1
|
Tajik Mansoury MA, Sforza D, Wong J, Iordachita I, Rezaee M. Dosimetric commissioning of small animal FLASH radiation research platform. Phys Med Biol 2025; 70:115015. [PMID: 40341277 DOI: 10.1088/1361-6560/add641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 05/08/2025] [Indexed: 05/10/2025]
Abstract
Objective.The FLASH-SARRP, a new small animal radiation research platform has been designed to support conventional, high and ultrahigh dose-rate kV x-rays for preclinical research. This self-shielded system features two high-capacity x-ray sources with rotating-anode technology. This study characterizes the dosimetric and mechanical performances of the system for preclinical FLASH radiation research.Approach.Mechanical alignment of two x-ray tubes was performed using a custom-designed jig by aligning the outlet ports of the tube housings. Alignment of mechanical and radiation centers was evaluated by scanning a highly-collimated slit across the focal-spot. The linearity of the x-ray tube voltage, current and exposure-time was evaluated using silicon diode and ion-chamber detectors. Dosimetric characteristics of beam e.g. output linearity, depth dose-rate and profiles were measured using calibrated radiochromic films, thermoluminescence, and ion-chamber detectors in kV solid-water phantom or air, with and without external energy filtration. Dose-rate uniformity, flatness, symmetry, beam width, and penumbra were assessed for single and parallel-opposed x-ray beams across various field sizes.Results.The x-ray sources were aligned at 0.3 mm accuracy. The radiation beam center was within 1.0 mm of mechanical center. Beam output was highly linear with wide ranges of tube current (5-630 mA) and exposure-time (5-6300 ms), supporting accurate dose-rate and dose adjustments. The FLASH-SARRP supports a wide range of dose-rates from <1 Gy s-1to 100 Gy s-1, depending on field size. The uniformity of the depth and crossbeam dose-rates is ±3.6 Gy s-1and ±1.5 Gy s-1between 5-15 mm phantom depth without and with external filter, respectively.Significance.The FLASH-SARRP provides desirable dosimetric performance for small animal irradiation, supporting both conventional and FLASH dose-rate across field sizes from 5 mm-diameter circular to 20 mm-square apertures. This platform enables comparative studies between FLASH and conventional dose-rates in small animal (e.g. mouse) models.
Collapse
Affiliation(s)
- Mohammad-Ali Tajik Mansoury
- Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Daniel Sforza
- Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - John Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Iulian Iordachita
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Mohammad Rezaee
- Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
2
|
Bookbinder A, Krieger M, Lansonneur P, Magliari A, Zhao X, Choi JI, Simone CB, Lin H, Folkerts M, Kang M. Implementation of a novel pencil beam scanning Bragg peak FLASH technique to a commercial treatment planning system. Med Phys 2025. [PMID: 40344192 DOI: 10.1002/mp.17876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Ultra-high dose rate, or FLASH, radiotherapy has shown promise in preclinical experiments of sparing healthy tissue without compromising tumor control. This "FLASH effect" can compound with dosimetric sparing of the proton Bragg peak (BP) using a method called Single Energy Pristine Bragg Peak (SEPBP) FLASH. However, this and other proposed FLASH techniques are constrained by lack of familiar treatment planning systems (TPSs). Creating modules to implement SEPBP FLASH into a commercial TPS opens up the possibility of more widespread investigation of FLASH and lays the groundwork for future clinical translation. PURPOSE To implement, investigate, and benchmark the capacity of a commercial TPS research extension for BP FLASH SBRT treatment planning by studying the dosimetric properties and FLASH ratio for critical organs-at-risk (OARs) at several sites. METHODS A 250 MeV clinical proton beam model was commissioned in the Eclipse TPS (Varian Medical Systems, Palo Alto, USA). BP FLASH fields were single-layer maximum-energy beams with a universal range shifter (URS) and field-specific range compensators (RCs). RCs for each beam angle were included as contours within the structure set, while the URS was modeled in the PBS beamline. Spotmaps were created using Lloyd's algorithm with minimum monitor units (MU)-based spacing to ensure plan quality and preserve FLASH coverage for critical OARs. Inverse optimization while preserving minimum MU constraints was done with scorecard-based optimization. Fifteen SBRT cases from three anatomical sites (liver, lung, base-of-skull [BOS]) previously treated at the New York Proton Center were re-optimized using this method, and dosimetric characteristics of BP plans were compared to clinically treated plans. FLASH ratios for critical OARs were evaluated for BP FLASH plans. RESULTS The dose distributions, including target uniformity, conformity index (CI), and DVHs, showed no significant difference in clinically-used metrics between BP FLASH and clinically delivered plans across all anatomical sites. Mean 40 Gy/s FLASH ratios for critical OARs were above 84% for all but one OAR with 2 Gy threshold and above 98% for all OARs with 5 Gy threshold. Dmax for liver and BOS cases was 111.3 ± 2.68 and 112.88 ± 1.29, respectively, and D2% for lung cases was 112.04 ± 1.09. All Dmax remained below 115%. CONCLUSIONS Inverse planning using a single-energy BP FLASH technique based on sparse spots and ultra-high minimum MU/spot can achieve intensity-modulated proton therapy (IMPT)-equivalent quality and sufficient FLASH coverage. This successful prototype brings us closer to commercial implementation and may increase the availability of proton FLASH dosimetry studies.
Collapse
Affiliation(s)
- Alexander Bookbinder
- New York Proton Center, New York, New York, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | | | | | | | - Xingyi Zhao
- New York Proton Center, New York, New York, USA
| | | | | | - Haibo Lin
- New York Proton Center, New York, New York, USA
| | | | - Minglei Kang
- New York Proton Center, New York, New York, USA
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
3
|
Darafsheh A, Bey A. Implementation of a proton FLASH platform for pre-clinical studies using a gantry-mounted synchrocyclotron. Phys Med Biol 2025; 70:105008. [PMID: 40329915 PMCID: PMC12056584 DOI: 10.1088/1361-6560/add106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
Objective. External beam radiation therapy (RT) at ultra-high dose rate (FLASH RT) has shown promise for improving the therapeutic ratio; exploiting its full potential, however, requires systematic preclinical studies to unravel the underlying radiobiological mechanisms. We demonstrate a proton irradiation platform for pre-clinical FLASH studies using a gantry-mounted proton therapy system in clinical operation.Approach. An accessory comprising a transmission ionization chamber, a tray accommodating beam modifying elements, including range shifting blocks made of boron carbide (B4C) and poly(methyl methacrylate) (PMMA), and brass apertures to shape the beam's lateral extent was attached to the nozzle. A range modulator composed of arrays of holes drilled in a PMMA slab was used to form a spread-out Bragg peak (SOBP). The integral depth dose (IDD) curves, lateral dose profiles, and dose rate were measured using existing dosimeters for different beam modifying material combinations.Results. The range modulator allowed achieving an SOBP with 14 mm modulation. The proton range was gradually reduced through adding B4C and PMMA blocks in the beamline, while the beam spot's size gradually increased and became more symmetric as protons traveled through more material. The commercial scintillator screen showed a dose-rate-independent response for measuring lateral dose profiles. The representative IDDs of the FLASH beam can be measured with a commercial multilayer ionization chamber device at a low dose rate since the IDD did not depend on the dose rate.Significance. This work demonstrated a platform for delivering ∼70 Gy s-1SOBP proton FLASH beams using a gantry-mounted synchrocyclotron clinical system. We showed the evolution of an asymmetric and small single proton spot to a more symmetric and larger spot after ranging and shaping through different components. Using dosimeters commonly employed for quality assurance purposes, we report an efficient method for the characterization of proton FLASH beams.
Collapse
Affiliation(s)
- Arash Darafsheh
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO, 63110, United States of America
| | - Anissa Bey
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO, 63110, United States of America
| |
Collapse
|
4
|
Kunz LV, Schaefer R, Kacem H, Ollivier J, Togno M, Chappuis F, Weber D, Lomax A, Limoli CL, Psoroulas S, Vozenin MC. Plasmid DNA Strand Breaks Are Dose Rate Independent at Clinically Relevant Proton Doses and Under Biological Conditions. Radiat Res 2025; 203:214-222. [PMID: 40010373 DOI: 10.1667/rade-24-00118.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/13/2024] [Indexed: 02/28/2025]
Abstract
We investigated the effect of proton FLASH radiation on plasmid DNA. Purified supercoiled pBR322 plasmids were irradiated with clinical doses (≤10 Gy) of protons at ultra-high and conventional dose rates using the Paul Scherrer Institute (PSI) isochronous cyclotron. The proton beam in this clinical facility has been validated to produce the FLASH effect in preclinical models. Plasmid samples were irradiated under various oxygen tensions, scavenger levels, pH conditions and Fe (II) concentrations as these biochemical parameters vary across tissues and tumors. Over the range of doses used, plasmid DNA strand breaks were found to be dose rate independent at all conditions investigated. Irradiation within the Bragg peak and spread-out Bragg peak increased clustered strand breaks, except in the presence of scavengers. With this model system, we demonstrate conclusively that plasmid DNA strand breakage is dose rate independent at doses below 10 Gy and does not constitute a high throughput assay endpoint predictive of the biological effect of FLASH.
Collapse
Affiliation(s)
- Louis V Kunz
- Sector of Radiobiology Applied to Radiotherapy, Radiation Oncology Department, Geneva University Hospital, Geneva, Switzerland
- LiRR - Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Robert Schaefer
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - Houda Kacem
- Sector of Radiobiology Applied to Radiotherapy, Radiation Oncology Department, Geneva University Hospital, Geneva, Switzerland
- LiRR - Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jonathan Ollivier
- Sector of Radiobiology Applied to Radiotherapy, Radiation Oncology Department, Geneva University Hospital, Geneva, Switzerland
- LiRR - Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michele Togno
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - Flore Chappuis
- Institute of Radiation Physics (IRA), Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital, Lausanne, Switzerland
| | - Damien Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - Anthony Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, Irvine, California
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - Marie-Catherine Vozenin
- Sector of Radiobiology Applied to Radiotherapy, Radiation Oncology Department, Geneva University Hospital, Geneva, Switzerland
- LiRR - Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Iwata H, Toshito T, Omachi C, Umezawa M, Yamada M, Tanaka K, Nakajima K, Tsuzuki Y, Matsumoto K, Kawai T, Shibata Y, Ugawa S, Ogino H, Hiwatashi A. Proton FLASH Irradiation Using a Synchrotron Accelerator: Differences by Irradiation Positions. Int J Radiat Oncol Biol Phys 2025; 121:1293-1302. [PMID: 39549758 DOI: 10.1016/j.ijrobp.2024.11.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/10/2024] [Accepted: 11/03/2024] [Indexed: 11/18/2024]
Abstract
PURPOSE To establish an ultra-high dose-rate (UHDR) radiation system using a synchrotron proton beam accelerator and to compare the effects by irradiation positions on cultured cells and chick embryos. METHODS AND MATERIALS Protons for UHDR were obtained by applying high-frequency power at much higher levels than usual to extract all protons within approximately 50 ms. Subsequently, monitoring with a Faraday cup was performed immediately after synchrotron extraction and the waveform was adjusted accordingly. Four cultured tumor lines, 2 normal cell lines, and chick embryos were used. UHDR radiation therapy (UHDR-RT) at 6 to 18 Gy (200-300 Gy/s, single exposure) and conventional dose-rate radiation therapy (Conv-RT) at 6 to 18 Gy (3 Gy/s) were administered to the 1-cm spread-out Bragg peak (SOBP) and the plateau region preceding SOBP. After irradiation, disparities in cell growth rates and cell cycle progression were assessed, and cell survival was evaluated via colony assay. Chick embryos were also examined for survival. RESULTS UHDR-RT was achieved at a range of 40 to 800 Gy/s, encompassing both plateau and peak phases. In vitro studies demonstrated similar cell-killing effects between UHDR-RT and Conv-RT in cancer cells. Significant apoptotic effects and G2 arrest were observed during the cell cycle under peak UHDR-RT conditions. The FLASH effect was not observed in normal single cells under normal atmospheric conditions. Stronger cell-killing effects were noted in V79 spheroids exposed to peak UHDR-RT than peak Conv-RT. Moreover, in chick embryos, an increase in survival rate, indicative of the FLASH effect, was observed. CONCLUSIONS The FLASH effect was also achieved with UHDR-RT using a synchrotron proton beam accelerator in chick embryos. The cell-killing effects in cancer cells were higher with peak UHDR-RT that may be due to the higher linear energy transfer at the SOBP.
Collapse
Affiliation(s)
- Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center.
| | - Toshiyuki Toshito
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City University West Medical Center
| | - Chihiro Omachi
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City University West Medical Center
| | - Masumi Umezawa
- Therapy System Business, Healthcare Business Group, Hitachi High-Tech Corporation, Kashiwa, Japan
| | - Masashi Yamada
- Therapy System Business, Healthcare Business Group, Hitachi High-Tech Corporation, Kashiwa, Japan
| | - Kenichiro Tanaka
- Department of Proton Therapy Technology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center
| | - Koichiro Nakajima
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center
| | - Yusuke Tsuzuki
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center
| | - Kazuhisa Matsumoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences
| | - Tatsuya Kawai
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences
| | - Yasuhiro Shibata
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinya Ugawa
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Ogino
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center
| | - Akio Hiwatashi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences
| |
Collapse
|
6
|
Rothwell B, Bertolet A, Schuemann J. Proton FLASH-arc therapy (PFAT): A feasibility study for meeting FLASH dose-rate requirements in the clinic. Radiother Oncol 2025; 202:110623. [PMID: 39528113 DOI: 10.1016/j.radonc.2024.110623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND PURPOSE Proton arc therapy and FLASH radiotherapy (FLASH-RT) each offer unique advantages in proton therapy. However, clinical translation of FLASH-RT faces challenges in defining and delivering high dose rates. We propose the use of proton FLASH-arc therapy (PFAT) to leverage the benefits of arc while addressing FLASH delivery concerns by spatially fractionating dose delivery to healthy tissue. MATERIALS AND METHODS Treatment plans for an abdominal phantom and a clinical brain case were designed in OpenTPS, using monoenergetic beams within a 360-degree gantry rotation. Beams were optimized to achieve target coverage while maximizing spatial fractionation in non-target regions. The temporal dose delivery to healthy-tissue voxels, or in specified organs-at-risk (OARs), was constrained via selective spot removal in the beamlets matrix. The dose, LET, number of spots per voxel, and voxel-wise average dose rate were calculated for each PFAT plan and compared to a corresponding IMPT scenario. RESULTS PFAT plans demonstrated comparable dose conformity to IMPT, with LET hotspots shifted towards the target center. The number of spots influencing healthy-tissue voxels was reduced, leading to regions of substantially higher dose rates in many points outside the target. OAR dose-rate optimization in the brain plan resulted in dose rates exceeding 40 Gy/s in the majority of points in the brainstem. CONCLUSION The PFAT technique combines the advantages of FLASH and arc therapy, providing improved LET distributions and enhanced biological effect in the target, while achieving high dose rates in healthy tissue, thus reducing healthy tissue damage. This feasibility study demonstrates the capability of PFAT, setting the foundation for further optimization and application in diverse patient cases and complex geometries.
Collapse
Affiliation(s)
- Bethany Rothwell
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA.
| | - Alejandro Bertolet
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA.
| | - Jan Schuemann
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Ma C, Yang X, Setianegara J, Wang Y, Gao Y, Yu D, Patel P, Zhou J. Feasibility study of modularized pin ridge filter implementation in proton FLASH planning for liver stereotactic ablative body radiotherapy. Phys Med Biol 2024; 69:245001. [PMID: 39571283 DOI: 10.1088/1361-6560/ad95d6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Objective.We previously developed a FLASH planning framework for streamlined pin-ridge-filter (pin-RF) design, demonstrating its feasibility for single-energy proton FLASH planning. In this study, we refined the pin-RF design for easy assembly using reusable modules, focusing on its application in liver stereotactic ablative body radiotherapy (SABR).Approach.This framework generates an intermediate intensity-modulated proton therapy (IMPT) plan and translates it into step widths and thicknesses of pin-RFs for a single-energy FLASH plan. Parameters like energy spacing, monitor unit limit, and spot quantity were adjusted during IMPT planning, resulting in pin-RFs assembled using predefined modules with widths from 1 to 6 mm, each with a water-equivalent-thickness of 5 mm. This approach was validated on three liver SABR cases. FLASH doses, quantified using the FLASH effectiveness model at 1-5 Gy thresholds, were compared to conventional IMPT (IMPT-CONV) doses to assess clinical benefits.Main results.The highest demand for 6 mm width modules, moderate for 2-4 mm, and minimal for 1- and 5-mm modules were shown across all cases. At lower dose thresholds, the two-beam case reduced indicators including liverV21Gyand skinDmaxby >19.4%, while the three-beam cases showed reductions⩽11.4%, indicating the need for higher fractional beam doses for an enhanced FLASH effect. Positive clinical benefits were seen only in the two-beam case at the 5 Gy threshold. At the 1 Gy threshold, the two-beam FLASH plan outperformed the IMPT-CONV plan, reducing dose indicators for all relevant normal tissues by up to 31.2%. In contrast, the three-beam cases showed negative clinical benefits, with skinDmaxand liverV21Gyincreasing by up to 17.4% due to lower fractional beam doses and closer beam arrangements.Significance.This study evaluated the feasibility of modularizing streamlined pin-RFs in single-energy proton FLASH planning for liver SABR, offering guidance on optimal module composition and strategies to enhance FLASH planning.
Collapse
Affiliation(s)
- Chaoqiong Ma
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Jufri Setianegara
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Yinan Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Yuan Gao
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - David Yu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Pretesh Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| |
Collapse
|
8
|
Saini J, Erickson DPJ, Vander Stappen F, Ruth M, Cui S, Gorman V, Rossomme S, Cao N, Ford EC, Meyer J, Bloch C, Wong T, Grassberger C, Rengan R, Zeng J, Schwarz M. Commissioning a clinical proton pencil beam scanning beamline for pre-clinical ultra-high dose rate irradiations on a cyclotron-based system. Front Oncol 2024; 14:1460288. [PMID: 39678495 PMCID: PMC11638781 DOI: 10.3389/fonc.2024.1460288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/22/2024] [Indexed: 12/17/2024] Open
Abstract
Background This manuscript describes modifications to a pencil beam scanning (PBS) proton gantry that enables ultra-high dose rates (UHDR) irradiation, including treatment planning and validation. Methods Beamline modifications consisted of opening the energy slits and setting the degrader to pass-through mode to maximize the dose rate. A range shifter was inserted upstream from the isocenter to enlarge the spot size and make it rotationally symmetric. We measured the beamline transport efficiency and investigated the variation in output due to the recombination of charge in the dose monitoring chamber. The output calibration was performed through a parallel plate chamber (PPC05), and an intercomparison was performed for various detectors. The pre-clinical field for mice irradiation consisted of different dose levels to deliver uniform doses in transmission mode. The field dose rates were determined through log files while scripting in TPS was used to estimate PBS dose rates. The survival experiments consisted of irradiating the full pelvis of the mice at UHDR and conventional dose rates. Results The spot size was constant with beam current and had a sigma of 8.5 mm at the isocenter. The beam output increased by 35% at 720 nA compared to 5.6 nA, primarily due to recombination in the dose-monitoring ion chambers. The Faraday Cup and PPC05 agreed within 2%, while other detectors were within 3% of FC for dose rates <60 Gy/s. The pre-clinical fields' PBS dose rate is above 45 Gy/sec for all voxels within the target volume. The average and PBS dose rates decrease as field size increases and approaches 40 Gy/s for a field size of 7x7 cm2. All UHDR arms showed better survival than the corresponding conventional dose rate arms. Conclusions We successfully modified a clinical system to perform UHDR pre-clinical experiments. As part of our pre-clinical experiments, we observed the FLASH effect concerning mice survival.
Collapse
Affiliation(s)
- Jatinder Saini
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
- Radiation Oncology, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | | | | | - Matt Ruth
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
- Radiation Oncology, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Sunan Cui
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
- Radiation Oncology, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Vanessa Gorman
- Proton Therapy - Research and Development, Ion Beam Applications, Louvain-La-Neuve, Belgium
| | - Séverine Rossomme
- Proton Therapy - Research and Development, Ion Beam Applications, Louvain-La-Neuve, Belgium
| | - Ning Cao
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
- Radiation Oncology, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Eric C. Ford
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
- Radiation Oncology, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Juergen Meyer
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
- Radiation Oncology, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Charles Bloch
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
- Radiation Oncology, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Tony Wong
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
- Radiation Oncology, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Clemens Grassberger
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
| | - Ramesh Rengan
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
- Radiation Oncology, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Jing Zeng
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
- Radiation Oncology, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Marco Schwarz
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
- Radiation Oncology, Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
9
|
An C, Zhang W, Dai Z, Li J, Yang X, Wang J, Nie Y. Optimizing focused very-high-energy electron beams for radiation therapy based on Monte Carlo simulation. Sci Rep 2024; 14:27495. [PMID: 39528582 PMCID: PMC11554818 DOI: 10.1038/s41598-024-79187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
A TOPAS-based optimization program has been developed to precisely concentrate the dose of focused very-high-energy electron (VHEE) beams on deep-seated targets. This is accomplished by optimizing the magnetic gradients, positions, and number of quadrupole magnets within TOPAS. Using only three quadrupole magnets, the program focuses 250 MeV VHEE beams to achieve a maximum dose position deeper than 17 cm, while maintaining entrance and exit doses within 25% and limiting the lateral dimensions to ≤ 1 cm at the maximum dose location. The linear relationship between the magnetic gradient of the last quadrupole magnet and the maximum dose position enables dose location adjustments through gradient variation. Multiple positions were validated in TOPAS with errors within 1%. The spread-out electron peak (SOEP) is achieved by combining two VHEE beams with different maximum dose positions using the differential evolution method, covering a target depth of 12-17 cm and attaining a dose flatness better than 99%. This pioneering program imposes constraints on entrance dose, exit dose, maximum dose position, and the lateral dimensions of dose deposition at the maximum dose position within phantom. This program may be a promising tool in the applications of focused VHEE in highly conformal treatment plans based on TOPAS.
Collapse
Affiliation(s)
- Chaofan An
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Wei Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Zeyi Dai
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Jia Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Xiong Yang
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Jike Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Yuancun Nie
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, Hubei Province, China.
| |
Collapse
|
10
|
Simeonov Y, Weber U, Krieger M, Schuy C, Folkerts M, Paquet G, Lansonneur P, Penchev P, Zink K. A Fast 3D Range-Modulator Delivery Approach: Validation of the FLUKA Model on a Varian ProBeam System Including a Robustness Analysis. Cancers (Basel) 2024; 16:3498. [PMID: 39456592 PMCID: PMC11505765 DOI: 10.3390/cancers16203498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
A 3D range-modulator (RM), optimized for a single energy and a specific target shape, is a promising and viable solution for the ultra-fast dose delivery in particle therapy. The aim of this work was to investigate the impact of potential beam and modulator misalignments on the dose distribution. Moreover, the FLUKA Monte Carlo model, capable of simulating 3D RMs, was adjusted and validated for the 250 MeV single-energy proton irradiation from a Varian ProBeam system. A 3D RM was designed for a cube target shape rotated 45° around two axes using a Varian-internal research version of the Eclipse treatment planning software, and the resulting dose distribution was simulated in a water phantom. Deviations from the ideal alignment were introduced, and the dose distributions from the modified simulations were compared to the original unmodified one. Finally, the FLUKA model and the workflow were validated with base-line data measurements and dose measurements of the manufactured modulator prototype at the HollandPTC facility in Delft. The adjusted FLUKA model, optimized particularly in the scope of a single-energy FLASH irradiation with a PMMA pre-absorber, demonstrated very good agreement with the measured dose distribution resulting from the 3D RM. Dose deviations resulting from modulator-beam axis misalignments depend on the specific 3D RM and its shape, pin aspect ratio, rotation angle, rotation point, etc. A minor modulator shift was found to be more relevant for the distal dose distribution than for the spread-out Bragg Peak (SOBP) homogeneity. On the other hand, a modulator tilt (rotation away from the beam axis) substantially affected not only the depth dose profile, transforming a flat SOBP into a broad, Gaussian-like distribution with increasing rotation angle, but also shifted the lateral dose distribution considerably. This work strives to increase awareness and highlight potential pitfalls as the 3D RM method progresses from a purely research concept to pre-clinical studies and human trials. Ensuring that gantry rotation and the combined weight of RM, PMMA, and aperture do not introduce alignment issues is critical. Given all the other range and positioning uncertainties, etc., not related to the modulator, the RM must be aligned with an accuracy below 1° in order to preserve a clinically acceptable total uncertainty budget. Careful consideration of critical parameters like the pin aspect ratio and possibly a novel robust modulator geometry optimization are potential additional strategies to mitigate the impact of positioning on the resulting dose. Finally, even the rotated cube 3D modulator with high aspect ratio pin structures (~80 mm height to 3 mm pin base width) was found to be relatively robust against a slight misalignment of 0.5° rotation or a 1.5 mm shift in one dimension perpendicular to the beam axis. Given a reliable positioning and QA concept, the additional uncertainties introduced by the 3D RM can be successfully managed adopting the concept into the clinical routine.
Collapse
Affiliation(s)
- Yuri Simeonov
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, 35390 Giessen, Germany; (U.W.); (P.P.); (K.Z.)
| | - Ulrich Weber
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, 35390 Giessen, Germany; (U.W.); (P.P.); (K.Z.)
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany;
| | - Miriam Krieger
- Varian Medical Systems, Palo Alto, CA 94304, USA; (M.K.); (M.F.); (G.P.)
| | - Christoph Schuy
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany;
| | - Michael Folkerts
- Varian Medical Systems, Palo Alto, CA 94304, USA; (M.K.); (M.F.); (G.P.)
| | - Gerard Paquet
- Varian Medical Systems, Palo Alto, CA 94304, USA; (M.K.); (M.F.); (G.P.)
| | - Pierre Lansonneur
- Varian Medical Systems, Palo Alto, CA 94304, USA; (M.K.); (M.F.); (G.P.)
| | - Petar Penchev
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, 35390 Giessen, Germany; (U.W.); (P.P.); (K.Z.)
| | - Klemens Zink
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences, 35390 Giessen, Germany; (U.W.); (P.P.); (K.Z.)
- Marburg Ion Beam Therapy Center (MIT), 35043 Marburg, Germany
| |
Collapse
|
11
|
van Marlen P, van de Water S, Slotman BJ, Dahele M, Verbakel W. Technical note: Dosimetry and FLASH potential of UHDR proton PBS for small lung tumors: Bragg-peak-based delivery versus transmission beam and IMPT. Med Phys 2024; 51:7580-7588. [PMID: 38795376 DOI: 10.1002/mp.17185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/19/2024] [Accepted: 05/04/2024] [Indexed: 05/27/2024] Open
Abstract
BACKGROUND High-energy transmission beams (TBs) are currently the main delivery method for proton pencil beam scanning ultrahigh dose-rate (UHDR) FLASH radiotherapy. TBs place the Bragg-peaks behind the target, outside the patient, making delivery practical and achievement of high dose-rates more likely. However, they lead to higher integral dose compared to conventional intensity-modulated proton therapy (IMPT), in which Bragg-peaks are placed within the tumor. It is hypothesized that, when energy changes are not required and high beam currents are possible, Bragg-peak-based beams can not only achieve more conformal dose distributions than TBs, but also have more FLASH-potential. PURPOSE This works aims to verify this hypothesis by taking three different Bragg-peak-based delivery techniques and comparing them with TB and IMPT-plans in terms of dosimetry and FLASH-potential for single-fraction lung stereotactic body radiotherapy (SBRT). METHODS For a peripherally located lung target of various sizes, five different proton plans were made using "matRad" and inhouse-developed algorithms for spot/energy-layer/beam reduction and minimum monitor unit maximization: (1) IMPT-plan, reference for dosimetry, (2) TB-plan, reference for FLASH-amount, (3) pristine Bragg-peak plan (non-depth-modulated Bragg-peaks), (4) Bragg-peak plan using generic ridge filter, and (5) Bragg-peak plan using 3D range-modulated ridge filter. RESULTS Bragg-peak-based plans are able to achieve sufficient plan quality and high dose-rates. IMPT-plans resulted in lowest OAR-dose and integral dose (also after a FLASH sparing-effect of 30%) compared to both TB-plans and Bragg-peak-based plans. Bragg-peak-based plans vary only slightly between themselves and generally achieve lower integral dose than TB-plans. However, TB-plans nearly always resulted in lower mean lung dose than Bragg-peak-based plans and due to a higher amount of FLASH-dose for TB-plans, this difference increased after including a FLASH sparing-effect. CONCLUSION This work indicates that there is no benefit in using Bragg-peak-based beams instead of TBs for peripherally located, UHDR stereotactic lung radiotherapy, if lung dose is the priority.
Collapse
Affiliation(s)
- Patricia van Marlen
- Department of Radiation Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Steven van de Water
- Department of Radiation Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Ben J Slotman
- Department of Radiation Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Max Dahele
- Department of Radiation Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
12
|
Chaikh A, Édouard M, Huet C, Milliat F, Villagrasa C, Isambert A. Towards clinical application of ultra-high dose rate radiotherapy and the FLASH effect: Challenges and current status. Cancer Radiother 2024; 28:463-473. [PMID: 39304401 DOI: 10.1016/j.canrad.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 09/22/2024]
Abstract
Ultra-high dose rate external beam radiotherapy (UHDR-RT) uses dose rates of several tens to thousands of Gy/s, compared with the dose rate of the order of a few Gy/min for conventional radiotherapy techniques, currently used in clinical practice. The use of such dose rate is likely to improve the therapeutic index by obtaining a radiobiological effect, known as the "FLASH" effect. This would maintain tumor control while enhancing tissues protection. To date, this effect has been achieved using beams of electrons, photons, protons, and heavy ions. However, the conditions required to achieve this "FLASH" effect are not well defined, and raise several questions, particularly with regard to the definition of the prescription, including dose fractionation, irradiated volume and the temporal structure of the pulsed beam. In addition, the dose delivered over a very short period induces technical challenges, particularly in terms of detectors, which must be mastered to guarantee safe clinical implementation. IRSN has carried out an in-depth literature review of the UHDR-RT technique, covering various aspects relating to patient radiation protection: the radiobiological mechanisms associated with the FLASH effect, the used temporal structure of the UHDR beams, accelerators and dose control, the properties of detectors to be used with UHDR beams, planning, clinical implementation, and clinical studies already carried out or in progress.
Collapse
Affiliation(s)
| | | | | | - Fabien Milliat
- IRSN/PSE-SANTÉ-SERAMED/LRMed, Fontenay-aux-Roses, France
| | | | | |
Collapse
|
13
|
Gesualdi F, de Marzi L, Dutreix M, Favaudon V, Fouillade C, Heinrich S. A multidisciplinary view of flash irradiation. Cancer Radiother 2024; 28:453-462. [PMID: 39343695 DOI: 10.1016/j.canrad.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 10/01/2024]
Abstract
The delivery of ultra-high dose rates of radiation, called flash irradiation or flash-RT, has emerged as a new modality of radiotherapy shaking up the paradigm of proportionality of effect and dose whatever the method of delivery of the radiation. The hallmark of flash-RT is healthy tissue sparing from the side effects of radiation without decrease of the antitumor efficiency in animal models. In this review we will define its specificities, the molecular mechanisms underlying the flash effect and the ongoing developments to bring this new modality to patient treatment.
Collapse
Affiliation(s)
- Flavia Gesualdi
- Institut Curie, Hospital Division, centre de protonthérapie d'Orsay, université Paris-Saclay, université PSL, centre universitaire, 91948 Orsay cedex, France
| | - Ludovic de Marzi
- Institut Curie, Hospital Division, centre de protonthérapie d'Orsay, université Paris-Saclay, université PSL, centre universitaire, 91948 Orsay cedex, France; Institut Curie, université PSL, université Paris-Saclay, Inserm Lito U1288, centre universitaire, 91898 Orsay, France
| | - Marie Dutreix
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Vincent Favaudon
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Charles Fouillade
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Sophie Heinrich
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France.
| |
Collapse
|
14
|
Bookbinder A, Selvaraj B, Zhao X, Yang Y, Bell BI, Pennock M, Tsai P, Tomé WA, Isabelle Choi J, Lin H, Simone CB, Guha C, Kang M. Validation and reproducibility of in vivo dosimetry for pencil beam scanned FLASH proton treatment in mice. Radiother Oncol 2024; 198:110404. [PMID: 38942121 DOI: 10.1016/j.radonc.2024.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
PURPOSE To investigate quality assurance (QA) techniques for in vivo dosimetry and establish its routine uses for proton FLASH small animal experiments with a saturated monitor chamber. METHODS AND MATERIALS 227 mice were irradiated at FLASH or conventional (CONV) dose rates with a 250 MeV FLASH-capable proton beamline using pencil beam scanning to characterize the proton FLASH effect on abdominal irradiation and examining various endpoints. A 2D strip ionization chamber array (SICA) detector was positioned upstream of collimation and used for in vivo dose monitoring during irradiation. Before each irradiation series, SICA signal was correlated with the isocenter dose at each delivered dose rate. Dose, dose rate, and 2D dose distribution for each mouse were monitored with the SICA detector. RESULTS Calibration curves between the upstream SICA detector signal and the delivered dose at isocenter had good linearity with minimal R2 values of 0.991 (FLASH) and 0.985 (CONV), and slopes were consistent for each modality. After reassigning mice, standard deviations were less than 1.85 % (FLASH) and 0.83 % (CONV) for all dose levels, with no individual subject dose falling outside a ± 3.6 % range of the designated dose. FLASH fields had a field-averaged dose rate of 79.0 ± 0.8 Gy/s and mean local average dose rate of 160.6 ± 3.0 Gy/s. In vivo dosimetry allowed for the accurate detection of variation between the delivered and the planned dose. CONCLUSION In vivo dosimetry benefits FLASH experiments through enabling real-time dose and dose rate monitoring allowing mouse cohort regrouping when beam fluctuation causes delivered dose to vary from planned dose.
Collapse
Affiliation(s)
| | | | | | - Yunjie Yang
- New York Proton Center, New York, NY, USA; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brett I Bell
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael Pennock
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pingfang Tsai
- New York Proton Center, New York, NY, USA; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wolfgang A Tomé
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Onco-Physics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - J Isabelle Choi
- New York Proton Center, New York, NY, USA; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Haibo Lin
- New York Proton Center, New York, NY, USA; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Charles B Simone
- New York Proton Center, New York, NY, USA; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Onco-Physics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Minglei Kang
- New York Proton Center, New York, NY, USA; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
15
|
Fenwick JD, Mayhew C, Jolly S, Amos RA, Hawkins MA. Navigating the straits: realizing the potential of proton FLASH through physics advances and further pre-clinical characterization. Front Oncol 2024; 14:1420337. [PMID: 39022584 PMCID: PMC11252699 DOI: 10.3389/fonc.2024.1420337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Ultra-high dose-rate 'FLASH' radiotherapy may be a pivotal step forward for cancer treatment, widening the therapeutic window between radiation tumour killing and damage to neighbouring normal tissues. The extent of normal tissue sparing reported in pre-clinical FLASH studies typically corresponds to an increase in isotoxic dose-levels of 5-20%, though gains are larger at higher doses. Conditions currently thought necessary for FLASH normal tissue sparing are a dose-rate ≥40 Gy s-1, dose-per-fraction ≥5-10 Gy and irradiation duration ≤0.2-0.5 s. Cyclotron proton accelerators are the first clinical systems to be adapted to irradiate deep-seated tumours at FLASH dose-rates, but even using these machines it is challenging to meet the FLASH conditions. In this review we describe the challenges for delivering FLASH proton beam therapy, the compromises that ensue if these challenges are not addressed, and resulting dosimetric losses. Some of these losses are on the same scale as the gains from FLASH found pre-clinically. We therefore conclude that for FLASH to succeed clinically the challenges must be systematically overcome rather than accommodated, and we survey physical and pre-clinical routes for achieving this.
Collapse
Affiliation(s)
- John D. Fenwick
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Christopher Mayhew
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Simon Jolly
- Department of Physics and Astronomy, University College London, London, United Kingdom
| | - Richard A. Amos
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Maria A. Hawkins
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Clinical Oncology, Radiotherapy Department, University College London NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
16
|
Garibaldi C, Beddar S, Bizzocchi N, Tobias Böhlen T, Iliaskou C, Moeckli R, Psoroulas S, Subiel A, Taylor PA, Van den Heuvel F, Vanreusel V, Verellen D. Minimum and optimal requirements for a safe clinical implementation of ultra-high dose rate radiotherapy: A focus on patient's safety and radiation protection. Radiother Oncol 2024; 196:110291. [PMID: 38648991 DOI: 10.1016/j.radonc.2024.110291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Cristina Garibaldi
- IEO, Unit of Radiation Research, European Institute of Oncology IRCCS, 20141 Milan, Italy.
| | - Sam Beddar
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicola Bizzocchi
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Charoula Iliaskou
- Division of Medical Physics, Department of Radiation Oncology, University Medical Center Freiburg, 79106, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - Anna Subiel
- National Physical Laboratory, Medical Radiation Science, Teddington, UK
| | - Paige A Taylor
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank Van den Heuvel
- Zuidwest Radiotherapeutisch Institute, Vlissingen, the Netherlands; Dept of Oncology, University of Oxford, Oxford, UK
| | - Verdi Vanreusel
- Iridium Netwerk, Antwerp University (Centre for Oncological Research, CORE), Antwerpen, Belgium; SCK CEN (Research in Dosimetric Applications), Mol, Belgium
| | - Dirk Verellen
- Iridium Netwerk, Antwerp University (Centre for Oncological Research, CORE), Antwerpen, Belgium
| |
Collapse
|
17
|
Yagi M, Shimizu S, Hamatani N, Miyoshi T, Nomura T, Toyoda T, Nakatani M, Tsubouchi T, Shimizu M, Kuwana Y, Umezawa M, Takashina M, Nishio T, Koizumi M, Ogawa K, Kanai T. Development and characterization of a dedicated dose monitor for ultrahigh-dose-rate scanned carbon-ion beams. Sci Rep 2024; 14:11574. [PMID: 38773165 PMCID: PMC11109334 DOI: 10.1038/s41598-024-62148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 05/14/2024] [Indexed: 05/23/2024] Open
Abstract
The current monochromatic beam mode (i.e., uHDR irradiation mode) of the scanned carbon-ion beam lacks a dedicated dose monitor, making the beam control challenging. We developed and characterized a dedicated dose monitor for uHDR-scanned carbon-ion beams. Furthermore, a simple measurable dose rate (dose rate per spot (DRspot)) was suggested by using the developed dose monitor and experimentally validating quantities relevant to the uHDR scanned carbon-ion beam. A large plane-parallel ionization chamber (IC) with a smaller electrode spacing was used to reduce uHDR recombination effects, and a dedicated operational amplifier was manufactured for the uHDR-scanned carbon-ion beam. The dose linearity of the IC was within ± 1% in the range of 1.8-12.3 Gy. The spatial inhomogeneity of the dose response of the IC was ± 0.38% inside the ± 40-mm detector area, and a systematic deviation of approximately 2% was measured at the edge of the detector. uHDR irradiation with beam scanning was tested and verified for different doses at the corresponding dose rates (in terms of both the average dose rate and DRspot). We confirmed that the dose monitor can highlight the characteristics (i.e., dose, dose rate, and dose profile) of uHDR-scanned carbon-ion beams at several dose levels in the monochromatic beam mode.
Collapse
Affiliation(s)
- Masashi Yagi
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Shinichi Shimizu
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriaki Hamatani
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Takuto Miyoshi
- Hitachi, Ltd. Research & Development Group, Ibaraki, Japan
- Healthcare Business Groupe, Hitachi High-Tech Corporation, Chiba, Japan
| | - Takuya Nomura
- Healthcare Business Division, Hitachi, Ltd, Chiba, Japan
- Healthcare Business Groupe, Hitachi High-Tech Corporation, Chiba, Japan
| | - Takashi Toyoda
- Healthcare Business Division, Hitachi, Ltd, Chiba, Japan
- Healthcare Business Groupe, Hitachi High-Tech Corporation, Chiba, Japan
| | - Mahoro Nakatani
- Medical Physics Laboratory, Division of Health Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshiro Tsubouchi
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Masaki Shimizu
- Healthcare Business Division, Hitachi, Ltd, Chiba, Japan
- Healthcare Business Groupe, Hitachi High-Tech Corporation, Chiba, Japan
| | - Yoshiaki Kuwana
- Healthcare Business Division, Hitachi, Ltd, Chiba, Japan
- Healthcare Business Groupe, Hitachi High-Tech Corporation, Chiba, Japan
| | - Masumi Umezawa
- Healthcare Business Division, Hitachi, Ltd, Chiba, Japan
- Healthcare Business Groupe, Hitachi High-Tech Corporation, Chiba, Japan
| | - Masaaki Takashina
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Teiji Nishio
- Medical Physics Laboratory, Division of Health Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka, Japan
- Department of Radiation Oncology, Nozaki Tokushukai Hospital, Osaka, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tatsuaki Kanai
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| |
Collapse
|
18
|
Whitmore L, Mackay RI, van Herk M, Korysko P, Farabolini W, Malyzhenkov A, Corsini R, Jones RM. CERN-based experiments and Monte-Carlo studies on focused dose delivery with very high energy electron (VHEE) beams for radiotherapy applications. Sci Rep 2024; 14:11120. [PMID: 38750131 PMCID: PMC11096185 DOI: 10.1038/s41598-024-60997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Very High Energy Electron (VHEE) beams are a promising alternative to conventional radiotherapy due to their highly penetrating nature and their applicability as a modality for FLASH (ultra-high dose-rate) radiotherapy. The dose distributions due to VHEE need to be optimised; one option is through the use of quadrupole magnets to focus the beam, reducing the dose to healthy tissue and allowing for targeted dose delivery at conventional or FLASH dose-rates. This paper presents an in depth exploration of the focusing achievable at the current CLEAR (CERN Linear Electron Accelerator for Research) facility, for beam energies >200 MeV. A shorter, more optimal quadrupole setup was also investigated using the TOPAS code in Monte Carlo simulations, with dimensions and beam parameters more appropriate to a clinical situation. This work provides insight into how a focused VHEE radiotherapy beam delivery system might be achieved.
Collapse
Affiliation(s)
- L Whitmore
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
- The Cockcroft Institute of Science and Technology, Daresbury, UK
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, USA
| | - R I Mackay
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - M van Herk
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - P Korysko
- Department of Physics, University of Oxford, Oxford, UK
- CERN, 1211, Geneva 23, Switzerland
| | | | | | | | - R M Jones
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK.
- The Cockcroft Institute of Science and Technology, Daresbury, UK.
| |
Collapse
|
19
|
Böhlen TT, Germond JF, Desorgher L, Veres I, Bratel A, Landström E, Engwall E, Herrera FG, Ozsahin EM, Bourhis J, Bochud F, Moeckli R. Very high-energy electron therapy as light-particle alternative to transmission proton FLASH therapy - An evaluation of dosimetric performances. Radiother Oncol 2024; 194:110177. [PMID: 38378075 DOI: 10.1016/j.radonc.2024.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
PURPOSE Clinical translation of FLASH-radiotherapy (RT) to deep-seated tumours is still a technological challenge. One proposed solution consists of using ultra-high dose rate transmission proton (TP) beams of about 200-250 MeV to irradiate the tumour with the flat entrance of the proton depth-dose profile. This work evaluates the dosimetric performance of very high-energy electron (VHEE)-based RT (50-250 MeV) as a potential alternative to TP-based RT for the clinical transfer of the FLASH effect. METHODS Basic physics characteristics of VHEE and TP beams were compared utilizing Monte Carlo simulations in water. A VHEE-enabled research treatment planning system was used to evaluate the plan quality achievable with VHEE beams of different energies, compared to 250 MeV TP beams for a glioblastoma, an oesophagus, and a prostate cancer case. RESULTS Like TP, VHEE above 100 MeV can treat targets with roughly flat (within ± 20 %) depth-dose distributions. The achievable dosimetric target conformity and adjacent organs-at-risk (OAR) sparing is consequently driven for both modalities by their lateral beam penumbrae. Electron beams of 400[500] MeV match the penumbra of 200[250] MeV TP beams and penumbra is increased for lower electron energies. For the investigated patient cases, VHEE plans with energies of 150 MeV and above achieved a dosimetric plan quality comparable to that of 250 MeV TP plans. For the glioblastoma and the oesophagus case, although having a decreased conformity, even 100 MeV VHEE plans provided a similar target coverage and OAR sparing compared to TP. CONCLUSIONS VHEE-based FLASH-RT using sufficiently high beam energies may provide a lighter-particle alternative to TP-based FLASH-RT with comparable dosimetric plan quality.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Laurent Desorgher
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Izabella Veres
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | | | | | | | - Fernanda G Herrera
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Esat Mahmut Ozsahin
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| |
Collapse
|
20
|
Ma C, Zhou J, Chang CW, Wang Y, Patel PR, Yu DS, Tian S, Yang X. Streamlined pin-ridge-filter design for single-energy proton FLASH planning. Med Phys 2024; 51:2955-2966. [PMID: 38214381 DOI: 10.1002/mp.16939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/24/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND FLASH radiotherapy (FLASH-RT) with ultra-high dose rate has yielded promising results in reducing normal tissue toxicity while maintaining tumor control. Planning with single-energy proton beams modulated by ridge filters (RFs) has been demonstrated feasible for FLASH-RT. PURPOSE This study explored the feasibility of a streamlined pin-shaped RF (pin-RF) design, characterized by coarse resolution and sparsely distributed ridge pins, for single-energy proton FLASH planning. METHODS An inverse planning framework integrated within a treatment planning system was established to design streamlined pin RFs for single-energy FLASH planning. The framework involves generating a multi-energy proton beam plan using intensity-modulated proton therapy (IMPT) planning based on downstream energy modulation strategy (IMPT-DS), followed by a nested pencil-beam-direction-based (PBD-based) spot reduction process to iteratively reduce the total number of PBDs and energy layers along each PBD for the IMPT-DS plan. The IMPT-DS plan is then translated into the pin-RFs and the single-energy beam configurations for IMPT planning with pin-RFs (IMPT-RF). This framework was validated on three lung cases, quantifying the FLASH dose of the IMPT-RF plan using the FLASH effectiveness model. The FLASH dose was then compared to the reference dose of a conventional IMPT plan to measure the clinical benefit of the FLASH planning technique. RESULTS The IMPT-RF plans closely matched the corresponding IMPT-DS plans in high dose conformity (conformity index of <1.2), with minimal changes in V7Gy and V7.4 Gy for the lung (<3%) and small increases in maximum doses (Dmax) for other normal structures (<3.4 Gy). Comparing the FLASH doses to the doses of corresponding IMPT-RF plans, drastic reductions of up to nearly 33% were observed in Dmax for the normal structures situated in the high-to-moderate-dose regions, while negligible changes were found in Dmax for normal structures in low-dose regions. Positive clinical benefits were seen in comparing the FLASH doses to the reference doses, with notable reductions of 21.4%-33.0% in Dmax for healthy tissues in the high-dose regions. However, in the moderate-to-low-dose regions, only marginal positive or even negative clinical benefit for normal tissues were observed, such as increased lung V7Gy and V7.4 Gy (up to 17.6%). CONCLUSIONS A streamlined pin-RF design was developed and its effectiveness for single-energy proton FLASH planning was validated, revealing positive clinical benefits for the normal tissues in the high dose regions. The coarsened design of the pin-RF demonstrates potential advantages, including cost efficiency and ease of adjustability, making it a promising option for efficient production.
Collapse
Affiliation(s)
- Chaoqiong Ma
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Yinan Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Pretesh R Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - David S Yu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Sibo Tian
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
21
|
Daartz J, Madden TM, Lalonde A, Cascio E, Verburg J, Shih H, MacDonald S, Hachadorian R, Schuemann J. Voxel-wise dose rate calculation in clinical pencil beam scanning proton therapy. Phys Med Biol 2024; 69:10.1088/1361-6560/ad2713. [PMID: 38324902 PMCID: PMC11515894 DOI: 10.1088/1361-6560/ad2713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Objective. Clinical outcomes after proton therapy have shown some variability that is not fully understood. Different approaches have been suggested to explain the biological outcome, but none has yet provided a comprehensive and satisfactory rationale for observed toxicities. The relatively recent transition from passive scattering (PS) to pencil beam scanning (PBS) treatments has significantly increased the voxel-wise dose rate in proton therapy. In addition, the dose rate distribution is no longer uniform along the cross section of the target but rather highly heterogeneous, following the spot placement. We suggest investigating dose rate as potential contributor to a more complex proton RBE model.Approach. Due to the time structure of the PBS beam delivery the instantaneous dose rate is highly variable voxel by voxel. Several possible parameters to represent voxel-wise dose rate for a given clinical PBS treatment plan are detailed. These quantities were implemented in the scripting environment of our treatment planning system, and computations experimentally verified. Sample applications to treated patient plans are shown.Main results. Computed dose rates we experimentally confirmed. Dose rate maps vary depending on which method is used to represent them. Mainly, the underlying time and dose intervals chosen determine the topography of the resultant distributions. The maximum dose rates experienced by any target voxel in a given PBS treatment plan in our system range from ∼100 to ∼450 Gy(RBE)/min, a factor of 10-100 increase compared to PS. These dose rate distributions are very heterogeneous, with distinct hot spots.Significance. Voxel-wise dose rates for current clinical PBS treatment plans vary greatly from clinically established practice with PS. The exploration of different dose rate measures to evaluate potential correlations with observed clinical outcomes is suggested, potentially adding a missing component in the understanding of proton relative biological effectiveness (RBE).
Collapse
Affiliation(s)
- Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Thomas M Madden
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Arthur Lalonde
- Centre Hospitalier de l'Université de Montréal, Montréal, Canada
| | - Ethan Cascio
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Joost Verburg
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Helen Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Shannon MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Rachael Hachadorian
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| |
Collapse
|
22
|
Rank L, Dogan O, Kopp B, Mein S, Verona-Rinati G, Kranzer R, Marinelli M, Mairani A, Tessonnier T. Development and benchmarking of a dose rate engine for raster-scanned FLASH helium ions. Med Phys 2024; 51:2251-2262. [PMID: 37847027 PMCID: PMC10939952 DOI: 10.1002/mp.16793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Radiotherapy with charged particles at high dose and ultra-high dose rate (uHDR) is a promising technique to further increase the therapeutic index of patient treatments. Dose rate is a key quantity to predict the so-called FLASH effect at uHDR settings. However, recent works introduced varying calculation models to report dose rate, which is susceptible to the delivery method, scanning path (in active beam delivery) and beam intensity. PURPOSE This work introduces an analytical dose rate calculation engine for raster scanned charged particle beams that is able to predict dose rate from the irradiation plan and recorded beam intensity. The importance of standardized dose rate calculation methods is explored here. METHODS Dose is obtained with an analytical pencil beam algorithm, using pre-calculated databases for integrated depth dose distributions and lateral penumbra. Dose rate is then calculated by combining dose information with the respective particle fluence (i.e., time information) using three dose-rate-calculation models (mean, instantaneous, and threshold-based). Dose rate predictions for all three models are compared to uHDR helium ion beam (145.7 MeV/u, range in water of approximatively 14.6 cm) measurements performed at the Heidelberg Ion Beam Therapy Center (HIT) with a diamond-detector prototype. Three scanning patterns (scanned or snake-like) and four field sizes are used to investigate the dose rate differences. RESULTS Dose rate measurements were in good agreement with in-silico generated distributions using the here introduced engine. Relative differences in dose rate were below 10% for varying depths in water, from 2.3 to 14.8 cm, as well as laterally in a near Bragg peak area. In the entrance channel of the helium ion beam, dose rates were predicted within 7% on average for varying irradiated field sizes and scanning patterns. Large differences in absolute dose rate values were observed for varying calculation methods. For raster-scanned irradiations, the deviation between mean and threshold-based dose rate at the investigated point was found to increase with the field size up to 63% for a 10 mm × 10 mm field, while no significant differences were observed for snake-like scanning paths. CONCLUSIONS This work introduces the first dose rate calculation engine benchmarked to instantaneous dose rate, enabling dose rate predictions for physical and biophysical experiments. Dose rate is greatly affected by varying particle fluence, scanning path, and calculation method, highlighting the need for a consensus among the FLASH community on how to calculate and report dose rate in the future. The here introduced engine could help provide the necessary details for the analysis of the sparing effect and uHDR conditions.
Collapse
Affiliation(s)
- Luisa Rank
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Karlsruhe Institute of Technology (KIT), Faculty of Physics, Karlsruhe, Germany
| | - Ozan Dogan
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg University, Faculty of Physics and Astronomy, Heidelberg, Germany
| | - Benedikt Kopp
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stewart Mein
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital (UKHD), Heidelberg Faculty of Medicine (MFHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Rafael Kranzer
- PTW-Freiburg, Freiburg, Germany
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Marco Marinelli
- Industrial Engineering Department, University of Rome “Tor Vergata”, Rome, Italy
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital (UKHD), Heidelberg Faculty of Medicine (MFHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Physics, National Centre of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital (UKHD), Heidelberg Faculty of Medicine (MFHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
23
|
Wu X, Luo H, Wang Q, Du T, Chen Y, Tan M, Liu R, Liu Z, Sun S, Yang K, Tian J, Zhang Q. Examining the Occurrence of the FLASH Effect in Animal Models: A Systematic Review and Meta-Analysis of Ultra-High Dose Rate Proton or Carbon Ion Irradiation. Technol Cancer Res Treat 2024; 23:15330338241289990. [PMID: 39512217 PMCID: PMC11544673 DOI: 10.1177/15330338241289990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 11/15/2024] Open
Abstract
Purpose: This systematic review and meta-analysis sought to assess whether ultra-high dose rate (UHDR) ion irradiations can induce the FLASH effect in animal models. Methods: A comprehensive search of the Web of Science, PubMed, and EMBASE databases was conducted from inception until March 20, 2023, to identify studies involving irradiated animals subjected to proton or carbon ion beams at varying dose rates. The research content should include various indicators that can reflect the effect and safety of radiation, such as survival, normal tissue toxicity, inflammatory response, tumor volume, etc Results: Compared to conventional dose rate (CONV) ion irradiations, UHDR ion irradiations can significantly improve mouse survival (HR 0.48, 95% CI 0.29 to 0.78, I2 = 0%) and maintain comparable tumor control. There was no significant impact of different dose rates on the survival of zebrafish embryos (SMD 0.11, 95% CI -0.31 to 0.53, I2 = 85%). Subgroup analysis showed that radiation dose was an important factor affecting the survival of zebrafish embryos. Achieving normal tissue sparing may require higher radiation dose under UHD.In mouse and zebrafish embryo models, normal tissue sparing did not always occur after UHDR ion irradiations. In addition, only a limited number of cytokines (CXCL1, IL-6, GM-CSF, G-CSF, HMGB1, and TGF-β) and immune cells (microglia and myeloid cells) showed differences at different dose rates. Conclusions: UHDR ion irradiation can achieve FLASH effect, but the reproducibility of normal tissue sparing remains a challenge. Compared to CONV irradiation, UHDR ion irradiations demonstrated equivalent or even superior tumor control.
Collapse
Affiliation(s)
- Xun Wu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Qian Wang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Tianqi Du
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Yanliang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Mingyu Tan
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Zhiqiang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Shilong Sun
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- Graduate School, University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100000, People's Republic of China
| |
Collapse
|
24
|
Liu G, Zhao L, Li X, Zhang S, Dai S, Lu X, Ding X. A Novel Ultrahigh-Dose-Rate Proton Therapy Technology: Spot-Scanning Proton Arc Therapy + FLASH (SPLASH). Int J Radiat Oncol Biol Phys 2023; 117:730-737. [PMID: 37196836 DOI: 10.1016/j.ijrobp.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/10/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE To take full advantage of FLASH dose rate (40 Gy/s) and high-dose conformity, we introduce a novel optimization and delivery technique, the spot-scanning proton arc therapy (SPArc) + FLASH (SPLASH). METHODS AND MATERIALS SPLASH framework was implemented in an open-source proton planning platform (MatRad, Department of Medical Physics in Radiation Oncology, German Cancer Research Center). It optimizes with the clinical dose-volume constraint based on dose distribution and the dose-average dose rate by minimizing the monitor unit constraint on spot weight and accelerator beam current sequentially, enabling the first dynamic arc therapy with voxel-based FLASH dose rate. This new optimization framework minimizes the overall cost function value combined with plan quality and voxel-based dose-rate constraints. Three representative cases (brain, liver, and prostate cancer) were used for testing purposes. Dose-volume histogram, dose-rate-volume histogram, and dose-rate map were compared among intensity modulated proton radiation therapy (IMPT), SPArc, and SPLASH. RESULTS SPLASH/SPArc could offer superior plan quality over IMPT in terms of dose conformity. The dose-rate-volume histogram results indicated SPLASH could significantly improve V40 Gy/s in the target and region of interest for all tested cases compared with SPArc and IMPT. The optimal beam current per spot is simultaneously generated, which is within the existing proton machine specifications in the research version (<200 nA). CONCLUSIONS SPLASH offers the first voxel-based ultradose-rate and high-dose conformity treatment using proton beam therapy. Such a technique has the potential to fit the needs of a broad range of disease sites and simplify clinical workflow without applying a patient-specific ridge filter, which has never before been demonstrated.
Collapse
Affiliation(s)
- Gang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023 China.
| | - Lewei Zhao
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - Xiaoqiang Li
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023 China.
| | - Shuyang Dai
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072 China
| | - Xiliang Lu
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072 China
| | - Xuanfeng Ding
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan.
| |
Collapse
|
25
|
Deffet S, Hamaide V, Sterpin E. Definition of dose rate for FLASH pencil-beam scanning proton therapy: A comparative study. Med Phys 2023; 50:5784-5792. [PMID: 37439504 DOI: 10.1002/mp.16607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND FLASH proton therapy has the potential to reduce side effects of conventional proton therapy by delivering a high dose of radiation in a very short period of time. However, significant progress is needed in the development of FLASH proton therapy. Increasing the dose rate while maintaining dose conformality may involve the use of advanced beam-shaping technologies and specialized equipment such as 3D patient-specific range modulators, to take advantage of the higher transmission efficiency at the highest energy available. The dose rate is an important factor in FLASH proton therapy, but its definition can vary because of the uneven distribution of the dose over time in pencil-beam scanning (PBS). PURPOSE Highlight the distinctions, both in terms of concept and numerical values, of the various definitions that can be established for the dose rate in PBS proton therapy. METHODS In an in silico study, five definitions of the dose rate, namely the PBS dose rate, the percentile dose rate, the maximum percentile dose rate, the average dose rate, and the dose averaged dose rate (DADR) were analyzed first through theoretical comparison, and then applied to a head and neck case. To carry out this study, a treatment plan utilizing a single energy level and requiring the use of a patient-specific range modulator was employed. The dose rate values were compared both locally and by means of dose rate volume histograms (DRVHs). RESULTS The PBS dose rate, the percentile dose rate, and the maximum percentile dose are definitions that are specifically designed to take into account the time structure of the delivery of a PBS treatment plan. Although they may appear similar, our study shows that they can vary locally by up to 10%. On the other hand, the DADR values were approximately twice as high as those of the PBS, percentile, and maximum percentile dose rates, since the DADR disregards the periods when a voxel does not receive any dose. Finally, the average dose rate can be defined in various ways, as discussed in this paper. The average dose rate is found to be lower by a factor of approximately 1/2 than the PBS, percentile, and maximum percentile dose rates. CONCLUSIONS We have shown that using different definitions for the dose rate in FLASH proton therapy can lead to variations in calculated values ranging from a few percent to a factor of two. Since the dose rate is a critical parameter in FLASH radiation therapy, it is essential to carefully consider the choice of definition. However, to make an informed decision, additional biological data and models are needed.
Collapse
Affiliation(s)
- Sylvain Deffet
- Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | | | - Edmond Sterpin
- Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Louvain-La-Neuve, Belgium
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Leuven, Belgium
- Particle Therapy Interuniversity Center Leuven-PARTICLE, Leuven, Belgium
| |
Collapse
|
26
|
Zou W, Zhang R, Schüler E, Taylor PA, Mascia AE, Diffenderfer ES, Zhao T, Ayan AS, Sharma M, Yu SJ, Lu W, Bosch WR, Tsien C, Surucu M, Pollard-Larkin JM, Schuemann J, Moros EG, Bazalova-Carter M, Gladstone DJ, Li H, Simone CB, Petersson K, Kry SF, Maity A, Loo BW, Dong L, Maxim PG, Xiao Y, Buchsbaum JC. Framework for Quality Assurance of Ultrahigh Dose Rate Clinical Trials Investigating FLASH Effects and Current Technology Gaps. Int J Radiat Oncol Biol Phys 2023; 116:1202-1217. [PMID: 37121362 PMCID: PMC10526970 DOI: 10.1016/j.ijrobp.2023.04.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
FLASH radiation therapy (FLASH-RT), delivered with ultrahigh dose rate (UHDR), may allow patients to be treated with less normal tissue toxicity for a given tumor dose compared with currently used conventional dose rate. Clinical trials are being carried out and are needed to test whether this improved therapeutic ratio can be achieved clinically. During the clinical trials, quality assurance and credentialing of equipment and participating sites, particularly pertaining to UHDR-specific aspects, will be crucial for the validity of the outcomes of such trials. This report represents an initial framework proposed by the NRG Oncology Center for Innovation in Radiation Oncology FLASH working group on quality assurance of potential UHDR clinical trials and reviews current technology gaps to overcome. An important but separate consideration is the appropriate design of trials to most effectively answer clinical and scientific questions about FLASH. This paper begins with an overview of UHDR RT delivery methods. UHDR beam delivery parameters are then covered, with a focus on electron and proton modalities. The definition and control of safe UHDR beam delivery and current and needed dosimetry technologies are reviewed and discussed. System and site credentialing for large, multi-institution trials are reviewed. Quality assurance is then discussed, and new requirements are presented for treatment system standard analysis, patient positioning, and treatment planning. The tables and figures in this paper are meant to serve as reference points as we move toward FLASH-RT clinical trial performance. Some major questions regarding FLASH-RT are discussed, and next steps in this field are proposed. FLASH-RT has potential but is associated with significant risks and complexities. We need to redefine optimization to focus not only on the dose but also on the dose rate in a manner that is robust and understandable and that can be prescribed, validated, and confirmed in real time. Robust patient safety systems and access to treatment data will be critical as FLASH-RT moves into the clinical trials.
Collapse
Affiliation(s)
- Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Rongxiao Zhang
- Department of Radiation Oncology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Emil Schüler
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paige A Taylor
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Ahmet S Ayan
- Department of Radiation Oncology, Ohio State University, Columbus, OH, USA
| | - Manju Sharma
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Shu-Jung Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Weiguo Lu
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, TX, USA
| | - Walter R Bosch
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Christina Tsien
- Department of Radiation Oncology, McGill University Health Center, Montreal, QC, Canada
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julianne M Pollard-Larkin
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eduardo G Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - David J Gladstone
- Department of Radiation Oncology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Heng Li
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, NY, USA
| | - Kristoffer Petersson
- Department of Radiation Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Stephen F Kry
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amit Maity
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter G Maxim
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey C Buchsbaum
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Graeff C, Volz L, Durante M. Emerging technologies for cancer therapy using accelerated particles. PROGRESS IN PARTICLE AND NUCLEAR PHYSICS 2023; 131:104046. [PMID: 37207092 PMCID: PMC7614547 DOI: 10.1016/j.ppnp.2023.104046] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cancer therapy with accelerated charged particles is one of the most valuable biomedical applications of nuclear physics. The technology has vastly evolved in the past 50 years, the number of clinical centers is exponentially growing, and recent clinical results support the physics and radiobiology rationale that particles should be less toxic and more effective than conventional X-rays for many cancer patients. Charged particles are also the most mature technology for clinical translation of ultra-high dose rate (FLASH) radiotherapy. However, the fraction of patients treated with accelerated particles is still very small and the therapy is only applied to a few solid cancer indications. The growth of particle therapy strongly depends on technological innovations aiming to make the therapy cheaper, more conformal and faster. The most promising solutions to reach these goals are superconductive magnets to build compact accelerators; gantryless beam delivery; online image-guidance and adaptive therapy with the support of machine learning algorithms; and high-intensity accelerators coupled to online imaging. Large international collaborations are needed to hasten the clinical translation of the research results.
Collapse
Affiliation(s)
- Christian Graeff
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Planckstraße 1, 64291 Darmstadt, Germany
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Lennart Volz
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Planckstraße 1, 64291 Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Planckstraße 1, 64291 Darmstadt, Germany
- Technische Universität Darmstadt, Darmstadt, Germany
- Dipartimento di Fisica “Ettore Pancini”, University Federico II, Naples, Italy
| |
Collapse
|
28
|
Ma C, Yang X, Chang CW, Liu R, Bohannon D, Lin L, Liu T, Tian S, Zhou J. Feasibility study of hybrid inverse planning with transmission beams and single-energy spread-out Bragg peaks for proton FLASH radiotherapy. Med Phys 2023; 50:3687-3700. [PMID: 36932635 PMCID: PMC11700378 DOI: 10.1002/mp.16370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Ultra-high dose rate (FLASH) proton planning with only transmission beams (TBs) has limitations in normal tissue sparing. The single-energy spread-out Bragg peaks (SESOBPs) of the FLASH dose rate have been demonstrated feasible for proton FLASH planning. PURPOSE To investigate the feasibility of combining TBs and SESOBPs for proton FLASH treatment. METHODS A hybrid inverse optimization method was developed to combine the TBs and SESOBPs (TB-SESOBP) for FLASH planning. The SESOBPs were generated field-by-field from spreading out the BPs by pre-designed general bar ridge filters (RFs) and placed at the central target by range shifters (RSs) to obtain a uniform dose within the target. The SESOBPs and TBs were fully placed field-by-field allowing automatic spot selection and weighting in the optimization process. A spot reduction strategy was conducted in the optimization process to push up the minimum MU/spot assuring the plan deliverability at beam current of 165 nA. The TB-SESOBP plans were validated in comparison with the TB only (TB-only) plans and the plans with the combination of TBs and BPs (TB-BP plans) regarding 3D dose and dose rate (dose-averaged dose rate) distributions for five lung cases. The FLASH dose rate coverage (V40Gy/s ) was evaluated in the structure volume receiving > 10% of the prescription dose. RESULTS Compared to the TB-only plans, the mean spinal cord D1.2cc drastically reduced by 41% (P < 0.05), the mean lung V7Gy and V7.4 Gy moderately reduced by up to 17% (P < 0.05), and the target dose homogeneity slightly increased in the TB-SESOBP plans. Comparable dose homogeneity was achieved in both TB-SESOBP and TB-BP plans. Besides, prominent improvements were achieved in lung sparing for the cases of relatively large targets by the TB-SESOBP plans compared to the TB-BP plans. The targets and the skin were fully covered with the FLASH dose rate in all three plans. For the OARs, V40Gy/s = 100% was achieved by the TB-only plans while V40Gy/s > 85% was obtained by the other two plans. CONCLUSION We have demonstrated that the hybrid TB-SESOBP planning was feasible to achieve FLASH dose rate for proton therapy. With pre-designed general bar RFs, the hybrid TB-SESOBP planning could be implemented for proton adaptive FLASH radiotherapy. As an alternative FLASH planning approach to TB-only planning, the hybrid TB-SESOBP planning has great potential in dosimetrically improving OAR sparing while maintaining high target dose homogeneity.
Collapse
Affiliation(s)
- Chaoqiong Ma
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| | - Chih-Wei Chang
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| | - Ruirui Liu
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| | - Duncan Bohannon
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| | - Liyong Lin
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| | - Tian Liu
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| | - Sibo Tian
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| | - Jun Zhou
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
29
|
van Marlen P, van de Water S, Dahele M, Slotman BJ, Verbakel WFAR. Single Ultra-High Dose Rate Proton Transmission Beam for Whole Breast FLASH-Irradiation: Quantification of FLASH-Dose and Relation with Beam Parameters. Cancers (Basel) 2023; 15:cancers15092579. [PMID: 37174045 PMCID: PMC10177419 DOI: 10.3390/cancers15092579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Healthy tissue-sparing effects of FLASH (≥40 Gy/s, ≥4-8 Gy/fraction) radiotherapy (RT) make it potentially useful for whole breast irradiation (WBI), since there is often a lot of normal tissue within the planning target volume (PTV). We investigated WBI plan quality and determined FLASH-dose for various machine settings using ultra-high dose rate (UHDR) proton transmission beams (TBs). While five-fraction WBI is commonplace, a potential FLASH-effect might facilitate shorter treatments, so hypothetical 2- and 1-fraction schedules were also analyzed. Using one tangential 250 MeV TB delivering 5 × 5.7 Gy, 2 × 9.74 Gy or 1 × 14.32 Gy, we evaluated: (1) spots with equal monitor units (MUs) in a uniform square grid with variable spacing; (2) spot MUs optimized with a minimum MU-threshold; and (3) splitting the optimized TB into two sub-beams: one delivering spots above an MU-threshold, i.e., at UHDRs; the other delivering the remaining spots necessary to improve plan quality. Scenarios 1-3 were planned for a test case, and scenario 3 was also planned for three other patients. Dose rates were calculated using the pencil beam scanning dose rate and the sliding-window dose rate. Various machine parameters were considered: minimum spot irradiation time (minST): 2 ms/1 ms/0.5 ms; maximum nozzle current (maxN): 200 nA/400 nA/800 nA; two gantry-current (GC) techniques: energy-layer and spot-based. For the test case (PTV = 819 cc) we found: (1) a 7 mm grid achieved the best balance between plan quality and FLASH-dose for equal-MU spots; (2) near the target boundary, lower-MU spots are necessary for homogeneity but decrease FLASH-dose; (3) the non-split beam achieved >95% FLASH for favorable (not clinically available) machine parameters (SB GC, low minST, high maxN), but <5% for clinically available settings (EB GC, minST = 2 ms, maxN = 200 nA); and (4) splitting gave better plan quality and higher FLASH-dose (~50%) for available settings. The clinical cases achieved ~50% (PTV = 1047 cc) or >95% (PTV = 477/677 cc) FLASH after splitting. A single UHDR-TB for WBI can achieve acceptable plan quality. Current machine parameters limit FLASH-dose, which can be partially overcome using beam-splitting. WBI FLASH-RT is technically feasible.
Collapse
Affiliation(s)
- Patricia van Marlen
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands
| | - Steven van de Water
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands
| | - Max Dahele
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands
| | - Berend J Slotman
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands
| | - Wilko F A R Verbakel
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
30
|
Zhang G, Zhang Z, Gao W, Quan H. Treatment planning consideration for very high-energy electron FLASH radiotherapy. Phys Med 2023; 107:102539. [PMID: 36804694 DOI: 10.1016/j.ejmp.2023.102539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
PURPOSE Very high-energy electron (VHEE) can make up the insufficient treatment depth of the low-energy electron while offering an intermediate dosimetric advantage between photon and proton. Combining FLASH with VHEE, a quantitative comparison between different energies was made, with regard to plan quality, dose rate distribution (both in PTV and OAR), and total duration of treatment (beam-on time). METHODS In two patient cases (head and lung), we created the treatment plans utilizing the scanning pencil beam via the Monte Carlo simulation and a PTV-based optimization algorithm. Geant4 was used to simulate VHEE pencil beams and sizes of 0.3-5 mm defined by the full width at half maximum (FWHM). Monoenergetic beams with Gaussian distribution in x and y directions (ISOURC = 19) were used as the source of electrons. A large-scale non-linear solver (IPOPT) was used to calculate the optimal spot weights. After optimization, a quantitative comparison between different energies was made regarding treatment plan quality, dose rate distribution (both in PTV and OAR), and total beam duration. RESULTS For head (80 MeV, 100 MeV, and 120 MeV) and lung cases (100 MeV, 120 MeV, and 140 MeV), the minimum beam intensity needs to be ∼2.5 × 1011 electrons/s and ∼9.375 × 1011 electrons/s to allow > 90 % volume of PTV reaching the average dose rate (DADR) higher than 40 Gy/s. At this beam intensity (fraction dose: 10 Gy), the overall irradiation time for the head case is 5258.75 ms (80 MeV), 5149.75 ms (100 MeV), and 4976.75 ms (120 MeV), including scanning time 872.75 ms. For lung cases, this number is 1034.25 ms (100 MeV), 981.55 ms (120 MeV), and 928.15 ms (140 MeV), including scanning time 298.75 ms. The plan of higher energy always performs with a higher dose rate (both in PTV and OAR) and thereby costs less delivery time (beam-on time). CONCLUSION The study systematically investigated the currently known FLASH parameters for VHEE radiotherapy and successfully established a benchmark reference for its FLASH dose rate performance.
Collapse
Affiliation(s)
- Guoliang Zhang
- School of Physics and Technology, Wuhan University, 430072, China
| | - Zhengzhao Zhang
- Cancer Radiation Therapy Center, Fifth Medical Center of Chinese PLA General Hospital, 100039, China
| | - Wenchao Gao
- Cancer Radiation Therapy Center, Fifth Medical Center of Chinese PLA General Hospital, 100039, China
| | - Hong Quan
- School of Physics and Technology, Wuhan University, 430072, China.
| |
Collapse
|
31
|
Ramesh P, Gu W, Ruan D, Sheng K. Dose and dose rate objectives in Bragg peak and shoot-through beam orientation optimization for FLASH proton therapy. Med Phys 2022; 49:7826-7837. [PMID: 36222217 PMCID: PMC9829523 DOI: 10.1002/mp.16009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 01/12/2023] Open
Abstract
PURPOSE The combined use of Bragg peak (BP) and shoot-through (ST) beams has previously been shown to increase the normal tissue volume receiving FLASH dose rates while maintaining dose conformality compared to conventional intensity-modulated proton therapy (IMPT) methods. However, the fixed beam optimization method has not considered the effects of beam orientation on the dose and dose rates. To maximize the proton FLASH effect, here, we incorporate dose rate objectives into our beam orientation optimization framework. METHODS From our previously developed group-sparsity dose objectives, we add upper and lower dose rate terms using a surrogate dose-averaged dose rate definition and solve using the fast-iterative shrinking threshold algorithm. We compare the dosimetry for three head-and-neck cases between four techniques: (1) spread-out BP IMPT (BP), (2) dose rate optimization using BP beams only (BP-DR), (3) dose rate optimization using ST beams only (ST-DR), and (4) dose rate optimization using combined BP and ST (BPST-DR), with the goal of sparing organs at risk without loss of tumor coverage and maintaining high dose rate within a 10 mm region of interest (ROI) surrounding the clinical target volume (CTV). RESULTS For BP, BP-DR, ST-DR, and BPST-DR, CTV homogeneity index and Dmax were found to be on average 0.886, 0.867, 0.687, and 0.936 and 107%, 109%, 135%, and 101% of prescription, respectively. Although ST-DR plans were not able to meet dosimetric standards, BPST-DR was able to match or improve either maximum or mean dose in the right submandibular gland, left and right parotids, constrictors, larynx, and spinal cord compared to BP plans. Volume of ROIs receiving greater than 40 Gy/s ( V γ 0 ) ${V_{\gamma 0}})$ was 51.0%, 91.4%, 95.5%, and 92.1% on average. CONCLUSIONS The dose rate techniques, particularly BPST-DR, were able to significantly increase dose rate without compromising physical dose compared with BP. Our algorithm efficiently selects beams that are optimal for both dose and dose rate.
Collapse
Affiliation(s)
- Pavitra Ramesh
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Wenbo Gu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dan Ruan
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ke Sheng
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
32
|
Vozenin MC, Bourhis J, Durante M. Towards clinical translation of FLASH radiotherapy. Nat Rev Clin Oncol 2022; 19:791-803. [DOI: 10.1038/s41571-022-00697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
|
33
|
Rothwell B, Lowe M, Traneus E, Krieger M, Schuemann J. Treatment planning considerations for the development of FLASH proton therapy. Radiother Oncol 2022; 175:222-230. [PMID: 35963397 DOI: 10.1016/j.radonc.2022.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
With increasing focus on the translation of the observed FLASH effect into clinical practice, this paper presents treatment planning considerations for its development using proton therapy. Potential requirements to induce a FLASH effect are discussed along with the properties of existing proton therapy delivery systems and the changes in planning and delivery approaches required to satisfy these prerequisites. For the exploration of treatment planning approaches for FLASH, developments in treatment planning systems are needed. Flexibility in adapting to new information will be important in such an evolving area. Variations in definitions, threshold values and assumptions can make it difficult to compare different published studies and to interpret previous studies in the context of new information. Together with the fact that much is left to be understood about the underlying mechanism behind the FLASH effect, a systematic and comprehensive approach to information storage is encouraged. Collecting and retaining more detailed information on planned and realised dose delivery as well as reporting the assumptions made in planning studies creates the potential for research to be revisited and re-evaluated in the light of future improvements in understanding. Forward thinking at the time of study development can help facilitate retrospective analysis. This, we hope, will increase the available evidence and accelerate the translation of the FLASH effect into clinical benefit.
Collapse
Affiliation(s)
- Bethany Rothwell
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| | - Matthew Lowe
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | - Miriam Krieger
- Varian Medical Systems Particle Therapy GmbH & Co. KG, Troisdorf, Germany
| | - Jan Schuemann
- Division of Physics, Dept. of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|