1
|
Merken K, Marshall N, Nuyts J, Massera RT, Jacobs R, Bosmans H. Demonstration of virtual imaging trial applications for optimization and education of dento-maxillofacial CBCT imaging. Med Phys 2025; 52:3487-3497. [PMID: 40078016 PMCID: PMC12059543 DOI: 10.1002/mp.17708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND A number of studies have suggested that there is a need for improved understanding of dento-maxillofacial cone beam computed tomography (CBCT) technology, and to establish optimized imaging protocols. While several ex vivo/in vitro studies, along with a few in vivo studies, have addressed this topic, virtual imaging trials could form a powerful alternative but have not yet been introduced within the field of dento-maxillofacial imaging. PURPOSE To introduce and illustrate the potential of utilizing a virtual imaging trial (VIT) platform for dento-maxillofacial CBCT imaging through a number of case studies. METHODS A framework developed in-house, simulating an existing CBCT scanner, and the necessary digital patient phantoms were prepared for the following potential studies: I) the impact of intracanal material type (Ni-Cr alloy, fiberglass, gutta-percha) and acquisition settings (tube current (mA), tube voltage (kVp)) on root fracture (RF) visibility; II) image artefact levels from candidate new restorative materials, such as graphene; III) the effect of patient rigid motion on image artifacts; IV) the effect of a metal artifact reduction algorithm on RF visibility in a tooth treated endodontically and restored with a metal post. In addition, features not available on the real system, including automatic exposure control and extended tube current and tube voltage ranges, were added to study the impact of these parameters. Patient dose levels were also quantified. RESULTS The generated images showed the influence of different restorative materials, dose levels, rigid motion, and image processing on the quality of the final images. Results of these simulated conditions were consistent with findings in the literature. Patient effective dose levels ranged between 22 and 138μ Sv $\mu{\rm Sv}$ for all simulated scenarios. Images were considered sufficiently realistic according to an experienced oral radiologist. Furthermore, the platform was able to simulate scenarios that are difficult or impossible to replicate physically in a controlled and repeatable way. CONCLUSIONS A virtual imaging trial platform has the potential to improve the understanding and use of CBCT technology. Improved insight into system performance can lead to optimized imaging protocols, and help to reduce the large variation in system setup and performance currently seen in clinical practice in dento-maxillofacial CBCT imaging.
Collapse
Affiliation(s)
- Karen Merken
- KU Leuven, Department of Imaging and PathologyDivision of Medical Physics & Quality AssessmentLeuvenBelgium
| | - Nicholas Marshall
- KU Leuven, Department of Imaging and PathologyDivision of Medical Physics & Quality AssessmentLeuvenBelgium
| | - Johan Nuyts
- KU Leuven, Department of Imaging and PathologyDivision of Nuclear Medicine & Molecular ImagingLeuvenBelgium
| | - Rodrigo T Massera
- KU Leuven, Department of Imaging and PathologyDivision of Medical Physics & Quality AssessmentLeuvenBelgium
| | - Reinhilde Jacobs
- KU Leuven, Department of Imaging and PathologyDivision of Oral and Maxillofacial SurgeryLeuvenBelgium
- Department of Dental MedicineKarolinska InstituteStockholmSweden
| | - Hilde Bosmans
- KU Leuven, Department of Imaging and PathologyDivision of Medical Physics & Quality AssessmentLeuvenBelgium
| |
Collapse
|
2
|
Park HS, Seo JK, Jeon K. Implicit neural representation-based method for metal-induced beam hardening artifact reduction in X-ray CT imaging. Med Phys 2025; 52:2201-2211. [PMID: 39888006 DOI: 10.1002/mp.17649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND In X-ray computed tomography (CT), metal-induced beam hardening artifacts arise from the complex interactions between polychromatic X-ray beams and metallic objects, leading to degraded image quality and impeding accurate diagnosis. A previously proposed metal-induced beam hardening correction (MBHC) method provides a theoretical framework for addressing nonlinear artifacts through mathematical analysis, with its effectiveness demonstrated by numerical simulations and phantom experiments. However, in practical applications, this method relies on precise segmentation of highly attenuating materials and parameter estimations, which limit its ability to fully correct artifacts caused by the intricate interactions between metals and other dense materials, such as bone or teeth. PURPOSE This study aims to develop a parameter-free MBHC method that eliminates the need for accurate segmentation and parameter estimations, thereby addressing the limitations of the original MBHC approach. METHODS The proposed method employs implicit neural representations (INR) to generate two tomographic images: one representing the monochromatic attenuation distribution at a specific energy level, and another capturing the nonlinear beam hardening effects caused by the polychromatic nature of X-ray beams. A loss function drives the generation of these images, where the predicted projection data is nonlinearly modeled by the combination of the two images. This approach eliminates the need for geometric and parameter estimation of metals, providing a more generalized solution. RESULTS Numerical and phantom experiments demonstrates that the proposed method effectively reduces beam hardening artifacts caused by interactions between highly attenuating materials such as metals, bone, and teeth. Additionally, the proposed INR-based method demonstrates potential in addressing challenges related to data insufficiencies, such as photon starvation and truncated fields of view in CT imaging. CONCLUSIONS The proposed generalized MBHC method provides high-quality image reconstructions without requiring parameter estimations and segmentations, offering a robust solution for reducing metal-induced beam hardening artifacts in CT imaging.
Collapse
Affiliation(s)
- Hyoung Suk Park
- National Institute for Mathematical Sciences, Daejeon, Republic of Korea
| | - Jin Keun Seo
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, Seoul, Republic of Korea
| | - Kiwan Jeon
- National Institute for Mathematical Sciences, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Chen Y, Du P, Zhang Y, Guo X, Song Y, Wang J, Yang LL, He W. Image-based multi-omics analysis for oral science: Recent progress and perspectives. J Dent 2024; 151:105425. [PMID: 39427959 DOI: 10.1016/j.jdent.2024.105425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024] Open
Abstract
OBJECTIVES The diagnosis and treatment of oral and dental diseases rely heavily on various types of medical imaging. Deep learning-mediated multi-omics analysis can extract more representative features than those identified through traditional diagnostic methods. This review aims to discuss the applications and recent advances in image-based multi-omics analysis in oral science and to highlight its potential to enhance traditional diagnostic approaches for oral diseases. STUDY SELECTION, DATA, AND SOURCES A systematic search was conducted in the PubMed, Web of Science, and Google Scholar databases, covering all available records. This search thoroughly examined and summarized advances in image-based multi-omics analysis in oral and maxillofacial medicine. CONCLUSIONS This review comprehensively summarizes recent advancements in image-based multi-omics analysis for oral science, including radiomics, pathomics, and photographic-based omics analysis. It also discusses the ongoing challenges and future perspectives that could provide new insights into exploiting the potential of image-based omics analysis in the field of oral science. CLINICAL SIGNIFICANCE This review article presents the state of image-based multi-omics analysis in stomatology, aiming to help oral clinicians recognize the utility of combining omics analyses with imaging during diagnosis and treatment, which can improve diagnostic accuracy, shorten times to diagnosis, save medical resources, and reduce disparity in professional knowledge among clinicians.
Collapse
Affiliation(s)
- Yizhuo Chen
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Pengxi Du
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yinyin Zhang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
4
|
Chen W, Dhawan M, Liu J, Ing D, Mehta K, Tran D, Lawrence D, Ganhewa M, Cirillo N. Mapping the Use of Artificial Intelligence-Based Image Analysis for Clinical Decision-Making in Dentistry: A Scoping Review. Clin Exp Dent Res 2024; 10:e70035. [PMID: 39600121 PMCID: PMC11599430 DOI: 10.1002/cre2.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/19/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES Artificial intelligence (AI) is an emerging field in dentistry. AI is gradually being integrated into dentistry to improve clinical dental practice. The aims of this scoping review were to investigate the application of AI in image analysis for decision-making in clinical dentistry and identify trends and research gaps in the current literature. MATERIAL AND METHODS This review followed the guidelines provided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR). An electronic literature search was performed through PubMed and Scopus. After removing duplicates, a preliminary screening based on titles and abstracts was performed. A full-text review and analysis were performed according to predefined inclusion criteria, and data were extracted from eligible articles. RESULTS Of the 1334 articles returned, 276 met the inclusion criteria (consisting of 601,122 images in total) and were included in the qualitative synthesis. Most of the included studies utilized convolutional neural networks (CNNs) on dental radiographs such as orthopantomograms (OPGs) and intraoral radiographs (bitewings and periapicals). AI was applied across all fields of dentistry - particularly oral medicine, oral surgery, and orthodontics - for direct clinical inference and segmentation. AI-based image analysis was use in several components of the clinical decision-making process, including diagnosis, detection or classification, prediction, and management. CONCLUSIONS A variety of machine learning and deep learning techniques are being used for dental image analysis to assist clinicians in making accurate diagnoses and choosing appropriate interventions in a timely manner.
Collapse
Affiliation(s)
- Wei Chen
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Monisha Dhawan
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Jonathan Liu
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Damie Ing
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Kruti Mehta
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | - Daniel Tran
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
| | | | - Max Ganhewa
- CoTreatAI, CoTreat Pty Ltd.MelbourneVictoriaAustralia
| | - Nicola Cirillo
- Melbourne Dental SchoolThe University of MelbourneCarltonVictoriaAustralia
- CoTreatAI, CoTreat Pty Ltd.MelbourneVictoriaAustralia
| |
Collapse
|
5
|
Song Y, Yao T, Peng S, Zhu M, Meng M, Ma J, Zeng D, Huang J, Bian Z, Wang Y. b-MAR: bidirectional artifact representations learning framework for metal artifact reduction in dental CBCT. Phys Med Biol 2024; 69:145010. [PMID: 38588680 DOI: 10.1088/1361-6560/ad3c0a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Objective.Metal artifacts in computed tomography (CT) images hinder diagnosis and treatment significantly. Specifically, dental cone-beam computed tomography (Dental CBCT) images are seriously contaminated by metal artifacts due to the widespread use of low tube voltages and the presence of various high-attenuation materials in dental structures. Existing supervised metal artifact reduction (MAR) methods mainly learn the mapping of artifact-affected images to clean images, while ignoring the modeling of the metal artifact generation process. Therefore, we propose the bidirectional artifact representations learning framework to adaptively encode metal artifacts caused by various dental implants and model the generation and elimination of metal artifacts, thereby improving MAR performance.Approach.Specifically, we introduce an efficient artifact encoder to extract multi-scale representations of metal artifacts from artifact-affected images. These extracted metal artifact representations are then bidirectionally embedded into both the metal artifact generator and the metal artifact eliminator, which can simultaneously improve the performance of artifact removal and artifact generation. The artifact eliminator learns artifact removal in a supervised manner, while the artifact generator learns artifact generation in an adversarial manner. To further improve the performance of the bidirectional task networks, we propose artifact consistency loss to align the consistency of images generated by the eliminator and the generator with or without embedding artifact representations.Main results.To validate the effectiveness of our algorithm, experiments are conducted on simulated and clinical datasets containing various dental metal morphologies. Quantitative metrics are calculated to evaluate the results of the simulation tests, which demonstrate b-MAR improvements of >1.4131 dB in PSNR, >0.3473 HU decrements in RMSE, and >0.0025 promotion in structural similarity index measurement over the current state-of-the-art MAR methods. All results indicate that the proposed b-MAR method can remove artifacts caused by various metal morphologies and restore the structural integrity of dental tissues effectively.Significance.The proposed b-MAR method strengthens the joint learning of the artifact removal process and the artifact generation process by bidirectionally embedding artifact representations, thereby improving the model's artifact removal performance. Compared with other comparison methods, b-MAR can robustly and effectively correct metal artifacts in dental CBCT images caused by different dental metals.
Collapse
Affiliation(s)
- Yuyan Song
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
- Pazhou Lab (Huangpu), Guangzhou 510700, People's Republic of China
| | - Tianyi Yao
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
- Pazhou Lab (Huangpu), Guangzhou 510700, People's Republic of China
| | - Shengwang Peng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
- Pazhou Lab (Huangpu), Guangzhou 510700, People's Republic of China
| | - Manman Zhu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
- Pazhou Lab (Huangpu), Guangzhou 510700, People's Republic of China
| | - Mingqiang Meng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
- Pazhou Lab (Huangpu), Guangzhou 510700, People's Republic of China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
- Pazhou Lab (Huangpu), Guangzhou 510700, People's Republic of China
| | - Dong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
- Pazhou Lab (Huangpu), Guangzhou 510700, People's Republic of China
| | - Jing Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
- Pazhou Lab (Huangpu), Guangzhou 510700, People's Republic of China
| | - Yongbo Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China
- Pazhou Lab (Huangpu), Guangzhou 510700, People's Republic of China
| |
Collapse
|
6
|
Wajer R, Wajer A, Kazimierczak N, Wilamowska J, Serafin Z. The Impact of AI on Metal Artifacts in CBCT Oral Cavity Imaging. Diagnostics (Basel) 2024; 14:1280. [PMID: 38928694 PMCID: PMC11203150 DOI: 10.3390/diagnostics14121280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE This study aimed to assess the impact of artificial intelligence (AI)-driven noise reduction algorithms on metal artifacts and image quality parameters in cone-beam computed tomography (CBCT) images of the oral cavity. MATERIALS AND METHODS This retrospective study included 70 patients, 61 of whom were analyzed after excluding those with severe motion artifacts. CBCT scans, performed using a Hyperion X9 PRO 13 × 10 CBCT machine, included images with dental implants, amalgam fillings, orthodontic appliances, root canal fillings, and crowns. Images were processed with the ClariCT.AI deep learning model (DLM) for noise reduction. Objective image quality was assessed using metrics such as the differentiation between voxel values (ΔVVs), the artifact index (AIx), and the contrast-to-noise ratio (CNR). Subjective assessments were performed by two experienced readers, who rated overall image quality and artifact intensity on predefined scales. RESULTS Compared with native images, DLM reconstructions significantly reduced the AIx and increased the CNR (p < 0.001), indicating improved image clarity and artifact reduction. Subjective assessments also favored DLM images, with higher ratings for overall image quality and lower artifact intensity (p < 0.001). However, the ΔVV values were similar between the native and DLM images, indicating that while the DLM reduced noise, it maintained the overall density distribution. Orthodontic appliances produced the most pronounced artifacts, while implants generated the least. CONCLUSIONS AI-based noise reduction using ClariCT.AI significantly enhances CBCT image quality by reducing noise and metal artifacts, thereby improving diagnostic accuracy and treatment planning. Further research with larger, multicenter cohorts is recommended to validate these findings.
Collapse
Affiliation(s)
- Róża Wajer
- Department of Radiology and Diagnostic Imaging, University Hospital No. 1 in Bydgoszcz, Marii Skłodowskiej—Curie 9, 85-094 Bydgoszcz, Poland; (J.W.); (Z.S.)
| | | | - Natalia Kazimierczak
- Kazimierczak Private Medical Practice, Dworcowa 13/u6a, 85-009 Bydgoszcz, Poland;
| | - Justyna Wilamowska
- Department of Radiology and Diagnostic Imaging, University Hospital No. 1 in Bydgoszcz, Marii Skłodowskiej—Curie 9, 85-094 Bydgoszcz, Poland; (J.W.); (Z.S.)
- Department of Radiology and Diagnostic Imaging, Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067 Bydgoszcz, Poland
| | - Zbigniew Serafin
- Department of Radiology and Diagnostic Imaging, University Hospital No. 1 in Bydgoszcz, Marii Skłodowskiej—Curie 9, 85-094 Bydgoszcz, Poland; (J.W.); (Z.S.)
- Department of Radiology and Diagnostic Imaging, Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067 Bydgoszcz, Poland
| |
Collapse
|
7
|
Cao W, Parvinian A, Adamo D, Welch B, Callstrom M, Ren L, Missert A, Favazza CP. Deep convolutional-neural-network-based metal artifact reduction for CT-guided interventional oncology procedures (MARIO). Med Phys 2024; 51:4231-4242. [PMID: 38353644 DOI: 10.1002/mp.16980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/20/2023] [Accepted: 01/22/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Computed tomography (CT) is routinely used to guide cryoablation procedures. Notably, CT-guidance provides 3D localization of cryoprobes and can be used to delineate frozen tissue during ablation. However, metal-induced artifacts from ablation probes can make accurate probe placement challenging and degrade the ice ball conspicuity, which in combination could lead to undertreatment of potentially curable lesions. PURPOSE In this work, we propose an image-based neural network (CNN) model for metal artifact reduction for CT-guided interventional procedures. METHODS An image domain metal artifact simulation framework was developed and validated for deep-learning-based metal artifact reduction for interventional oncology (MARIO). CT scans were acquired for 19 different cryoablation probe configurations. The probe configurations varied in the number of probes and the relative orientations. A combination of intensity thresholding and masking based on maximum intensity projections (MIPs) was used to segment both the probes only and probes + artifact in each phantom image. Each of the probe and probe + artifact images were then inserted into 19 unique patient exams, in the image domain, to simulate metal artifact appearance for CT-guided interventional oncology procedures. The resulting 361 pairs of simulated image volumes were partitioned into disjoint training and test datasets of 304 and 57 volumes, respectively. From the training partition, 116 600 image patches with a shape of 128 × 128 × 5 pixels were randomly extracted to be used for training data. The input images consisted of a superposition of the patient and probe + artifact images. The target images consisted of a superposition of the patient and probe only images. This dataset was used to optimize a U-Net type model. The trained model was then applied to 50 independent, previously unseen CT images obtained during renal cryoablations. Three board-certified radiologists with experience in CT-guided ablations performed a blinded review of the MARIO images. A total of 100 images (50 original, 50 MARIO processed) were assessed across different aspects of image quality on a 4-point likert-type item. Statistical analyses were performed using Wilcoxon signed-rank test for paired samples. RESULTS Reader scores were significantly higher for MARIO processed images compared to the original images across all metrics (all p < 0.001). The average scores of the overall image quality, iceball conspicuity, overall metal artifact, needle tip visualization, target region confidence, and worst metal artifact, needle tip visualization, iceball conspicuity, and target region confidence improved by 34.91%, 36.29%, 39.94%, 34.17%, 35.13%, and 45.70%, respectively. CONCLUSIONS The proposed method of image-based metal artifact simulation can be used to train a MARIO algorithm to effectively reduce probe-related metal artifacts in CT-guided cryoablation procedures.
Collapse
Affiliation(s)
- Wenchao Cao
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ahmad Parvinian
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel Adamo
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Brian Welch
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Liqiang Ren
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Andrew Missert
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
8
|
Tang H, Lin YB, Jiang SD, Li Y, Li T, Bao XD. A new dental CBCT metal artifact reduction method based on a dual-domain processing framework. Phys Med Biol 2023; 68:175016. [PMID: 37524084 DOI: 10.1088/1361-6560/acec29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Objective.Cone beam computed tomography (CBCT) has been wildly used in clinical treatment of dental diseases. However, patients often have metallic implants in mouth, which will lead to severe metal artifacts in the reconstructed images. To reduce metal artifacts in dental CBCT images, which have a larger amount of data and a limited field of view compared to computed tomography images, a new dental CBCT metal artifact reduction method based on a projection correction and a convolutional neural network (CNN) based image post-processing model is proposed in this paper. Approach.The proposed method consists of three stages: (1) volume reconstruction and metal segmentation in the image domain, using the forward projection to get the metal masks in the projection domain; (2) linear interpolation in the projection domain and reconstruction to build a linear interpolation (LI) corrected volume; (3) take the LI corrected volume as prior and perform the prior based beam hardening correction in the projection domain, and (4) combine the constructed projection corrected volume and LI-volume slice-by-slice in the image domain by two concatenated U-Net based models (CNN1 and CNN2). Simulated and clinical dental CBCT cases are used to evaluate the proposed method. The normalized root means square difference (NRMSD) and the structural similarity index (SSIM) are used for the quantitative evaluation of the method.Main results.The proposed method outperforms the frequency domain fusion method (FS-MAR) and a state-of-art CNN based method on the simulated dataset and yields the best NRMSD and SSIM of 4.0196 and 0.9924, respectively. Visual results on both simulated and clinical images also illustrate that the proposed method can effectively reduce metal artifacts.Significance. This study demonstrated that the proposed dual-domain processing framework is suitable for metal artifact reduction in dental CBCT images.
Collapse
Affiliation(s)
- Hui Tang
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, People's Republic of China
- Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications (Southeast University), Ministry of Education, Nanjing, People's Republic of China
| | - Yu Bing Lin
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, People's Republic of China
| | - Su Dong Jiang
- School of Software Engineering, Southeast University, Nanjing, People's Republic of China
| | - Yu Li
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, People's Republic of China
| | - Tian Li
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, People's Republic of China
| | - Xu Dong Bao
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
9
|
Abstract
Assessing bone density in prospective dental implant sites is crucial both for choosing the implant type and for planning a drilling procedure that will ensure the implant’s primary stability and osseointegration. This study aimed to investigate possible differences between the bone densities of various edentulous sites in the maxilla and mandible. The study was conducted on a group of forty partly edentulous patients who underwent radiological examination by scanning the areas of interest using cone beam computed tomography (CBCT). Hounsfield units (HU) were analyzed using dedicated software. Higher HU were observed at the site of mandibular central incisors compared to the site of maxillary central incisors. The HU values in the mandibular first molars region were higher than those of the maxillary first molars. Buccal vs. lingual or palatal cortical HU values did not differ significantly. Within the limitations of this study, it can be stated that an objective assessment of site-specific bone density before the installation of dental implants may provide valuable clinical information for the selection of implant size and the planning of a patient-specific drilling protocol.
Collapse
|