
- Ghasem Hajianfar
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva, Switzerland
| | | | - Seyyed Ali Hosseini
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montréal, QC, Canada
| | - Mostafa Nazari
- Department of Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Oveisi
- Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva, Switzerland.
- Geneva University Neurocenter, Geneva University, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
17
|
Zhang J, Lam SK, Teng X, Ma Z, Han X, Zhang Y, Cheung ALY, Chau TC, Ng SCY, Lee FKH, Au KH, Yip CWY, Lee VHF, Han Y, Cai J. Radiomic feature repeatability and its impact on prognostic model generalizability: A multi-institutional study on nasopharyngeal carcinoma patients. Radiother Oncol 2023; 183:109578. [PMID: 36822357 DOI: 10.1016/j.radonc.2023.109578] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND AND PURPOSE To investigate the radiomic feature (RF) repeatability via perturbation and its impact on cross-institutional prognostic model generalizability in Nasopharyngeal Carcinoma (NPC) patients. MATERIALS AND METHODS 286 and 183 NPC patients from two institutions were included for model training and validation. Perturbations with random translations and rotations were applied to contrast-enhanced T1-weighted (CET1-w) MR images. RFs were extracted from primary tumor volume under a wide range of image filtering and discretization settings. RF repeatability was assessed by intraclass correlation coefficient (ICC), which was used to equally separate the RFs into low- and high-repeatable groups by the median value. After feature selection, multivariate Cox regression and Kaplan-Meier analysis were independently employed to develop and analyze prognostic models. Concordance index (C-index) and P-value from log-rank test were used to assess model performance. RESULTS Most textural RFs from high-pass wavelet-filtered images were susceptible to image perturbations. It was more prominent when a smaller discretization bin number was used (e.g., 8, mean ICC = 0.69). Using high-repeatable RFs for model development yielded a significantly higher C-index (0.63) in the validation cohort than when only low-repeatable RFs were used (0.57, P = 0.024), suggesting higher model generalizability. Besides, significant risk stratification in the validation cohort was observed only when high-repeatable RFs were used (P < 0.001). CONCLUSION Repeatability of RFs from high-pass wavelet-filtered CET1-w MR images of primary NPC tumor was poor, particularly when a smaller bin number was used. Exclusive use of high-repeatable RFs is suggested to safeguard model generalizability for wide-spreading clinical utilization.
Collapse
Affiliation(s)
- Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sai-Kit Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zongrui Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xinyang Han
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yuanpeng Zhang
- Department of Medical Informatics, Nantong University, Nantong, Jiangsu, China
| | - Andy Lai-Yin Cheung
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Tin-Ching Chau
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong, China
| | - Sherry Chor-Yi Ng
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong, China
| | - Francis Kar-Ho Lee
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Kwok-Hung Au
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Celia Wai-Yi Yip
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Ying Han
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
18
|
Bologna M, Tenconi C, Corino VDA, Annunziata G, Orlandi E, Calareso G, Pignoli E, Valdagni R, Mainardi LT, Rancati T. Repeatability and reproducibility of MRI-radiomic features: A phantom experiment on a 1.5 T scanner. Med Phys 2023; 50:750-762. [PMID: 36310346 DOI: 10.1002/mp.16054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Aim of this study is to assess the repeatability of radiomic features on magnetic resonance images (MRI) and their stability to variations in time of repetition (TR), time of echo (TE), slice thickness (ST), and pixel spacing (PS) using vegetable phantoms. METHODS The organic phantom was realized using two cucumbers placed inside a cylindrical container, and the analysis was performed using T1-weighted (T1w), T2-weighted (T2w), and diffusion-weighted images. One dataset was used to test the repeatability of the radiomic features, whereas other four datasets were used to test the sensitivity of the different MRI sequences to image acquisition parameters (TR, TE, ST, and PS). Four regions of interest (ROIs) were segmented: two for the central part of each cucumber and two for the external parts. Radiomic features were extracted from each ROI using Pyradiomics. To assess the effect of preprocessing on the reduction of variability, features were extracted both before and after the preprocessing. The coefficient of variation (CV) and intra-class correlation coefficient (ICC) were used to evaluate variability. RESULTS The use of intensity standardization increased the stability for the first-order statistics features. Shape and size features were always stable for all the analyses. Textural features were particularly sensitive to changes in ST and PS, although some increase in stability could be obtained by voxel size resampling. When images underwent image preprocessing, the number of stable features (ICC > 0.75 and mean absolute CV < 0.3) was 33 for apparent diffusion coefficient (ADC), 52 for T1w, and 73 for T2w. CONCLUSIONS The most critical source of variability is related to changes in voxel size (either caused by changes in ST or PS). Preprocessing increases features stability to both test-retest and variation of the image acquisition parameters for all the types of analyzed MRI (T1w, T2w, and ADC), except for ST.
Collapse
Affiliation(s)
- Marco Bologna
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Chiara Tenconi
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.,Department of Medical Physics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valentina D A Corino
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Gaetano Annunziata
- Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ester Orlandi
- Radiation Oncology 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppina Calareso
- Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Emanuele Pignoli
- Department of Medical Physics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Riccardo Valdagni
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.,Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.,Department of Radiation Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca T Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Tiziana Rancati
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| |
Collapse
|
19
|
Prayer F, Watzenböck ML, Heidinger BH, Rainer J, Schmidbauer V, Prosch H, Ulm B, Rubesova E, Prayer D, Kasprian G. Fetal MRI radiomics: non-invasive and reproducible quantification of human lung maturity. Eur Radiol 2023; 33:4205-4213. [PMID: 36604329 PMCID: PMC10182107 DOI: 10.1007/s00330-022-09367-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To assess the reproducibility of radiomics features extracted from the developing lung in repeated in-vivo fetal MRI acquisitions. METHODS In-vivo MRI (1.5 Tesla) scans of 30 fetuses, each including two axial and one coronal T2-weighted sequences of the whole lung with all other acquisition parameters kept constant, were retrospectively identified. Manual segmentation of the lungs was performed using ITK-Snap. One hundred radiomics features were extracted from fetal lung MRI data using Pyradiomics, resulting in 90 datasets. Intra-class correlation coefficients (ICC) of radiomics features were calculated between baseline and repeat axial acquisitions and between baseline axial and coronal acquisitions. RESULTS MRI data of 30 fetuses (12 [40%] females, 18 [60%] males) at a median gestational age of 24 + 5 gestational weeks plus days (GW) (interquartile range [IQR] 3 + 3 GW, range 21 + 1 to 32 + 6 GW) were included. Median ICC of radiomics features between baseline and repeat axial MR acquisitions was 0.92 (IQR 0.13, range 0.33 to 1), with 60 features exhibiting excellent (ICC > 0.9), 27 good (> 0.75-0.9), twelve moderate (0.5-0.75), and one poor (ICC < 0.5) reproducibility. Median ICC of radiomics features between baseline axial and coronal MR acquisitions was 0.79 (IQR 0.15, range 0.2 to 1), with 20 features exhibiting excellent, 47 good, 29 moderate, and four poor reproducibility. CONCLUSION Standardized in-vivo fetal MRI allows reproducible extraction of lung radiomics features. In the future, radiomics analysis may improve diagnostic and prognostic yield of fetal MRI in normal and pathologic lung development. KEY POINTS • Non-invasive fetal MRI acquired using a standardized protocol allows reproducible extraction of radiomics features from the developing lung for objective tissue characterization. • Alteration of imaging plane between fetal MRI acquisitions has a negative impact on lung radiomics feature reproducibility. • Fetal MRI radiomics features reflecting the microstructure and shape of the fetal lung could complement observed-to-expected lung volume in the prediction of postnatal outcome and optimal treatment of fetuses with abnormal lung development in the future.
Collapse
Affiliation(s)
- Florian Prayer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Martin L Watzenböck
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Benedikt H Heidinger
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Julian Rainer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Victor Schmidbauer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Helmut Prosch
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Barbara Ulm
- Department of Obstetrics and Gynecology, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Vienna, Austria
| | - Erika Rubesova
- Department of Pediatric Radiology, Lucile Packard Children's Hospital at Stanford, Stanford University, 725 Welch Road, Stanford, CA, 94305, USA
| | - Daniela Prayer
- Imaging Bellaria, Bellariastrasse 3, 1010, Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
20
|
Mitchell‐Hay RN, Ahearn TS, Murray AD, Waiter GD. Investigation of the Inter- and Intrascanner Reproducibility and Repeatability of Radiomics Features in T1-Weighted Brain MRI. J Magn Reson Imaging 2022; 56:1559-1568. [PMID: 35396777 PMCID: PMC9790235 DOI: 10.1002/jmri.28191] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Radiomics is the high throughput analysis of medical images using computer algorithms, which specifically assess textural features. It has increasingly been proposed as a tool for the development of imaging biomarkers. However, an important acknowledged limitation of radiomics is the lack of reproducibility of features produced. PURPOSE To assess reproducibility and repeatability of radiomics variables in brain MRI through a multivisit, multicenter study. STUDY TYPE Retrospective. POPULATION Fourteen individuals visiting three institutions twice, 10 males with the mean age of 36.3 years and age range 25-51. FIELD STRENGTH 3D T1W inversion recovery on three 1.5-T General Electric scanners. ASSESSMENT Radiomics analysis by a consultant radiologist performed on the T1W images of the whole brain on all visits. All possible radiomics features were generated. STATISTICAL TEST Concordance correlation coefficient (CCC) and dynamic range (DR) for all variables were calculated to assess the test-retest repeatability. Intraclass correlation coefficients (ICCs) were calculated to investigate the reproducibility of features across centers. RESULTS Of 1596 features generated, 57 from center 1, 15 from center 2, and 22 from center 3 had a CCC > 0.9 and DR > 0.9. Eight variables had CCC > 0.9 and DR > 0.9 in all centers. Forty-one variables had an ICC of >0.9. No variables had CCC > 0.9, DR > 0.9, and ICC > 0.9. DATA CONCLUSION Repeatability and reproducibility of variables is a significant limitation of radiomics analysis in 3DT1W brain MRI. Careful selection of radiomic features is required. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Rosalind Nina Mitchell‐Hay
- Department of Radiology, Aberdeen Royal InfirmaryNHS GrampianAberdeenUK,Aberdeen Biomedical Imaging CentreUniversity of AberdeenAberdeenUK
| | - Trevor S. Ahearn
- Department of Radiology, Aberdeen Royal InfirmaryNHS GrampianAberdeenUK
| | - Alison D. Murray
- Aberdeen Biomedical Imaging CentreUniversity of AberdeenAberdeenUK
| | - Gordon D. Waiter
- Aberdeen Biomedical Imaging CentreUniversity of AberdeenAberdeenUK
| |
Collapse
|
21
|
Endorectal ultrasound radiomics in locally advanced rectal cancer patients: despeckling and radiotherapy response prediction using machine learning. ABDOMINAL RADIOLOGY (NEW YORK) 2022; 47:3645-3659. [PMID: 35951085 DOI: 10.1007/s00261-022-03625-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE The current study aimed to evaluate the association of endorectal ultrasound (EUS) radiomics features at different denoising filters based on machine learning algorithms and to predict radiotherapy response in locally advanced rectal cancer (LARC) patients. METHODS The EUS images of forty-three LARC patients, as a predictive biomarker for predicting the treatment response of neoadjuvant chemoradiotherapy (NCRT), were investigated. For despeckling, the EUS images were preprocessed by traditional filters (bilateral, wiener, lee, frost, median, and wavelet filters). The rectal tumors were delineated by two readers separately, and radiomics features were extracted. The least absolute shrinkage and selection operator were used for feature selection. Classifiers including logistic regression (LR), K-nearest neighbor (KNN), support vector machine (SVM), random forest, naive Bayes, and decision tree were trained using stratified fivefold cross-validation for model development. The area under the curve (AUC) of the receiver operating characteristic curve followed by accuracy, precision, sensitivity, and specificity were obtained for model performance assessment. RESULTS The wavelet filter had the best results with means of AUC: 0.83, accuracy: 77.41%, precision: 82.15%, and sensitivity: 79.41%. LR and SVM by having AUC: 0.71 and 0.76; accuracy: 70.0% and 71.5%; precision: 75.0% and 73.0%; sensitivity: 69.8% and 80.2%; and specificity: 70.0% and 60.9% had the highest model's performance, respectively. CONCLUSION This study demonstrated that the EUS-based radiomics model could serve as pretreatment biomarkers in predicting pathologic features of rectal cancer. The wavelet filter and machine learning methods (LR and SVM) had good results on the EUS images of rectal cancer.
Collapse
|
22
|
Spatial heterogeneity of edema region uncovers survival-relevant habitat of Glioblastoma. Eur J Radiol 2022; 154:110423. [DOI: 10.1016/j.ejrad.2022.110423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/16/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022]
|
23
|
An Investigation on Radiomics Feature Handling for HNSCC Staging Classification. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The incidence of Head and Neck Squamous Cell Carcinoma (HNSCC) has been growing in the last few decades. Its diagnosis is usually performed through clinical evaluation and analyzing radiological images, then confirmed by histopathological examination, an invasive and time-consuming operation. The recent advances in the artificial intelligence field are leading to interesting results in the early diagnosis, personalized treatment and monitoring of HNSCC only by analyzing radiological images, without performing a tissue biopsy. The large amount of radiological images and the increasing interest in radiomics approaches can help to develop machine learning (ML) methods to support diagnosis. In this work, we propose an ML method based on the use of radiomics features, extracted from CT and PET images, to classify the disease in terms of pN-Stage, pT-Stage and Overall Stage. After the extraction of radiomics features, a selection step is performed to remove dataset redundancy. Finally, ML methods are employed to complete the classification task. Our pipeline is applied on the “Head-Neck-PET-CT” TCIA open-source dataset, considering a cohort of 201 patients from four different institutions. An AUC of 97%, 83% and 93% in terms of pN-Stage, pT-Stage and Overall Stage classification, respectively, is achieved. The obtained results are promising, showing the potential efficiency of the use of radiomics approaches in staging classification.
Collapse
|
24
|
Verma R, Hill VB, Statsevych V, Bera K, Correa R, Leo P, Ahluwalia M, Madabhushi A, Tiwari P. Stable and Discriminatory Radiomic Features from the Tumor and Its Habitat Associated with Progression-Free Survival in Glioblastoma: A Multi-Institutional Study. AJNR Am J Neuroradiol 2022; 43:1115-1123. [PMID: 36920774 PMCID: PMC9575418 DOI: 10.3174/ajnr.a7591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/13/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Glioblastoma is an aggressive brain tumor, with no validated prognostic biomarkers for survival before surgical resection. Although recent approaches have demonstrated the prognostic ability of tumor habitat (constituting necrotic core, enhancing lesion, T2/FLAIR hyperintensity subcompartments) derived radiomic features for glioblastoma survival on treatment-naive MR imaging scans, radiomic features are known to be sensitive to MR imaging acquisitions across sites and scanners. In this study, we sought to identify the radiomic features that are both stable across sites and discriminatory of poor and improved progression-free survival in glioblastoma tumors. MATERIALS AND METHODS We used 150 treatment-naive glioblastoma MR imaging scans (Gadolinium-T1w, T2w, FLAIR) obtained from 5 sites. For every tumor subcompartment (enhancing tumor, peritumoral FLAIR-hyperintensities, necrosis), a total of 316 three-dimensional radiomic features were extracted. The training cohort constituted studies from 4 sites (n = 93) to select the most stable and discriminatory radiomic features for every tumor subcompartment. These features were used on a hold-out cohort (n = 57) to evaluate their ability to discriminate patients with poor survival from those with improved survival. RESULTS Incorporating the most stable and discriminatory features within a linear discriminant analysis classifier yielded areas under the curve of 0.71, 0.73, and 0.76 on the test set for distinguishing poor and improved survival compared with discriminatory features alone (areas under the curve of 0.65, 0.54, 0.62) from the necrotic core, enhancing tumor, and peritumoral T2/FLAIR hyperintensity, respectively. CONCLUSIONS Incorporating stable and discriminatory radiomic features extracted from tumors and associated habitats across multisite MR imaging sequences may yield robust prognostic classifiers of patient survival in glioblastoma tumors.
Collapse
Affiliation(s)
- R Verma
- From the Department of Biomedical Engineering (R.V., K.B., R.C., P.L.), Case Western Reserve University, Cleveland, Ohio .,Alberta Machine Intelligence Institute (R.V.), Edmonton, Alberta
| | - V B Hill
- Department of Neuroradiology (V.B.H.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - V Statsevych
- Brain Tumor and Neuro-Oncology Center (V.S.), Cleveland Clinic, Cleveland, Ohio
| | - K Bera
- From the Department of Biomedical Engineering (R.V., K.B., R.C., P.L.), Case Western Reserve University, Cleveland, Ohio
| | - R Correa
- From the Department of Biomedical Engineering (R.V., K.B., R.C., P.L.), Case Western Reserve University, Cleveland, Ohio
| | - P Leo
- From the Department of Biomedical Engineering (R.V., K.B., R.C., P.L.), Case Western Reserve University, Cleveland, Ohio
| | - M Ahluwalia
- Miami Cancer Institute (M.A.), Miami, FL and Herbert Wertheim College of Medicine, Florida International University, Florida
| | - A Madabhushi
- Department of Biomedical Engineering (A.M.), Emory University, Atlanta Veterans Administration Medical Center
| | - P Tiwari
- Departments of Radiology and Biomedical Engineering (P.T.), University of Wisconsin Madison, Wisconsin
| |
Collapse
|
25
|
Marfisi D, Tessa C, Marzi C, Del Meglio J, Linsalata S, Borgheresi R, Lilli A, Lazzarini R, Salvatori L, Vignali C, Barucci A, Mascalchi M, Casolo G, Diciotti S, Traino AC, Giannelli M. Image resampling and discretization effect on the estimate of myocardial radiomic features from T1 and T2 mapping in hypertrophic cardiomyopathy. Sci Rep 2022; 12:10186. [PMID: 35715531 PMCID: PMC9205876 DOI: 10.1038/s41598-022-13937-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
Radiomics is emerging as a promising and useful tool in cardiac magnetic resonance (CMR) imaging applications. Accordingly, the purpose of this study was to investigate, for the first time, the effect of image resampling/discretization and filtering on radiomic features estimation from quantitative CMR T1 and T2 mapping. Specifically, T1 and T2 maps of 26 patients with hypertrophic cardiomyopathy (HCM) were used to estimate 98 radiomic features for 7 different resampling voxel sizes (at fixed bin width), 9 different bin widths (at fixed resampling voxel size), and 7 different spatial filters (at fixed resampling voxel size/bin width). While we found a remarkable dependence of myocardial radiomic features from T1 and T2 mapping on image filters, many radiomic features showed a limited sensitivity to resampling voxel size/bin width, in terms of intraclass correlation coefficient (> 0.75) and coefficient of variation (< 30%). The estimate of most textural radiomic features showed a linear significant (p < 0.05) correlation with resampling voxel size/bin width. Overall, radiomic features from T2 maps have proven to be less sensitive to image preprocessing than those from T1 maps, especially when varying bin width. Our results might corroborate the potential of radiomics from T1/T2 mapping in HCM and hopefully in other myocardial diseases.
Collapse
Affiliation(s)
- Daniela Marfisi
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126, Pisa, Italy
| | - Carlo Tessa
- Unit of Radiology, Azienda USL Toscana Nord Ovest, Apuane Hospital, 54100, Massa, Italy
| | - Chiara Marzi
- Institute of Applied Physics "Nello Carrara", Italian National Research Council, 50019, Sesto Fiorentino, Italy
| | - Jacopo Del Meglio
- Unit of Cardiology, Azienda USL Toscana Nord Ovest, Versilia Hospital, 55041, Lido di Camaiore, Italy
| | - Stefania Linsalata
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126, Pisa, Italy
| | - Rita Borgheresi
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126, Pisa, Italy
| | - Alessio Lilli
- Unit of Cardiology, Azienda USL Toscana Nord Ovest, Versilia Hospital, 55041, Lido di Camaiore, Italy
| | - Riccardo Lazzarini
- Unit of Radiology, Azienda USL Toscana Nord Ovest, Versilia Hospital, 55041, Lido di Camaiore, Italy
| | - Luca Salvatori
- Unit of Radiology, Azienda USL Toscana Nord Ovest, Versilia Hospital, 55041, Lido di Camaiore, Italy
| | - Claudio Vignali
- Unit of Radiology, Azienda USL Toscana Nord Ovest, Versilia Hospital, 55041, Lido di Camaiore, Italy
| | - Andrea Barucci
- Institute of Applied Physics "Nello Carrara", Italian National Research Council, 50019, Sesto Fiorentino, Italy
| | - Mario Mascalchi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50121, Florence, Italy
| | - Giancarlo Casolo
- Unit of Cardiology, Azienda USL Toscana Nord Ovest, Versilia Hospital, 55041, Lido di Camaiore, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, 47522, Cesena, Italy
| | - Antonio Claudio Traino
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126, Pisa, Italy
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126, Pisa, Italy.
| |
Collapse
|
26
|
Scalco E, Rizzo G, Mastropietro A. The stability of oncologic MRI radiomic features and the potential role of deep learning: a review. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac60b9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/24/2022] [Indexed: 11/11/2022]
Abstract
Abstract
The use of MRI radiomic models for the diagnosis, prognosis and treatment response prediction of tumors has been increasingly reported in literature. However, its widespread adoption in clinics is hampered by issues related to features stability. In the MRI radiomic workflow, the main factors that affect radiomic features computation can be found in the image acquisition and reconstruction phase, in the image pre-processing steps, and in the segmentation of the region of interest on which radiomic indices are extracted. Deep Neural Networks (DNNs), having shown their potentiality in the medical image processing and analysis field, can be seen as an attractive strategy to partially overcome the issues related to radiomic stability and mitigate their impact. In fact, DNN approaches can be prospectively integrated in the MRI radiomic workflow to improve image quality, obtain accurate and reproducible segmentations and generate standardized images. In this review, DNN methods that can be included in the image processing steps of the radiomic workflow are described and discussed, in the light of a detailed analysis of the literature in the context of MRI radiomic reliability.
Collapse
|
27
|
Saltybaeva N, Tanadini-Lang S, Vuong D, Burgermeister S, Mayinger M, Bink A, Andratschke N, Guckenberger M, Bogowicz M. Robustness of radiomic features in magnetic resonance imaging for patients with glioblastoma: multi-center study. Phys Imaging Radiat Oncol 2022; 22:131-136. [PMID: 35633866 PMCID: PMC9130546 DOI: 10.1016/j.phro.2022.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Background and purpose Radiomics offers great potential in improving diagnosis and treatment for patients with glioblastoma multiforme. However, in order to implement radiomics in clinical routine, the features used for prognostic modelling need to be stable. This comprises significant challenge in multi-center studies. The aim of this study was to evaluate the impact of different image normalization methods on MRI features robustness in multi-center study. Methods Radiomics stability was checked on magnetic resonance images of eleven patients. The images were acquired in two different hospitals using contrast-enhanced T1 sequences. The images were normalized using one of five investigated approaches including grey-level discretization, histogram matching and z-score. Then, radiomic features were extracted and features stability was evaluated using intra-class correlation coefficients. In the second part of the study, improvement in the prognostic performance of features was tested on 60 patients derived from publicly available dataset. Results Depending on the normalization scheme, the percentage of stable features varied from 3.4% to 8%. The histogram matching based on the tumor region showed the highest amount of the stable features (113/1404); while normalization using fixed bin size resulted in 48 stable features. The histogram matching also led to better prognostic value (median c-index increase of 0.065) comparing to non-normalized images. Conclusions MRI normalization plays an important role in radiomics. Appropriate normalization helps to select robust features, which can be used for prognostic modelling in multicenter studies. In our study, histogram matching based on tumor region improved both stability of radiomic features and their prognostic value.
Collapse
|
28
|
Gallivanone F, D'Ambrosio D, Carne I, D'Arcangelo M, Montagna P, Giroletti E, Poggi P, Vellani C, Moro L, Castiglioni I. A tri-modal tissue-equivalent anthropomorphic phantom for PET, CT and multi-parametric MRI radiomics. Phys Med 2022; 98:28-39. [PMID: 35489129 DOI: 10.1016/j.ejmp.2022.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/15/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Radiomics has emerged as an advanced image processing methodology to define quantitative imaging biomarkers for prognosis and prediction of treatment response and outcome. The development of quantitative imaging biomarkers requires careful analysis to define their accuracy, stability and reproducibility through phantom measurements. Few efforts were devoted to develop realistic anthropomorphic phantoms. In this work, we developed a multimodality image phantom suitable for PET, CT and multiparametric MRI imaging. METHODS A tissue-equivalent gel-based mixture was designed and tested for compatibility with different imaging modalities. Calibration measurements allowed to assess gel composition to simulate PET, CT and MRI contrasts of oncological lesions. The characterized gel mixture was used to create realistic synthetic lesions (e.g. lesions with irregular shape and non-uniform image contrast), to be inserted in a standard anthropomorphic phantom. In order to show phantom usefulness, issues related to accuracy, stability and reproducibility of radiomic biomarkers were addressed as proofs-of-concept. RESULTS The procedure for gel preparation was straightforward and the characterized gel mixture allowed to mime simultaneously oncological lesion contrast in CT, PET and MRI imaging. Proofs-of-concept studies suggested that phantom measurements can be customized for specific clinical situations and radiomic protocols. CONCLUSIONS We developed a strategy to manufacture an anthropomorphic, tissue-equivalent, multimodal phantom to be customized on specific radiomics protocols, for addressing specific methodological issues both in mono and multicentric studies.
Collapse
Affiliation(s)
- Francesca Gallivanone
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Milan, Italy.
| | - Daniela D'Ambrosio
- Istituti Clinici Scientifici Maugeri IRCCS, Medical Physics Unit of Pavia Institute, Italy.
| | - Irene Carne
- Istituti Clinici Scientifici Maugeri IRCCS, Medical Physics Unit of Pavia Institute, Italy.
| | | | - Paolo Montagna
- Istituti Clinici Scientifici Maugeri IRCCS, Nuclear Medicine Unit of Pavia Institute, Italy.
| | - Elio Giroletti
- Department of Physics, University of Pavia, Pavia, Italy; National Institute for Nuclear Physics (INFN), Pavia, Italy.
| | - Paolo Poggi
- Istituti Clinici Scientifici Maugeri IRCCS, Diagnostic Imaging Unit of Pavia Institute, Italy.
| | - Cecilia Vellani
- Istituti Clinici Scientifici Maugeri IRCCS, Nuclear Medicine Unit of Pavia Institute, Italy.
| | - Luca Moro
- Istituti Clinici Scientifici Maugeri IRCCS, Medical Physics Unit of Pavia Institute, Italy.
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Milan, Italy; Department of Physics "G. Occhialini", University of Milano - Bicocca, Italy.
| |
Collapse
|
29
|
Xue C, Yuan J, Zhou Y, Wong OL, Cheung KY, Yu SK. Acquisition repeatability of MRI radiomics features in the head and neck: a dual-3D-sequence multi-scan study. Vis Comput Ind Biomed Art 2022; 5:10. [PMID: 35359245 PMCID: PMC8971276 DOI: 10.1186/s42492-022-00106-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/23/2022] [Indexed: 02/08/2023] Open
Abstract
Radiomics has increasingly been investigated as a potential biomarker in quantitative imaging to facilitate personalized diagnosis and treatment of head and neck cancer (HNC), a group of malignancies associated with high heterogeneity. However, the feature reliability of radiomics is a major obstacle to its broad validity and generality in application to the highly heterogeneous head and neck (HN) tissues. In particular, feature repeatability of radiomics in magnetic resonance imaging (MRI) acquisition, which is considered a crucial confounding factor of radiomics feature reliability, is still sparsely investigated. This study prospectively investigated the acquisition repeatability of 93 MRI radiomics features in ten HN tissues of 15 healthy volunteers, aiming for potential magnetic resonance-guided radiotherapy (MRgRT) treatment of HNC. Each subject underwent four MRI acquisitions with MRgRT treatment position and immobilization using two pulse sequences of 3D T1-weighed turbo spin-echo and 3D T2-weighed turbo spin-echo on a 1.5 T MRI simulator. The repeatability of radiomics feature acquisition was evaluated in terms of the intraclass correlation coefficient (ICC), whereas within-subject acquisition variability was evaluated in terms of the coefficient of variation (CV). The results showed that MRI radiomics features exhibited heterogeneous acquisition variability and uncertainty dependent on feature types, tissues, and pulse sequences. Only a small fraction of features showed excellent acquisition repeatability (ICC > 0.9) and low within-subject variability. Multiple MRI scans improved the accuracy and confidence of the identification of reliable features concerning MRI acquisition compared to simple test-retest repeated scans. This study contributes to the literature on the reliability of radiomics features with respect to MRI acquisition and the selection of reliable radiomics features for use in modeling in future HNC MRgRT applications.
Collapse
Affiliation(s)
- Cindy Xue
- Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Jing Yuan
- Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China.
| | - Yihang Zhou
- Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Oi Lei Wong
- Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Kin Yin Cheung
- Medical Physics Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Siu Ki Yu
- Medical Physics Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| |
Collapse
|
30
|
Hosseini SA, Shiri I, Hajianfar G, Bahadorzade B, Ghafarian P, Zaidi H, Ay MR. Synergistic impact of motion and acquisition/reconstruction parameters on 18 F-FDG PET radiomic features in non-small cell lung cancer: phantom and clinical studies. Med Phys 2022; 49:3783-3796. [PMID: 35338722 PMCID: PMC9322423 DOI: 10.1002/mp.15615] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives This study is aimed at examining the synergistic impact of motion and acquisition/reconstruction parameters on 18F‐FDG PET image radiomic features in non‐small cell lung cancer (NSCLC) patients, and investigating the robustness of features performance in differentiating NSCLC histopathology subtypes. Methods An in‐house developed thoracic phantom incorporating lesions with different sizes was used with different reconstruction settings, including various reconstruction algorithms, number of subsets and iterations, full‐width at half‐maximum of post‐reconstruction smoothing filter and acquisition parameters, including injected activity and test–retest with and without motion simulation. To simulate motion, a special motor was manufactured to simulate respiratory motion based on a normal patient in two directions. The lesions were delineated semi‐automatically to extract 174 radiomic features. All radiomic features were categorized according to the coefficient of variation (COV) to select robust features. A cohort consisting of 40 NSCLC patients with adenocarcinoma (n = 20) and squamous cell carcinoma (n = 20) was retrospectively analyzed. Statistical analysis was performed to discriminate robust features in differentiating histopathology subtypes of NSCLC lesions. Results Overall, 29% of radiomic features showed a COV ≤5% against motion. Forty‐five percent and 76% of the features showed a COV ≤ 5% against the test–retest with and without motion in large lesions, respectively. Thirty‐three percent and 45% of the features showed a COV ≤ 5% against different reconstruction parameters with and without motion, respectively. For NSCLC histopathological subtype differentiation, statistical analysis showed that 31 features were significant (p‐value < 0.05). Two out of the 31 significant features, namely, the joint entropy of GLCM (AUC = 0.71, COV = 0.019) and median absolute deviation of intensity histogram (AUC = 0.7, COV = 0.046), were robust against the motion (same reconstruction setting). Conclusions Motion, acquisition, and reconstruction parameters significantly impact radiomic features, just as their synergies. Radiomic features with high predictive performance (statistically significant) in differentiating histopathological subtype of NSCLC may be eliminated due to non‐reproducibility.
Collapse
Affiliation(s)
- Seyyed Ali Hosseini
- Department of Medical physics and biomedical engineering, Tehran University of medical sciences, Tehran, Iran.,Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4, Switzerland
| | - Ghasem Hajianfar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | | | - Pardis Ghafarian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,PET/CT and cyclotron center, Masih Daneshvari hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4, Switzerland.,Geneva University Neurocenter, Geneva University, CH-1205, Geneva, Switzerland.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, Netherlands.,Department of Nuclear Medicine, University of Southern Denmark, DK-500, Odense, Denmark
| | - Mohammad Reza Ay
- Department of Medical physics and biomedical engineering, Tehran University of medical sciences, Tehran, Iran.,Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Nowakowski A, Lahijanian Z, Panet-Raymond V, Siegel PM, Petrecca K, Maleki F, Dankner M. Radiomics as an emerging tool in the management of brain metastases. Neurooncol Adv 2022; 4:vdac141. [PMID: 36284932 PMCID: PMC9583687 DOI: 10.1093/noajnl/vdac141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Brain metastases (BM) are associated with significant morbidity and mortality in patients with advanced cancer. Despite significant advances in surgical, radiation, and systemic therapy in recent years, the median overall survival of patients with BM is less than 1 year. The acquisition of medical images, such as computed tomography (CT) and magnetic resonance imaging (MRI), is critical for the diagnosis and stratification of patients to appropriate treatments. Radiomic analyses have the potential to improve the standard of care for patients with BM by applying artificial intelligence (AI) with already acquired medical images to predict clinical outcomes and direct the personalized care of BM patients. Herein, we outline the existing literature applying radiomics for the clinical management of BM. This includes predicting patient response to radiotherapy and identifying radiation necrosis, performing virtual biopsies to predict tumor mutation status, and determining the cancer of origin in brain tumors identified via imaging. With further development, radiomics has the potential to aid in BM patient stratification while circumventing the need for invasive tissue sampling, particularly for patients not eligible for surgical resection.
Collapse
Affiliation(s)
- Alexander Nowakowski
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Québec, Canada
| | - Zubin Lahijanian
- McGill University Health Centre, Department of Diagnostic Radiology, McGill University, Montreal, Québec, Canada
| | - Valerie Panet-Raymond
- McGill University Health Centre, Department of Diagnostic Radiology, McGill University, Montreal, Québec, Canada
| | - Peter M Siegel
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Québec, Canada
| | - Kevin Petrecca
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada
| | - Farhad Maleki
- Department of Computer Science, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Dankner
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Québec, Canada
| |
Collapse
|
32
|
Ericsson-Szecsenyi R, Zhang G, Redler G, Feygelman V, Rosenberg S, Latifi K, Ceberg C, Moros EG. Robustness Assessment of Images From a 0.35T Scanner of an Integrated MRI-Linac: Characterization of Radiomics Features in Phantom and Patient Data. Technol Cancer Res Treat 2022; 21:15330338221099113. [PMID: 35521966 PMCID: PMC9083059 DOI: 10.1177/15330338221099113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Purpose: Radiomics entails the extraction of quantitative imaging biomarkers (or radiomics features) hypothesized to provide additional pathophysiological and/or clinical information compared to qualitative visual observation and interpretation. This retrospective study explores the variability of radiomics features extracted from images acquired with the 0.35 T scanner of an integrated MRI-Linac. We hypothesized we would be able to identify features with high repeatability and reproducibility over various imaging conditions using phantom and patient imaging studies. We also compared findings from the literature relevant to our results. Methods: Eleven scans of a Magphan® RT phantom over 13 months and 11 scans of a ViewRay Daily QA phantom over 11 days constituted the phantom data. Patient datasets included 50 images from ten anonymized stereotactic body radiation therapy (SBRT) pancreatic cancer patients (50 Gy in 5 fractions). A True Fast Imaging with Steady-State Free Precession (TRUFI) pulse sequence was selected, using a voxel resolution of 1.5 mm × 1.5 mm × 1.5 mm and 1.5 mm × 1.5 mm × 3.0 mm for phantom and patient data, respectively. A total of 1087 shape-based, first, second, and higher order features were extracted followed by robustness analysis. Robustness was assessed with the Coefficient of Variation (CoV < 5%). Results: We identified 130 robust features across the datasets. Robust features were found within each category, except for 2 second-order sub-groups, namely, Gray Level Size Zone Matrix (GLSZM) and Neighborhood Gray Tone Difference Matrix (NGTDM). Additionally, several robust features agreed with findings from other stability assessments or predictive performance studies in the literature. Conclusion: We verified the stability of the 0.35 T scanner of an integrated MRI-Linac for longitudinal radiomics phantom studies and identified robust features over various imaging conditions. We conclude that phantom measurements can be used to identify robust radiomics features. More stability assessment research is warranted.
Collapse
Affiliation(s)
| | - Geoffrey Zhang
- Radiation Oncology Department, 25301H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gage Redler
- Radiation Oncology Department, 25301H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Vladimir Feygelman
- Radiation Oncology Department, 25301H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Stephen Rosenberg
- Radiation Oncology Department, 25301H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kujtim Latifi
- Radiation Oncology Department, 25301H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Crister Ceberg
- Department of Medical Radiation Physics, Clinical Sciences, 5193Lund University, Lund, Sweden
| | - Eduardo G Moros
- Radiation Oncology Department, 25301H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
33
|
Amini M, Nazari M, Shiri I, Hajianfar G, Deevband MR, Abdollahi H, Arabi H, Rahmim A, Zaidi H. Multi-level multi-modality (PET and CT) fusion radiomics: prognostic modeling for non-small cell lung carcinoma. Phys Med Biol 2021; 66. [PMID: 34544053 DOI: 10.1088/1361-6560/ac287d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/20/2021] [Indexed: 12/23/2022]
Abstract
We developed multi-modality radiomic models by integrating information extracted from18F-FDG PET and CT images using feature- and image-level fusions, toward improved prognosis for non-small cell lung carcinoma (NSCLC) patients. Two independent cohorts of NSCLC patients from two institutions (87 and 95 patients) were cycled as training and testing datasets. Fusion approaches were applied at two levels, namely feature- and image-levels. For feature-level fusion, radiomic features were extracted individually from CT and PET images and concatenated. Alternatively, radiomic features extracted separately from CT and PET images were averaged. For image-level fusion, wavelet fusion was utilized and tuned with two parameters, namely CT weight and Wavelet Band Pass Filtering Ratio. Clinical and combined clinical + radiomic models were developed. Gray level discretization was performed at 3 different levels (16, 32 and 64) and 225 radiomics features were extracted. Overall survival (OS) was considered as the endpoint. For feature reduction, correlated (redundant) features were excluded using Spearman's correlation, and best combination of top ten features with highest concordance-indices (via univariate Cox model) were selected in each model for further multivariate Cox model. Moreover, prognostic score's median, obtained from the training cohort, was used intact in the testing cohort as a threshold to classify patients into low- versus high-risk groups, and log-rank test was applied to assess differences between the Kaplan-Meier curves. Overall, while models based on feature-level fusion strategy showed limited superiority over single-modalities, image-level fusion strategy significantly outperformed both single-modality and feature-level fusion strategies. As such, the clinical model (C-index = 0.656) outperformed all models from single-modality and feature-level strategies, but was outperformed by certain models from image-level fusion strategy. Our findings indicated that image-level fusion multi-modality radiomics models outperformed single-modality, feature-level fusion, and clinical models for OS prediction of NSCLC patients.
Collapse
Affiliation(s)
- Mehdi Amini
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1205 Geneva, Switzerland.,Department of Biomedical Engineering and Medical Physics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Nazari
- Department of Biomedical Engineering and Medical Physics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1205 Geneva, Switzerland
| | - Ghasem Hajianfar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Reza Deevband
- Department of Biomedical Engineering and Medical Physics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Abdollahi
- Department of Radiologic Technology, School of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1205 Geneva, Switzerland
| | - Arman Rahmim
- Departments of Radiology and Physics, University of British Columbia, Vancouver BC, Canada.,Department of Integrative Oncology, BC Cancer Research Institute, Vancouver BC, Canada
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1205 Geneva, Switzerland.,Geneva University Neurocenter, Geneva University, CH-1211 Geneva, Switzerland.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
34
|
Xue C, Yuan J, Lo GG, Chang ATY, Poon DMC, Wong OL, Zhou Y, Chu WCW. Radiomics feature reliability assessed by intraclass correlation coefficient: a systematic review. Quant Imaging Med Surg 2021; 11:4431-4460. [PMID: 34603997 DOI: 10.21037/qims-21-86] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Radiomics research is rapidly growing in recent years, but more concerns on radiomics reliability are also raised. This review attempts to update and overview the current status of radiomics reliability research in the ever expanding medical literature from the perspective of a single reliability metric of intraclass correlation coefficient (ICC). To conduct this systematic review, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. After literature search and selection, a total of 481 radiomics studies using CT, PET, or MRI, covering a wide range of subject and disease types, were included for review. In these highly heterogeneous studies, feature reliability to image segmentation was much more investigated than reliability to other factors, such as image acquisition, reconstruction, post-processing, and feature quantification. The reported ICCs also suggested high radiomics feature reliability to image segmentation. Image acquisition was found to introduce much more feature variability than image segmentation, in particular for MRI, based on the reported ICC values. Image post-processing and feature quantification yielded different levels of radiomics reliability and might be used to mitigate image acquisition-induced variability. Some common flaws and pitfalls in ICC use were identified, and suggestions on better ICC use were given. Due to the extremely high study heterogeneities and possible risks of bias, the degree of radiomics feature reliability that has been achieved could not yet be safely synthesized or derived in this review. More future researches on radiomics reliability are warranted.
Collapse
Affiliation(s)
- Cindy Xue
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China.,Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jing Yuan
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Gladys G Lo
- Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Amy T Y Chang
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Darren M C Poon
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Oi Lei Wong
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Yihang Zhou
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Winnie C W Chu
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
35
|
Khodabakhshi Z, Amini M, Mostafaei S, Haddadi Avval A, Nazari M, Oveisi M, Shiri I, Zaidi H. Overall Survival Prediction in Renal Cell Carcinoma Patients Using Computed Tomography Radiomic and Clinical Information. J Digit Imaging 2021. [PMID: 34382117 DOI: 10.1007/s10278-021-00500-y/figures/5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
The aim of this work is to investigate the applicability of radiomic features alone and in combination with clinical information for the prediction of renal cell carcinoma (RCC) patients' overall survival after partial or radical nephrectomy. Clinical studies of 210 RCC patients from The Cancer Imaging Archive (TCIA) who underwent either partial or radical nephrectomy were included in this study. Regions of interest (ROIs) were manually defined on CT images. A total of 225 radiomic features were extracted and analyzed along with the 59 clinical features. An elastic net penalized Cox regression was used for feature selection. Accelerated failure time (AFT) with the shared frailty model was used to determine the effects of the selected features on the overall survival time. Eleven radiomic and twelve clinical features were selected based on their non-zero coefficients. Tumor grade, tumor malignancy, and pathology t-stage were the most significant predictors of overall survival (OS) among the clinical features (p < 0.002, < 0.02, and < 0.018, respectively). The most significant predictors of OS among the selected radiomic features were flatness, area density, and median (p < 0.02, < 0.02, and < 0.05, respectively). Along with important clinical features, such as tumor heterogeneity and tumor grade, imaging biomarkers such as tumor flatness, area density, and median are significantly correlated with OS of RCC patients.
Collapse
Affiliation(s)
- Zahra Khodabakhshi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Mehdi Amini
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland
| | - Shayan Mostafaei
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Epidemiology and Biostatistics Unit, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mostafa Nazari
- Department of Biomedical Engineering and Medical Physics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Oveisi
- Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine , Kings College London, London, UK
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland.
- Geneva University Neurocenter, Geneva University, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
36
|
Song D, Zhai Y, Tao X, Zhao C, Wang M, Wei X. Prediction of blood supply in vestibular schwannomas using radiomics machine learning classifiers. Sci Rep 2021; 11:18872. [PMID: 34556732 PMCID: PMC8460834 DOI: 10.1038/s41598-021-97865-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023] Open
Abstract
This study attempts to explore the radiomics-based features of multi-parametric magnetic resonance imaging (MRI) and construct a machine-learning model to predict the blood supply in vestibular schwannoma preoperatively. By retrospectively collecting the preoperative MRI data of patients with vestibular schwannoma, patients were divided into poor and rich blood supply groups according to the intraoperative recording. Patients were divided into training and test cohorts (2:1), randomly. Stable features were retained by intra-group correlation coefficients (ICCs). Four feature selection methods and four classification methods were evaluated to construct favorable radiomics classifiers. The mean area under the curve (AUC) obtained in the test set for different combinations of feature selecting methods and classifiers was calculated separately to compare the performance of the models. Obtain and compare the best combination results with the performance of differentiation through visual observation in clinical diagnosis. 191 patients were included in this study. 3918 stable features were extracted from each patient. Least absolute shrinkage and selection operator (LASSO) and logistic regression model was selected as the optimal combinations after comparing the AUC calculated by models, which predicted the blood supply of vestibular schwannoma by K-Fold cross-validation method with a mean AUC = 0.88 and F1-score = 0.83. Radiomics machine-learning classifiers can accurately predict the blood supply of vestibular schwannoma by preoperative MRI data.
Collapse
Affiliation(s)
- Dixiang Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yixuan Zhai
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xiaogang Tao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Chao Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Minkai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xinting Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
37
|
Bouchareb Y, Moradi Khaniabadi P, Al Kindi F, Al Dhuhli H, Shiri I, Zaidi H, Rahmim A. Artificial intelligence-driven assessment of radiological images for COVID-19. Comput Biol Med 2021; 136:104665. [PMID: 34343890 PMCID: PMC8291996 DOI: 10.1016/j.compbiomed.2021.104665] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/11/2021] [Accepted: 07/17/2021] [Indexed: 12/24/2022]
Abstract
Artificial Intelligence (AI) methods have significant potential for diagnosis and prognosis of COVID-19 infections. Rapid identification of COVID-19 and its severity in individual patients is expected to enable better control of the disease individually and at-large. There has been remarkable interest by the scientific community in using imaging biomarkers to improve detection and management of COVID-19. Exploratory tools such as AI-based models may help explain the complex biological mechanisms and provide better understanding of the underlying pathophysiological processes. The present review focuses on AI-based COVID-19 studies as applies to chest x-ray (CXR) and computed tomography (CT) imaging modalities, and the associated challenges. Explicit radiomics, deep learning methods, and hybrid methods that combine both deep learning and explicit radiomics have the potential to enhance the ability and usefulness of radiological images to assist clinicians in the current COVID-19 pandemic. The aims of this review are: first, to outline COVID-19 AI-analysis workflows, including acquisition of data, feature selection, segmentation methods, feature extraction, and multi-variate model development and validation as appropriate for AI-based COVID-19 studies. Secondly, existing limitations of AI-based COVID-19 analyses are discussed, highlighting potential improvements that can be made. Finally, the impact of AI and radiomics methods and the associated clinical outcomes are summarized. In this review, pipelines that include the key steps for AI-based COVID-19 signatures identification are elaborated. Sample size, non-standard imaging protocols, segmentation, availability of public COVID-19 databases, combination of imaging and clinical information and full clinical validation remain major limitations and challenges. We conclude that AI-based assessment of CXR and CT images has significant potential as a viable pathway for the diagnosis, follow-up and prognosis of COVID-19.
Collapse
Affiliation(s)
- Yassine Bouchareb
- Department of Radiology and Molecular Imaging, College of Medicine and Health Science, Sultan Qaboos University, PO. Box 35, Al Khod, Muscat, 123, Oman.
| | - Pegah Moradi Khaniabadi
- Department of Radiology and Molecular Imaging, College of Medicine and Health Science, Sultan Qaboos University, PO. Box 35, Al Khod, Muscat, 123, Oman.
| | | | - Humoud Al Dhuhli
- Department of Radiology and Molecular Imaging, College of Medicine and Health Science, Sultan Qaboos University, PO. Box 35, Al Khod, Muscat, 123, Oman
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland; Geneva University Neurocenter, Geneva University, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| | - Arman Rahmim
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| |
Collapse
|
38
|
Repeatability of image features extracted from FET PET in application to post-surgical glioblastoma assessment. Phys Eng Sci Med 2021; 44:1131-1140. [PMID: 34436751 DOI: 10.1007/s13246-021-01049-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/18/2021] [Indexed: 11/27/2022]
Abstract
Positron emission tomography (PET) imaging using the amino acid tracer O-[2-(18F)fluoroethyl]-L-tyrosine (FET) has gained increased popularity within the past decade in the management of glioblastoma (GBM). Radiomics features extracted from FET PET images may be sensitive to variations when imaging at multiple time points. It is therefore necessary to assess feature robustness to test-retest imaging. Eight patients with histologically confirmed GBM that had undergone post-surgical test-retest FET PET imaging were recruited. In total, 1578 radiomic features were extracted from biological tumour volumes (BTVs) delineated using a semi-automatic contouring method. Feature repeatability was assessed using the intraclass correlation coefficient (ICC). The effect of both bin width and filter choice on feature repeatability was also investigated. 59/106 (55.7%) features from the original image and 843/1472 (57.3%) features from filtered images had an ICC ≥ 0.85. Shape and first order features were most stable. Choice of bin width showed minimal impact on features defined as stable. The Laplacian of Gaussian (LoG, σ = 5 mm) and Wavelet filters (HLL and LHL) significantly improved feature repeatability (p ≪ 0.0001, p = 0.003, p = 0.002, respectively). Correlation of textural features with tumour volume was reported for transparency. FET PET radiomic features extracted from post-surgical images of GBM patients that are robust to test-retest imaging were identified. An investigation with a larger dataset is warranted to validate the findings in this study.
Collapse
|
39
|
Joo L, Jung SC, Lee H, Park SY, Kim M, Park JE, Choi KM. Stability of MRI radiomic features according to various imaging parameters in fast scanned T2-FLAIR for acute ischemic stroke patients. Sci Rep 2021; 11:17143. [PMID: 34433881 PMCID: PMC8387477 DOI: 10.1038/s41598-021-96621-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
From May 2015 to June 2016, data on 296 patients undergoing 1.5-Tesla MRI for symptoms of acute ischemic stroke were retrospectively collected. Conventional, echo-planar imaging (EPI) and echo train length (ETL)-T2-FLAIR were simultaneously obtained in 118 patients (first group), and conventional, ETL-, and repetition time (TR)-T2-FLAIR were simultaneously obtained in 178 patients (second group). A total of 595 radiomics features were extracted from one region-of-interest (ROI) reflecting the acute and chronic ischemic hyperintensity, and concordance correlation coefficients (CCC) of the radiomics features were calculated between the fast scanned and conventional T2-FLAIR for paired patients (1st group and 2nd group). Stabilities of the radiomics features were compared with the proportions of features with a CCC higher than 0.85, which were considered to be stable in the fast scanned T2-FLAIR. EPI-T2-FLAIR showed higher proportions of stable features than ETL-T2-FLAIR, and TR-T2-FLAIR also showed higher proportions of stable features than ETL-T2-FLAIR, both in acute and chronic ischemic hyperintensities of whole- and intersection masks (p < .002). Radiomics features in fast scanned T2-FLAIR showed variable stabilities according to the sequences compared with conventional T2-FLAIR. Therefore, radiomics features may be used cautiously in applications for feature analysis as their stability and robustness can be variable.
Collapse
Affiliation(s)
- Leehi Joo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, Seoul, 138-736, Republic of Korea
| | - Seung Chai Jung
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, Seoul, 138-736, Republic of Korea.
| | - Hyunna Lee
- Bigdata Research Center, Asan Institute for Life Science, Asan Medical Center, 88 Olympic-ro 43-Gil, Songpa-Gu, Seoul, 15505, Republic of Korea.
| | - Seo Young Park
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, Seoul, 138-736, Korea
| | - Minjae Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, Seoul, 138-736, Republic of Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, Seoul, 138-736, Republic of Korea
| | - Keum Mi Choi
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, Seoul, 138-736, Republic of Korea
| |
Collapse
|
40
|
Overall Survival Prediction in Renal Cell Carcinoma Patients Using Computed Tomography Radiomic and Clinical Information. J Digit Imaging 2021; 34:1086-1098. [PMID: 34382117 PMCID: PMC8554934 DOI: 10.1007/s10278-021-00500-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 01/06/2023] Open
Abstract
The aim of this work is to investigate the applicability of radiomic features alone and in combination with clinical information for the prediction of renal cell carcinoma (RCC) patients’ overall survival after partial or radical nephrectomy. Clinical studies of 210 RCC patients from The Cancer Imaging Archive (TCIA) who underwent either partial or radical nephrectomy were included in this study. Regions of interest (ROIs) were manually defined on CT images. A total of 225 radiomic features were extracted and analyzed along with the 59 clinical features. An elastic net penalized Cox regression was used for feature selection. Accelerated failure time (AFT) with the shared frailty model was used to determine the effects of the selected features on the overall survival time. Eleven radiomic and twelve clinical features were selected based on their non-zero coefficients. Tumor grade, tumor malignancy, and pathology t-stage were the most significant predictors of overall survival (OS) among the clinical features (p < 0.002, < 0.02, and < 0.018, respectively). The most significant predictors of OS among the selected radiomic features were flatness, area density, and median (p < 0.02, < 0.02, and < 0.05, respectively). Along with important clinical features, such as tumor heterogeneity and tumor grade, imaging biomarkers such as tumor flatness, area density, and median are significantly correlated with OS of RCC patients.
Collapse
|
41
|
Khodabakhshi Z, Mostafaei S, Arabi H, Oveisi M, Shiri I, Zaidi H. Non-small cell lung carcinoma histopathological subtype phenotyping using high-dimensional multinomial multiclass CT radiomics signature. Comput Biol Med 2021; 136:104752. [PMID: 34391002 DOI: 10.1016/j.compbiomed.2021.104752] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to identify the most important features and assess their discriminative power in the classification of the subtypes of NSCLC. METHODS This study involved 354 pathologically proven NSCLC patients including 134 squamous cell carcinoma (SCC), 110 large cell carcinoma (LCC), 62 not other specified (NOS), and 48 adenocarcinoma (ADC). In total, 1433 radiomics features were extracted from 3D volumes of interest drawn on the malignant lesion identified on CT images. Wrapper algorithm and multivariate adaptive regression splines were implemented to identify the most relevant/discriminative features. A multivariable multinomial logistic regression was employed with 1000 bootstrapping samples based on the selected features to classify four main subtypes of NSCLC. RESULTS The results revealed that the texture features, specifically gray level size zone matrix features (GLSZM), were the significant indicators of NSCLC subtypes. The optimized classifier achieved an average precision, recall, F1-score, and accuracy of 0.710, 0.703, 0.706, and 0.865, respectively, based on the selected features by the wrapper algorithm. CONCLUSIONS Our CT radiomics approach demonstrated impressive potential for the classification of the four main histological subtypes of NSCLC, It is anticipated that CT radiomics could be useful in treatment planning and precision medicine.
Collapse
Affiliation(s)
- Zahra Khodabakhshi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Shayan Mostafaei
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran; Epidemiology and Biostatistics Unit, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland
| | - Mehrdad Oveisi
- Department of Computer Science, University of British Columbia, Vancouver BC, Canada; Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland; Geneva University Neurocenter, Geneva University, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
42
|
Priya S, Aggarwal T, Ward C, Bathla G, Jacob M, Gerke A, Hoffman EA, Nagpal P. Radiomics side experiments and DAFIT approach in identifying pulmonary hypertension using Cardiac MRI derived radiomics based machine learning models. Sci Rep 2021; 11:12686. [PMID: 34135418 PMCID: PMC8209219 DOI: 10.1038/s41598-021-92155-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Side experiments are performed on radiomics models to improve their reproducibility. We measure the impact of myocardial masks, radiomic side experiments and data augmentation for information transfer (DAFIT) approach to differentiate patients with and without pulmonary hypertension (PH) using cardiac MRI (CMRI) derived radiomics. Feature extraction was performed from the left ventricle (LV) and right ventricle (RV) myocardial masks using CMRI in 82 patients (42 PH and 40 controls). Various side study experiments were evaluated: Original data without and with intraclass correlation (ICC) feature-filtering and DAFIT approach (without and with ICC feature-filtering). Multiple machine learning and feature selection strategies were evaluated. Primary analysis included all PH patients with subgroup analysis including PH patients with preserved LVEF (≥ 50%). For both primary and subgroup analysis, DAFIT approach without feature-filtering was the highest performer (AUC 0.957-0.958). ICC approaches showed poor performance compared to DAFIT approach. The performance of combined LV and RV masks was superior to individual masks alone. There was variation in top performing models across all approaches (AUC 0.862-0.958). DAFIT approach with features from combined LV and RV masks provide superior performance with poor performance of feature filtering approaches. Model performance varies based upon the feature selection and model combination.
Collapse
Affiliation(s)
- Sarv Priya
- Department of Radiology, University of Iowa Carver College of Medicine, 200 Hawkins Dr, Iowa City, IA, 52242, USA.
| | - Tanya Aggarwal
- Department of Family Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Caitlin Ward
- Department of Biostatistics, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Girish Bathla
- Department of Radiology, University of Iowa Carver College of Medicine, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Mathews Jacob
- Department of Electrical Engineering, University of Iowa College of Engineering, Iowa City, IA, USA
| | - Alicia Gerke
- Department of Pulmonary Medicine, University of Iowa Carver College of Medicine, Iowa City, , IA, USA
| | - Eric A Hoffman
- Department of Radiology, University of Iowa Carver College of Medicine, 200 Hawkins Dr, Iowa City, IA, 52242, USA
- Roy J. Carver Department of Biomedical Engineering, University of Iowa College of Engineering, Iowa City, IA, USA
| | - Prashant Nagpal
- Department of Radiology, University of Iowa Carver College of Medicine, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| |
Collapse
|
43
|
Impact of Preprocessing and Harmonization Methods on the Removal of Scanner Effects in Brain MRI Radiomic Features. Cancers (Basel) 2021; 13:cancers13123000. [PMID: 34203896 PMCID: PMC8232807 DOI: 10.3390/cancers13123000] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary As a rapid-development research field, radiomics-based analysis has been applied to many clinical problems. However, the reproducibility of the radiomics studies remain challenging especially when data suffers from scanner effects, a kind of non-biological variations introduced by different image acquiring settings. This study aims to investigate how the image preprocessing methods (N4 bias field correction and image resampling) and the harmonization methods (intensity normalization methods working on images and ComBat method working on radiomic features) help to remove the scanner effects and improve the radiomics reproducibility in brain MRI radiomics. Abstract In brain MRI radiomics studies, the non-biological variations introduced by different image acquisition settings, namely scanner effects, affect the reliability and reproducibility of the radiomics results. This paper assesses how the preprocessing methods (including N4 bias field correction and image resampling) and the harmonization methods (either the six intensity normalization methods working on brain MRI images or the ComBat method working on radiomic features) help to remove the scanner effects and improve the radiomic feature reproducibility in brain MRI radiomics. The analyses were based on in vitro datasets (homogeneous and heterogeneous phantom data) and in vivo datasets (brain MRI images collected from healthy volunteers and clinical patients with brain tumors). The results show that the ComBat method is essential and vital to remove scanner effects in brain MRI radiomic studies. Moreover, the intensity normalization methods, while not able to remove scanner effects at the radiomic feature level, still yield more comparable MRI images and improve the robustness of the harmonized features to the choice among ComBat implementations.
Collapse
|
44
|
Shayesteh S, Nazari M, Salahshour A, Sandoughdaran S, Hajianfar G, Khateri M, Yaghobi Joybari A, Jozian F, Fatehi Feyzabad SH, Arabi H, Shiri I, Zaidi H. Treatment response prediction using MRI-based pre-, post-, and delta-radiomic features and machine learning algorithms in colorectal cancer. Med Phys 2021; 48:3691-3701. [PMID: 33894058 DOI: 10.1002/mp.14896] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/07/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES We evaluate the feasibility of treatment response prediction using MRI-based pre-, post-, and delta-radiomic features for locally advanced rectal cancer (LARC) patients treated by neoadjuvant chemoradiation therapy (nCRT). MATERIALS AND METHODS This retrospective study included 53 LARC patients divided into a training set (Center#1, n = 36) and external validation set (Center#2, n = 17). T2-weighted (T2W) MRI was acquired for all patients, 2 weeks before and 4 weeks after nCRT. Ninety-six radiomic features, including intensity, morphological and second- and high-order texture features were extracted from segmented 3D volumes from T2W MRI. All features were harmonized using ComBat algorithm. Max-Relevance-Min-Redundancy (MRMR) algorithm was used as feature selector and k-nearest neighbors (KNN), Naïve Bayes (NB), Random forests (RF), and eXtreme Gradient Boosting (XGB) algorithms were used as classifiers. The evaluation was performed using the area under the receiver operator characteristic (ROC) curve (AUC), sensitivity, specificity and accuracy. RESULTS In univariate analysis, the highest AUC in pre-, post-, and delta-radiomic features were 0.78, 0.70, and 0.71, for GLCM_IMC1, shape (surface area and volume) and GLSZM_GLNU features, respectively. In multivariate analysis, RF and KNN achieved the highest AUC (0.85 ± 0.04 and 0.81 ± 0.14, respectively) among pre- and post-treatment features. The highest AUC was achieved for the delta-radiomic-based RF model (0.96 ± 0.01) followed by NB (0.96 ± 0.04). Overall. Delta-radiomics model, outperformed both pre- and post-treatment features (P-value <0.05). CONCLUSION Multivariate analysis of delta-radiomic T2W MRI features using machine learning algorithms could potentially be used for response prediction in LARC patients undergoing nCRT. We also observed that multivariate analysis of delta-radiomic features using RF classifiers can be used as powerful biomarkers for response prediction in LARC.
Collapse
Affiliation(s)
- Sajad Shayesteh
- Department of Physiology, Pharmacology and Medical Physics, Alborz University of Medical Sciences, Karaj, Iran
| | - Mostafa Nazari
- Department of Biomedical Engineering and Medical Physics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Salahshour
- Department of Radiology, Alborz University of Medical Sciences, Karaj, Iran
| | - Saleh Sandoughdaran
- Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Hajianfar
- Rajaie Cardiovascular, Medical & Research Centre, Iran University of Medical Science, Tehran, Iran
| | - Maziar Khateri
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Yaghobi Joybari
- Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Jozian
- Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland.,Geneva University Neurocenter, Geneva University, Geneva, Switzerland.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
45
|
Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI. Sci Rep 2021; 11:9974. [PMID: 33976264 PMCID: PMC8113258 DOI: 10.1038/s41598-021-89218-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/22/2021] [Indexed: 02/03/2023] Open
Abstract
Glioblastoma remains the most devastating brain tumor despite optimal treatment, because of the high rate of recurrence. Distant recurrence has distinct genomic alterations compared to local recurrence, which requires different treatment planning both in clinical practice and trials. To date, perfusion-weighted MRI has revealed that perfusional characteristics of tumor are associated with prognosis. However, not much research has focused on recurrence patterns in glioblastoma: namely, local and distant recurrence. Here, we propose two different neural network models to predict the recurrence patterns in glioblastoma that utilizes high-dimensional radiomic profiles based on perfusion MRI: area under the curve (AUC) (95% confidence interval), 0.969 (0.903-1.000) for local recurrence; 0.864 (0.726-0.976) for distant recurrence for each patient in the validation set. This creates an opportunity to provide personalized medicine in contrast to studies investigating only group differences. Moreover, interpretable deep learning identified that salient radiomic features for each recurrence pattern are related to perfusional intratumoral heterogeneity. We also demonstrated that the combined salient radiomic features, or "radiomic risk score", increased risk of recurrence/progression (hazard ratio, 1.61; p = 0.03) in multivariate Cox regression on progression-free survival.
Collapse
|
46
|
Le NQK, Hung TNK, Do DT, Lam LHT, Dang LH, Huynh TT. Radiomics-based machine learning model for efficiently classifying transcriptome subtypes in glioblastoma patients from MRI. Comput Biol Med 2021; 132:104320. [PMID: 33735760 DOI: 10.1016/j.compbiomed.2021.104320] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND In the field of glioma, transcriptome subtypes have been considered as an important diagnostic and prognostic biomarker that may help improve the treatment efficacy. However, existing identification methods of transcriptome subtypes are limited due to the relatively long detection period, the unattainability of tumor specimens via biopsy or surgery, and the fleeting nature of intralesional heterogeneity. In search of a superior model over previous ones, this study evaluated the efficiency of eXtreme Gradient Boosting (XGBoost)-based radiomics model to classify transcriptome subtypes in glioblastoma patients. METHODS This retrospective study retrieved patients from TCGA-GBM and IvyGAP cohorts with pathologically diagnosed glioblastoma, and separated them into different transcriptome subtypes groups. GBM patients were then segmented into three different regions of MRI: enhancement of the tumor core (ET), non-enhancing portion of the tumor core (NET), and peritumoral edema (ED). We subsequently used handcrafted radiomics features (n = 704) from multimodality MRI and two-level feature selection techniques (Spearman correlation and F-score tests) in order to find the features that could be relevant. RESULTS After the feature selection approach, we identified 13 radiomics features that were the most meaningful ones that can be used to reach the optimal results. With these features, our XGBoost model reached the predictive accuracies of 70.9%, 73.3%, 88.4%, and 88.4% for classical, mesenchymal, neural, and proneural subtypes, respectively. Our model performance has been improved in comparison with the other models as well as previous works on the same dataset. CONCLUSION The use of XGBoost and two-level feature selection analysis (Spearman correlation and F-score) could be expected as a potential combination for classifying transcriptome subtypes with high performance and might raise public attention for further research on radiomics-based GBM models.
Collapse
Affiliation(s)
- Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 106, Taiwan; Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, 106, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan.
| | - Truong Nguyen Khanh Hung
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Orthopedic and Trauma Department, Cho Ray Hospital, Ho Chi Minh City, 70000, Viet Nam
| | - Duyen Thi Do
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, 106, Taiwan
| | - Luu Ho Thanh Lam
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Children's Hospital 2, Ho Chi Minh City, 70000, Viet Nam
| | - Luong Huu Dang
- Department of Otolaryngology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 70000, Viet Nam
| | - Tuan-Tu Huynh
- Department of Electrical Engineering, Yuan Ze University, No. 135, Yuandong Road, Zhongli, 320, Taoyuan, Taiwan; Department of Electrical Electronic and Mechanical Engineering, Lac Hong University, No. 10, Huynh Van Nghe Road, Bien Hoa, Dong Nai, 76120, Viet Nam
| |
Collapse
|
47
|
Prognostic and Predictive Value of Integrated Qualitative and Quantitative Magnetic Resonance Imaging Analysis in Glioblastoma. Cancers (Basel) 2021; 13:cancers13040722. [PMID: 33578746 PMCID: PMC7916478 DOI: 10.3390/cancers13040722] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is the most malignant primary brain tumor, for which improving patient outcome is limited by a substantial amount of tumor heterogeneity. Magnetic resonance imaging (MRI) in combination with machine learning offers the possibility to collect qualitative and quantitative imaging features which can be used to predict patient prognosis and relevant tumor markers which can aid in selecting the right treatment. This study showed that combining these MRI features with clinical features has the highest prognostic value for GBM patients; this model performed similarly in an independent GBM cohort, showing its reproducibility. The prediction of tumor markers showed promising results in the training set but not could be validated in the independent dataset. This study shows the potential of using MRI to predict prognosis and tumor markers, but further optimization and prospective studies are warranted. Abstract Glioblastoma (GBM) is the most malignant primary brain tumor for which no curative treatment options exist. Non-invasive qualitative (Visually Accessible Rembrandt Images (VASARI)) and quantitative (radiomics) imaging features to predict prognosis and clinically relevant markers for GBM patients are needed to guide clinicians. A retrospective analysis of GBM patients in two neuro-oncology centers was conducted. The multimodal Cox-regression model to predict overall survival (OS) was developed using clinical features with VASARI and radiomics features in isocitrate dehydrogenase (IDH)-wild type GBM. Predictive models for IDH-mutation, 06-methylguanine-DNA-methyltransferase (MGMT)-methylation and epidermal growth factor receptor (EGFR) amplification using imaging features were developed using machine learning. The performance of the prognostic model improved upon addition of clinical, VASARI and radiomics features, for which the combined model performed best. This could be reproduced after external validation (C-index 0.711 95% CI 0.64–0.78) and used to stratify Kaplan–Meijer curves in two survival groups (p-value < 0.001). The predictive models performed significantly in the external validation for EGFR amplification (area-under-the-curve (AUC) 0.707, 95% CI 0.582–8.25) and MGMT-methylation (AUC 0.667, 95% CI 0.522–0.82) but not for IDH-mutation (AUC 0.695, 95% CI 0.436–0.927). The integrated clinical and imaging prognostic model was shown to be robust and of potential clinical relevance. The prediction of molecular markers showed promising results in the training set but could not be validated after external validation in a clinically relevant manner. Overall, these results show the potential of combining clinical features with imaging features for prognostic and predictive models in GBM, but further optimization and larger prospective studies are warranted.
Collapse
|
48
|
Gutsche R, Scheins J, Kocher M, Bousabarah K, Fink GR, Shah NJ, Langen KJ, Galldiks N, Lohmann P. Evaluation of FET PET Radiomics Feature Repeatability in Glioma Patients. Cancers (Basel) 2021; 13:cancers13040647. [PMID: 33562803 PMCID: PMC7915742 DOI: 10.3390/cancers13040647] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Initial studies suggested the additional diagnostic value of amino acid positron emission tomography (PET) radiomics using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine (FET) in brain tumor patient management. However, to ensure the reliable performance of the generated FET PET radiomics models for clinical diagnostics, repeatability of radiomics features is essential. Hence, we assessed the impact of brain tumor volumes and key molecular alterations such as an isocitrate dehydrogenase (IDH) mutation on the repeatability of FET PET radiomics features in 50 newly diagnosed glioma patients. In a test–retest approach based on routinely acquired FET PET scans, we identified 297 repeatable features. The IDH genotype did not affect feature repeatability. Moreover, these robust features were able to differentiate patients with IDH-wildtype glioma from those with an IDH mutation. Our results suggest that robust radiomics features can be obtained from routinely acquired FET PET scans, which are valuable for further standardization of radiomics analyses in neurooncology. Abstract Amino acid PET using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine (FET) has attracted considerable interest in neurooncology. Furthermore, initial studies suggested the additional diagnostic value of FET PET radiomics in brain tumor patient management. However, the conclusiveness of radiomics models strongly depends on feature generalizability. We here evaluated the repeatability of feature-based FET PET radiomics. A test–retest analysis based on equivalent but statistically independent subsamples of FET PET images was performed in 50 newly diagnosed and histomolecularly characterized glioma patients. A total of 1,302 radiomics features were calculated from semi-automatically segmented tumor volumes-of-interest (VOIs). Furthermore, to investigate the influence of the spatial resolution of PET on repeatability, spherical VOIs of different sizes were positioned in the tumor and healthy brain tissue. Feature repeatability was assessed by calculating the intraclass correlation coefficient (ICC). To further investigate the influence of the isocitrate dehydrogenase (IDH) genotype on feature repeatability, a hierarchical cluster analysis was performed. For tumor VOIs, 73% of first-order features and 71% of features extracted from the gray level co-occurrence matrix showed high repeatability (ICC 95% confidence interval, 0.91–1.00). In the largest spherical tumor VOIs, 67% of features showed high repeatability, significantly decreasing towards smaller VOIs. The IDH genotype did not affect feature repeatability. Based on 297 repeatable features, two clusters were identified separating patients with IDH-wildtype glioma from those with an IDH mutation. Our results suggest that robust features can be obtained from routinely acquired FET PET scans, which are valuable for further standardization of radiomics analyses in neurooncology.
Collapse
Affiliation(s)
- Robin Gutsche
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- RWTH Aachen University, 52062 Aachen, Germany
| | - Jürgen Scheins
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
| | - Martin Kocher
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- Center for Integrated Oncology (CIO), Universities Aachen, Bonn, Duesseldorf and Cologne, 50937 Cologne, Germany
| | - Khaled Bousabarah
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Gereon R. Fink
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Nadim J. Shah
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Neurology, University Hospital RWTH Aachen, 52074 Aachen, Germany
- JARA-BRAIN-Translational Medicine, 52074 Aachen, Germany
| | - Karl-Josef Langen
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Center for Integrated Oncology (CIO), Universities Aachen, Bonn, Duesseldorf and Cologne, 52074 Aachen, Germany
| | - Norbert Galldiks
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Center for Integrated Oncology (CIO), Universities Aachen, Bonn, Duesseldorf and Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Philipp Lohmann
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- Correspondence:
| |
Collapse
|
49
|
McHugh DJ, Porta N, Little RA, Cheung S, Watson Y, Parker GJM, Jayson GC, O’Connor JPB. Image Contrast, Image Pre-Processing, and T 1 Mapping Affect MRI Radiomic Feature Repeatability in Patients with Colorectal Cancer Liver Metastases. Cancers (Basel) 2021; 13:E240. [PMID: 33440685 PMCID: PMC7826650 DOI: 10.3390/cancers13020240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/25/2023] Open
Abstract
Imaging biomarkers require technical, biological, and clinical validation to be translated into robust tools in research or clinical settings. This study contributes to the technical validation of radiomic features from magnetic resonance imaging (MRI) by evaluating the repeatability of features from four MR sequences: pre-contrast T1- and T2-weighted images, pre-contrast quantitative T1 maps (qT1), and contrast-enhanced T1-weighted images. Fifty-one patients with colorectal cancer liver metastases were scanned twice, up to 7 days apart. Repeatability was quantified using the intraclass correlation coefficient (ICC) and repeatability coefficient (RC), and the impact of non-Gaussian feature distributions and image normalisation was evaluated. Most radiomic features had non-Gaussian distributions, but Box-Cox transformations enabled ICCs and RCs to be calculated appropriately for an average of 97% of features across sequences. ICCs ranged from 0.30 to 0.99, with volume and other shape features tending to be most repeatable; volume ICC > 0.98 for all sequences. 19% of features from non-normalised images exhibited significantly different ICCs in pair-wise sequence comparisons. Normalisation tended to increase ICCs for pre-contrast T1- and T2-weighted images, and decrease ICCs for qT1 maps. RCs tended to vary more between sequences than ICCs, showing that evaluations of feature performance depend on the chosen metric. This work suggests that feature-specific repeatability, from specific combinations of MR sequence and pre-processing steps, should be evaluated to select robust radiomic features as biomarkers in specific studies. In addition, as different repeatability metrics can provide different insights into a specific feature, consideration of the appropriate metric should be taken in a study-specific context.
Collapse
Affiliation(s)
- Damien J. McHugh
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UK; (D.J.M.); (R.A.L.); (S.C.); (Y.W.); (G.C.J.)
- Quantitative Biomedical Imaging Laboratory, The University of Manchester, Manchester M13 9PL, UK
| | - Nuria Porta
- Clinical Trials and Statistics Unit, Institute of Cancer Research, London SW3 6JB, UK;
| | - Ross A. Little
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UK; (D.J.M.); (R.A.L.); (S.C.); (Y.W.); (G.C.J.)
- Quantitative Biomedical Imaging Laboratory, The University of Manchester, Manchester M13 9PL, UK
| | - Susan Cheung
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UK; (D.J.M.); (R.A.L.); (S.C.); (Y.W.); (G.C.J.)
- Quantitative Biomedical Imaging Laboratory, The University of Manchester, Manchester M13 9PL, UK
| | - Yvonne Watson
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UK; (D.J.M.); (R.A.L.); (S.C.); (Y.W.); (G.C.J.)
- Quantitative Biomedical Imaging Laboratory, The University of Manchester, Manchester M13 9PL, UK
| | - Geoff J. M. Parker
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK;
- Bioxydyn Ltd., Manchester M15 6SZ, UK
| | - Gordon C. Jayson
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UK; (D.J.M.); (R.A.L.); (S.C.); (Y.W.); (G.C.J.)
- Department of Medical Oncology, The Christie Hospital, Manchester M20 4BX, UK
| | - James P. B. O’Connor
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UK; (D.J.M.); (R.A.L.); (S.C.); (Y.W.); (G.C.J.)
- Quantitative Biomedical Imaging Laboratory, The University of Manchester, Manchester M13 9PL, UK
- Department of Radiology, The Christie Hospital, Manchester M20 4BX, UK
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London SW3 6JB, UK
| |
Collapse
|
50
|
Tiwari P, Verma R. The Pursuit of Generalizability to Enable Clinical Translation of Radiomics. Radiol Artif Intell 2020; 3:e200227. [PMID: 33847697 DOI: 10.1148/ryai.2020200227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Pallavi Tiwari
- Case School of Engineering-Biomedical Engineering, Case Western Reserve University, 2095 Martin Luther King Jr Dr, Hall Room 500, Cleveland, OH 44106
| | - Ruchika Verma
- Case School of Engineering-Biomedical Engineering, Case Western Reserve University, 2095 Martin Luther King Jr Dr, Hall Room 500, Cleveland, OH 44106
| |
Collapse
|