1
|
DeFrancisco J, Kim S. A systematic review of electron FLASH dosimetry and beam control mechanisms utilized with modified non-clinical LINACs. J Appl Clin Med Phys 2025; 26:e70051. [PMID: 40108673 PMCID: PMC11969112 DOI: 10.1002/acm2.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND FLASH has been shown to spare normal tissue toxicity while maintaining tumor control. However, existing irradiation platforms and dosimetry are not compatible. Consequently, an abundance of FLASH delivery devices and new dosimetry across all modalities has been created. Many review articles concluded that dosimetry is modality-dependent. Focusing on electrons, researchers have modified clinical LINACs to enable FLASH dose rates. Modified LINACs caused the development of unique control systems that have yet to be characterized. Improvement could be made when considering the organization of reviews. PURPOSE To systematically perform a literature survey on electron FLASH dosimetry and beam control mechanisms with modified LINACs, detail where articles originated, and organize the results. METHODS A literature survey was performed from two websites using specified keywords and sifted results to find articles that fit the criteria. The results were organized in tables and summaries effectively by matching up dosimeters with their measurement goal, referring to their specific models, outlining the irradiation conditions they were tested in, and detailing their calibration procedure. Furthermore, included was the unique topic of control mechanisms. RESULTS Twenty-eight matches were found. Various dosimeters were examined to measure absorbed dose, beam characteristics (BC), dose per pulse (DPP), and pulse counting (PC). Specific detectors and the irradiation conditions are organized and presented in a table. Each model's pros and cons are presented in another table for further consideration. A third table is provided to detail beam control methods. CONCLUSIONS Dosimetry is majorly film-based for absorbed dose and beam characteristic measurements. Many candidates for dosimeters for the use of DPP and PC have been tested, but they have yet to be tested without limitations. Beam control mechanisms primarily consist of unacceptable delivery errors. Many suggestions for improvement were given, mainly consisting of finding new dosimeters and modulating the dose DPP.
Collapse
Affiliation(s)
- Justin DeFrancisco
- Medical Physics ProgramVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Siyong Kim
- Medical Physics ProgramVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Radiation OncologySchool of MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
2
|
Cheng W, Zhao F, Zhang T, He Y, Zhu H. A review of ultra-wide-bandgap semiconductor radiation detector for high-energy particles and photons. NANOTECHNOLOGY 2025; 36:152002. [PMID: 39983238 DOI: 10.1088/1361-6528/adb8f2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/21/2025] [Indexed: 02/23/2025]
Abstract
Radiation detectors have gained significant attention due to their extensive applications in high-energy physics, medical diagnostics, aerospace, and nuclear radiation protection. Advances in relevant technologies have made the drawbacks of traditional semiconductor detectors, including high leakage currents and instability, increasingly apparent. Ga2O3, diamond, and BN represent a new generation of semiconductor materials following GaN and SiC, offering wide bandgaps of around 5 eV. These ultra-wide bandgap semiconductors demonstrate excellent properties, including ultra-low dark current, high breakdown fields, and superior radiation tolerance, underscoring their promising potential in radiation detection. In this review, we first discuss the materials and electrical properties of Ga2O3, diamond, and BN, along with the general performance metrics relevant to radiation detectors. Subsequently, the review provides a comprehensive overview of the research progress in x-ray detection, charged particle detection (e.g.αparticles and carbon ions), as well as fast neutron and thermal neutron detection, focusing on aspects such as chip fabrication processes, device architectures, and testing results for radiation detectors based on these three materials.
Collapse
Affiliation(s)
- Wenzheng Cheng
- School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Feiyang Zhao
- School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Tianyi Zhang
- School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Yongjie He
- School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Hao Zhu
- School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
- Shaoxin Laboratory, Shaoxing, Zhejiang 312000, People's Republic of China
| |
Collapse
|
3
|
Schönfeld AA, Hildreth J, Bourgouin A, Flatten V, Kozelka J, Simon W, Schüller A. A 2D detector array for relative dosimetry and beam steering for FLASH radiotherapy with electrons. Med Phys 2025; 52:1845-1857. [PMID: 39688375 PMCID: PMC11880641 DOI: 10.1002/mp.17573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND FLASH radiotherapy is an emerging treatment modality using ultra-high dose rate beams. Much effort has been made to develop suitable dosimeters for reference dosimetry, yet the spatial beam characteristics must also be characterized to enable computerized treatment planning, as well as quality control and service of a treatment delivery device. In conventional radiation therapy, this is commonly achieved by beam profile scans in a water phantom using a point detector. In ultra-high dose rate beams, the delivered dose needed for a set of beam profile scans may exceed the regulatory dose limit specified for a typical treatment room, or degrade components of the scanning system and scanning detector. Point detector scans also cannot quantify the pulse-to-pulse stability of a beam profile. Detector arrays can overcome these challenges, but to date, no detector arrays suitable for ultra-high dose rate beams are commercially available. PURPOSE The study presents the development and characterization of a two-dimensional detector array for measuring pulse-resolved spatial fluence distributions in real-time and temporal structure of intra-pulse dose rate of ultra-high pulsed dose rate (UHPDR) electron beams used in FLASH radiotherapy. METHODS The performance of the SunPoint 1 diode was evaluated by measuring the response of the EDGE Detector in a 20 MeV UHPDR electron beam with a dose per pulse of 0.04 Gy - 6 Gy at a pulse duration of 1 µs or 1.9 µs, and instantaneous dose rates of 0.040 - 3.2 MGy·s-1. Based on the findings regarding a suitable signal acquisition technique, a PROFILER 2 detector array made of SunPoint 1 diodes was then modified by minimizing trace resistance, applying a reverse bias, and implementing an RC component to each diode to optimize the transfer of the collected charge during a pulse. The resultant "FLASH Profiler" was then tested in the same UHPDR electron beam. RESULTS The FLASH Profiler exhibited a linear response within ± 3% deviation over the investigated dose per pulse range. The FLASH Profiler array showed good agreement with the absolute dose measured using a flashDiamond point detector and an integrating current transformer for dose-per-pulse values of up to 6 Gy. The FLASH Profiler was able to measure lateral beam profiles in real-time and on a single-pulse basis. The ability to capture and display the profiles during steering of UHPDR beams was demonstrated. The SunPoint 1 diode was able to measure the pulse duration and the intra-pulse dose rate with a time resolution of 4 ns. CONCLUSION The FLASH Profiler could be used for characterizing UHPDR electron beams and facilitating quality control and beam steering service of electron FLASH irradiators.
Collapse
Affiliation(s)
| | - Jeff Hildreth
- Research and DevelopmentSun Nuclear Corp.MelbourneFloridaUSA
| | - Alexandra Bourgouin
- Dosimetry for RadiotherapyPhysikalisch‐Technische BundesanstaltBraunschweig38116Germany
- Present address:
Metrology Research CenterNational Research Council of CanadaOttawaOntarioCanada
| | | | - Jakub Kozelka
- Research and DevelopmentSun Nuclear Corp.MelbourneFloridaUSA
| | - William Simon
- Research and DevelopmentSun Nuclear Corp.MelbourneFloridaUSA
| | - Andreas Schüller
- Dosimetry for RadiotherapyPhysikalisch‐Technische BundesanstaltBraunschweig38116Germany
| |
Collapse
|
4
|
Palmiero A, Liu K, Colnot J, Chopra N, Neill D, Connell L, Velasquez B, Koong AC, Lin SH, Balter P, Tailor R, Robert C, Germond J, Gonçalves Jorge P, Geyer R, Beddar S, Moeckli R, Schüler E. On the acceptance, commissioning, and quality assurance of electron FLASH units. Med Phys 2025; 52:1207-1223. [PMID: 39462477 PMCID: PMC11788050 DOI: 10.1002/mp.17483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND AND PURPOSE FLASH or ultra-high dose rate (UHDR) radiation therapy (RT) has gained attention in recent years for its ability to spare normal tissues relative to conventional dose rate (CDR) RT in various preclinical trials. However, clinical implementation of this promising treatment option has been limited because of the lack of availability of accelerators capable of delivering UHDR RT. Commercial options are finally reaching the market that produce electron beams with average dose rates of up to 1000 Gy/s. We established a framework for the acceptance, commissioning, and periodic quality assurance (QA) of electron FLASH units and present an example of commissioning. METHODS A protocol for acceptance, commissioning, and QA of UHDR linear accelerators was established by combining and adapting standards and professional recommendations for standard linear accelerators based on the experience with UHDR at four clinical centers that use different UHDR devices. Non-standard dosimetric beam parameters considered included pulse width, pulse repetition frequency, dose per pulse, and instantaneous dose rate, together with recommendations on how to acquire these measurements. RESULTS The 6- and 9-MeV beams of an UHDR electron device were commissioned by using this developed protocol. Measurements were acquired with a combination of ion chambers, beam current transformers (BCTs), and dose-rate-independent passive dosimeters. The unit was calibrated according to the concept of redundant dosimetry using a reference setup. CONCLUSION This study provides detailed recommendations for the acceptance testing, commissioning, and routine QA of low-energy electron UHDR linear accelerators. The proposed framework is not limited to any specific unit, making it applicable to all existing eFLASH units in the market. Through practical insights and theoretical discourse, this document establishes a benchmark for the commissioning of UHDR devices for clinical use.
Collapse
Affiliation(s)
- Allison Palmiero
- Department of Radiation OncologyJames Cancer Hospital and Solove Research InstituteThe Ohio State UniversityColumbusOhioUSA
| | - Kevin Liu
- Division of Radiation OncologyDepartment of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Graduate School of Biomedical SciencesThe University of TexasHoustonTexasUSA
| | - Julie Colnot
- INSERM U1030, Gustave RoussyUniversité Paris‐SaclayVillejuifFrance
| | - Nitish Chopra
- Division of Radiation OncologyDepartment of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Denae Neill
- Division of Radiation OncologyDepartment of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Luke Connell
- Division of Radiation OncologyDepartment of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Graduate School of Biomedical SciencesThe University of TexasHoustonTexasUSA
| | - Brett Velasquez
- Division of Radiation OncologyDepartment of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Albert C. Koong
- Division of Radiation OncologyDepartment of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Steven H. Lin
- Division of Radiation OncologyDepartment of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Peter Balter
- Division of Radiation OncologyDepartment of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ramesh Tailor
- Division of Radiation OncologyDepartment of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Charlotte Robert
- INSERM U1030, Gustave RoussyUniversité Paris‐SaclayVillejuifFrance
| | - Jean‐François Germond
- Institute of Radiation PhysicsLausanne University Hospital and Lausanne UniversityLausanneSwitzerland
| | - Patrik Gonçalves Jorge
- Institute of Radiation PhysicsLausanne University Hospital and Lausanne UniversityLausanneSwitzerland
| | - Reiner Geyer
- Institute of Radiation PhysicsLausanne University Hospital and Lausanne UniversityLausanneSwitzerland
| | - Sam Beddar
- Division of Radiation OncologyDepartment of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Graduate School of Biomedical SciencesThe University of TexasHoustonTexasUSA
| | - Raphael Moeckli
- Institute of Radiation PhysicsLausanne University Hospital and Lausanne UniversityLausanneSwitzerland
| | - Emil Schüler
- Division of Radiation OncologyDepartment of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Graduate School of Biomedical SciencesThe University of TexasHoustonTexasUSA
| |
Collapse
|
5
|
Angelou C, Patallo IS, Doherty D, Romano F, Schettino G. A review of diamond dosimeters in advanced radiotherapy techniques. Med Phys 2024; 51:9230-9249. [PMID: 39221583 PMCID: PMC11656300 DOI: 10.1002/mp.17370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/08/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
This review article synthesizes key findings from studies on the use of diamond dosimeters in advanced radiotherapy techniques, showcasing their applications, challenges, and contributions to enhancing dosimetric accuracy. The article explores various dosimeters, highlighting synthetic diamond dosimeters as potential candidates especially due to their high spatial resolution and negligible ion recombination effect. The clinically validated commercial dosimeter, PTW microDiamond (mD), faces limitations in small fields, proton and hadron therapy and ultra-high dose per pulse (UHDPP) conditions. Variability in reported values for field sizes < $<$ 2 × $\times$ 2cm 2 ${\rm cm}^2$ is noted, reflecting the competition between volume averaging and density perturbation effects. PTW's introduction of flashDiamond (fD) holds promise for dosimetric measurements in UHDPP conditions and is reliable for commissioning ultra-high dose rate (UHDR) electron beam systems, pending the clinical validation of the device. Other advancements in diamond detectors, such as in 3D configurations and real-time dose per pulse x-ray detectors, are considered valuable in overcoming challenges posed by modern radiotherapy techniques, alongside relative dosimetry and pre-treatment verifications. The studies discussed collectively provide a comprehensive overview of the evolving landscape of diamond dosimetry in the field of radiotherapy, and offer insights into future directions for research and development in the field.
Collapse
Affiliation(s)
- Christina Angelou
- Department of PhysicsUniversity of SurreyGuildfordUK
- Radiotherapy and Radiation DosimetryNational Physical Laboratory (NPL)TeddingtonUK
| | | | | | - Francesco Romano
- Istituto Nazionale di Fisica Nucleare (INFN)Sezione di CataniaCataniaItaly
| | - Giuseppe Schettino
- Radiotherapy and Radiation DosimetryNational Physical Laboratory (NPL)TeddingtonUK
| |
Collapse
|
6
|
Gesualdi F, de Marzi L, Dutreix M, Favaudon V, Fouillade C, Heinrich S. A multidisciplinary view of flash irradiation. Cancer Radiother 2024; 28:453-462. [PMID: 39343695 DOI: 10.1016/j.canrad.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 10/01/2024]
Abstract
The delivery of ultra-high dose rates of radiation, called flash irradiation or flash-RT, has emerged as a new modality of radiotherapy shaking up the paradigm of proportionality of effect and dose whatever the method of delivery of the radiation. The hallmark of flash-RT is healthy tissue sparing from the side effects of radiation without decrease of the antitumor efficiency in animal models. In this review we will define its specificities, the molecular mechanisms underlying the flash effect and the ongoing developments to bring this new modality to patient treatment.
Collapse
Affiliation(s)
- Flavia Gesualdi
- Institut Curie, Hospital Division, centre de protonthérapie d'Orsay, université Paris-Saclay, université PSL, centre universitaire, 91948 Orsay cedex, France
| | - Ludovic de Marzi
- Institut Curie, Hospital Division, centre de protonthérapie d'Orsay, université Paris-Saclay, université PSL, centre universitaire, 91948 Orsay cedex, France; Institut Curie, université PSL, université Paris-Saclay, Inserm Lito U1288, centre universitaire, 91898 Orsay, France
| | - Marie Dutreix
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Vincent Favaudon
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Charles Fouillade
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Sophie Heinrich
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France.
| |
Collapse
|
7
|
Oh K, Hyun MA, Gallagher KJ, Yan Y, Zhou S. Characterization of a commercial plastic scintillator for electron FLASH dosimetry. J Appl Clin Med Phys 2024; 25:e14451. [PMID: 38952057 PMCID: PMC11302813 DOI: 10.1002/acm2.14451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/03/2024] Open
Abstract
PURPOSE This study investigated the potential of a commercially available plastic scintillator, the Exradin W2, as a real-time dosimeter for ultra-high-dose-rate (UHDR) electron beams. This work aimed to characterize this system's performance under UHDR conditions and addressed limitations inherent to other conventional dosimetry systems. METHODS AND MATERIALS We assessed the W2's performance as a UHDR electron dosimeter using a 16 MeV UHDR electron beam from the FLASH research extension (FLEX) system. Additionally, the vendor provided a beta firmware upgrade to better handle the processing of the high signal generated in the UHDR environment. We evaluated the W2 regarding dose-per-pulse, pulse repetition rate, charge versus distance, and pulse linearity. Absorbed dose measurements were compared against those from a plane-parallel ionization chamber, optically stimulated luminescent dosimeters and radiochromic film. RESULTS We observed that the 1 × 1 mm W2 scintillator with the MAX SD was more suitable for UHDR dosimetry compared to the 1 × 3 mm W2 scintillator, capable of matching film measurements within 2% accuracy for dose-per-pulse up to 3.6 Gy/pulse. The W2 accurately ascertained the inverse square relationship regarding charge versus virtual source distance with R2 of ∼1.00 for all channels. Pulse linearity was accurately measured with the W2, demonstrating a proportional response to the delivered pulse number. There was no discernible impact on the measured charge of the W2 when switching between the available repetition rates of the FLEX system (18-180 pulses/s), solidifying consistent beam output across pulse frequencies. CONCLUSIONS This study tested a commercial plastic scintillator detector in a UHDR electron beam, paving the way for its potential use as a real-time, patient-specific dosimetry tool for future FLASH radiotherapy treatments. Further research is warranted to test and improve the signal processing of the W2 dosimetry system to accurately measure in UHDR environments using exceedingly high dose-per-pulse and pulse numbers.
Collapse
Affiliation(s)
- Kyuhak Oh
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Megan A. Hyun
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Ying Yan
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sumin Zhou
- University of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
8
|
Sloop A, Ashraf MR, Rahman M, Sunnerberg J, Dexter CA, Thompson L, Gladstone DJ, Pogue BW, Bruza P, Zhang R. Rapid Switching of a C-Series Linear Accelerator Between Conventional and Ultrahigh-Dose-Rate Research Mode With Beamline Modifications and Output Stabilization. Int J Radiat Oncol Biol Phys 2024; 119:1317-1325. [PMID: 38552990 DOI: 10.1016/j.ijrobp.2024.01.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/24/2023] [Accepted: 01/28/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE In this study, a C-series linear accelerator was configured to enable rapid and reliable conversion between the production of conventional electron beams and an ultrahigh-dose-rate (UHDR) electron beamline to the treatment room isocenter for FLASH radiation therapy. Efforts to tune the beam resulted in a consistent, stable UHDR beamline. METHODS AND MATERIALS The linear accelerator was configured to allow for efficient switching between conventional and modified electron output modes within 2 minutes. Additions to the air system allow for retraction of the x-ray target from the beamline when the 10 MV photon mode is selected. With the carousel set to an empty port, this grants access to the higher current pristine electron beam normally used to produce clinical photon fields. Monitoring signals related to the automatic frequency control system allows for tuning of the waveguide while the machine is in a hold state so a stable beam is produced from the initial pulse. A pulse counting system implemented on an field-programmable gate array-based controller platform controls the delivery to a desired number of pulses. Beam profiles were measured with Gafchromic film. Pulse-by-pulse dosimetry was measured using a custom electrometer designed around the EDGE diode. RESULTS This method reliably produces a stable UHDR electron beam. Open-field measurements of the 16-cm full-width, half-maximum gaussian beam saw average dose rates of 432 Gy/s at treatment isocenter. Pulse overshoots were limited and ramp up was eliminated. Over the last year, there have been no recorded incidents that resulted in machine downtime due to the UHDR conversions. CONCLUSIONS Stable 10 MeV UHDR beams were generated to produce an average dose rate of 432 Gy/s at the treatment room isocenter. With a reliable pulse-counting beam control system, consistent doses can be delivered for FLASH experiments with the ability to accommodate a wide range of field sizes, source-to-surface distances, and other experimental apparatus that may be relevant for future clinical translation.
Collapse
Affiliation(s)
- Austin Sloop
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - M Ramish Ashraf
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Jacob Sunnerberg
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | | | | | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Dartmouth Health, New Hampshire, Lebanon; Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire.
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; Department of Radiation Medicine, New York Medical College, Valhalla, New York
| |
Collapse
|
9
|
Subiel A, Bourgouin A, Kranzer R, Peier P, Frei F, Gomez F, Knyziak A, Fleta C, Bailat C, Schüller A. Metrology for advanced radiotherapy using particle beams with ultra-high dose rates. Phys Med Biol 2024; 69:14TR01. [PMID: 38830362 DOI: 10.1088/1361-6560/ad539d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Dosimetry of ultra-high dose rate beams is one of the critical components which is required for safe implementation of FLASH radiotherapy (RT) into clinical practice. In the past years several national and international programmes have emerged with the aim to address some of the needs that are required for translation of this modality to clinics. These involve the establishment of dosimetry standards as well as the validation of protocols and dosimetry procedures. This review provides an overview of recent developments in the field of dosimetry for FLASH RT, with particular focus on primary and secondary standard instruments, and provides a brief outlook on the future work which is required to enable clinical implementation of FLASH RT.
Collapse
Affiliation(s)
- Anna Subiel
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
- University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Alexandra Bourgouin
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
- National Research Council of Canada (NRC), 1200 Montreal Road, Ottawa, ON, K1A0R6, Canada
| | | | - Peter Peier
- Federal Institute of Metrology METAS, Lindenweg 50, 3003 Bern-Wabern, Switzerland
| | - Franziska Frei
- Federal Institute of Metrology METAS, Lindenweg 50, 3003 Bern-Wabern, Switzerland
| | - Faustino Gomez
- University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Adrian Knyziak
- Central Office of Measures (GUM), Elektoralna 2 Str., 00-139 Warsaw, Poland
| | - Celeste Fleta
- Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica, IMB-CNM (CSIC), Barcelona, Spain
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andreas Schüller
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| |
Collapse
|
10
|
Garibaldi C, Beddar S, Bizzocchi N, Tobias Böhlen T, Iliaskou C, Moeckli R, Psoroulas S, Subiel A, Taylor PA, Van den Heuvel F, Vanreusel V, Verellen D. Minimum and optimal requirements for a safe clinical implementation of ultra-high dose rate radiotherapy: A focus on patient's safety and radiation protection. Radiother Oncol 2024; 196:110291. [PMID: 38648991 DOI: 10.1016/j.radonc.2024.110291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Cristina Garibaldi
- IEO, Unit of Radiation Research, European Institute of Oncology IRCCS, 20141 Milan, Italy.
| | - Sam Beddar
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicola Bizzocchi
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Charoula Iliaskou
- Division of Medical Physics, Department of Radiation Oncology, University Medical Center Freiburg, 79106, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - Anna Subiel
- National Physical Laboratory, Medical Radiation Science, Teddington, UK
| | - Paige A Taylor
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank Van den Heuvel
- Zuidwest Radiotherapeutisch Institute, Vlissingen, the Netherlands; Dept of Oncology, University of Oxford, Oxford, UK
| | - Verdi Vanreusel
- Iridium Netwerk, Antwerp University (Centre for Oncological Research, CORE), Antwerpen, Belgium; SCK CEN (Research in Dosimetric Applications), Mol, Belgium
| | - Dirk Verellen
- Iridium Netwerk, Antwerp University (Centre for Oncological Research, CORE), Antwerpen, Belgium
| |
Collapse
|
11
|
Kim K, Pandey PK, Gonzalez G, Chen Y, Xiang L. Simulation study of protoacoustics as a real-time in-line dosimetry tool for FLASH proton therapy. Med Phys 2024; 51:5070-5080. [PMID: 38116792 PMCID: PMC11186976 DOI: 10.1002/mp.16894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Applying ultra-high dose rates to radiation therapy, otherwise known as FLASH, has been shown to be just as effective while sparing more normal tissue compared to conventional radiation therapy. However, there is a need for a dosimeter that is able to detect such high instantaneous dose, particularly in vivo. To fulfill this need, protoacoustics is introduced, which is an in vivo range verification method with submillimeter accuracy. PURPOSE The purpose of this work is to demonstrate the feasibility of using protoacoustics as a method of in vivo real-time monitoring during FLASH proton therapy and investigating the resulting protoacoustic signal when dose per pulse and pulsewidth are varied through multiple simulation studies. METHODS The dose distribution of a proton pencil beam was calculated through a Monte Carlo toolbox, TOPAS. Next, the k-Wave toolbox in MATLAB was used for performing protoacoustic simulations, where the initial proton dose deposition was inputted to model acoustic propagations, which were also used for reconstructions. Simulations involving the manipulation of the dose per pulse and pulsewidth were performed, and the temporal and spatial resolution for protoacoustic reconstructions were investigated as well. A 3D reconstruction was performed with a multiple beam spot profile to investigate the spatial resolution as well as determine the feasibility of 3D imaging with protoacoustics. RESULTS Our results showed consistent linearity in the increasing dose-per-pulse, even up to rates considered for FLASH. The simulations and reconstructions were performed for a range of pulsewidths from 0.1 to 10 μs. The results show the characteristics of the proton beam after convolving the protoacoustic signal with the varying pulsewidths. 3D reconstruction was successfully performed with each beam being distinguishable using an 8 cm × 8 cm planar array. These simulation results show that measurements using protoacoustics has the potential for in vivo dosimetry in FLASH therapy during patient treatments in real time. CONCLUSION Through this simulation study, the use of protoacoustics in FLASH therapy was verified and explored through observations of varying parameters, such as the dose per pulse and pulsewidth. 2D and 3D reconstructions were also completed. This study shows the significance of using protoacoustics and provides necessary information, which can further be explored in clinical settings.
Collapse
Affiliation(s)
- Kaitlyn Kim
- Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Prabodh Kumar Pandey
- Department of Radiological Sciences, University of California, Irvine, California, USA
| | - Gilberto Gonzalez
- Department of Radiation Oncology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, USA
| | - Yong Chen
- Department of Radiation Oncology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, USA
| | - Liangzhong Xiang
- Department of Biomedical Engineering, University of California, Irvine, California, USA
- Department of Radiological Sciences, University of California, Irvine, California, USA
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, California, USA
| |
Collapse
|
12
|
Palmiero A, Liu K, Colnot J, Chopra N, Neill D, Connell L, Velasquez B, Koong AC, Lin SH, Balter P, Tailor R, Robert C, Germond JF, Jorge PG, Geyer R, Beddar S, Moeckli R, Schüler E. On the acceptance, commissioning, and quality assurance of electron FLASH units. ARXIV 2024:arXiv:2405.15146v1. [PMID: 38827455 PMCID: PMC11142322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background & Purpose FLASH or ultra-high dose rate (UHDR) radiation therapy (RT) has gained attention in recent years for its ability to spare normal tissues relative to conventional dose rate (CDR) RT in various preclinical trials. However, clinical implementation of this promising treatment option has been limited because of the lack of availability of accelerators capable of delivering UHDR RT. Commercial options are finally reaching the market that produce electron beams with average dose rates of up to 1000 Gy/s. We established a framework for the acceptance, commissioning, and periodic quality assurance (QA) of electron FLASH units and present an example of commissioning. Methods A protocol for acceptance, commissioning, and QA of UHDR linear accelerators was established by combining and adapting standards and professional recommendations for standard linear accelerators based on the experience with UHDR at four clinical centers that use different UHDR devices. Non-standard dosimetric beam parameters considered included pulse width, pulse repetition frequency, dose per pulse, and instantaneous dose rate, together with recommendations on how to acquire these measurements. Results The 6- and 9-MeV beams of an UHDR electron device were commissioned by using this developed protocol. Measurements were acquired with a combination of ion chambers, beam current transformers (BCTs), and dose-rate-independent passive dosimeters. The unit was calibrated according to the concept of redundant dosimetry using a reference setup. Conclusions This study provides detailed recommendations for the acceptance testing, commissioning, and routine QA of low-energy electron UHDR linear accelerators. The proposed framework is not limited to any specific unit, making it applicable to all existing eFLASH units in the market. Through practical insights and theoretical discourse, this document establishes a benchmark for the commissioning of UHDR devices for clinical use.
Collapse
Affiliation(s)
- Allison Palmiero
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Kevin Liu
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas, USA
| | - Julie Colnot
- INSERM U1030, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Nitish Chopra
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Denae Neill
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Luke Connell
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas, USA
| | - Brett Velasquez
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Albert C. Koong
- Division of Radiation Oncology, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven H. Lin
- Division of Radiation Oncology, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter Balter
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ramesh Tailor
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Charlotte Robert
- INSERM U1030, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré-1, Lausanne CH-1007, Switzerland
| | - Patrik Gonçalves Jorge
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré-1, Lausanne CH-1007, Switzerland
| | - Reiner Geyer
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré-1, Lausanne CH-1007, Switzerland
| | - Sam Beddar
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas, USA
| | - Raphael Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Rue du Grand-Pré-1, Lausanne CH-1007, Switzerland
| | - Emil Schüler
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas, USA
| |
Collapse
|
13
|
Wanstall HC, Burkart F, Dinter H, Kellermeier M, Kuropka W, Mayet F, Vinatier T, Santina E, Chadwick AL, Merchant MJ, Henthorn NT, Köpke M, Stacey B, Jaster-Merz S, Jones RM. First in vitro measurement of VHEE relative biological effectiveness (RBE) in lung and prostate cancer cells using the ARES linac at DESY. Sci Rep 2024; 14:10957. [PMID: 38740830 DOI: 10.1038/s41598-024-60585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Very high energy electrons (VHEE) are a potential candidate for radiotherapy applications. This includes tumours in inhomogeneous regions such as lung and prostate cancers, due to the insensitivity of VHEE to inhomogeneities. This study explores how electrons in the VHEE range can be used to perform successful in vitro radiobiological studies. The ARES (accelerator research experiment at SINBAD) facility at DESY, Hamburg, Germany was used to deliver 154 MeV electrons to both prostate (PC3) and lung (A549) cancer cells in suspension. Dose was delivered to samples with repeatability and uniformity, quantified with Gafchromic film. Cell survival in response to VHEE was measured using the clonogenic assay to determine the biological effectiveness of VHEE in cancer cells for the first time using this method. Equivalent experiments were performed using 300 kVp X-rays, to enable VHEE irradiated cells to be compared with conventional photons. VHEE irradiated cancer cell survival was fitted to the linear quadratic (LQ) model (R2 = 0.96-0.97). The damage from VHEE and X-ray irradiated cells at doses between 1.41 and 6.33 Gy are comparable, suggesting similar relative biological effectiveness (RBE) between the two modalities. This suggests VHEE is as damaging as photon radiotherapy and therefore could be used to successfully damage cancer cells during radiotherapy. The RBE of VHEE was quantified as the relative doses required for 50% (D0.5) and 10% (D0.1) cell survival. Using these values, VHEE RBE was measured as 0.93 (D0.5) and 0.99 (D0.1) for A549 and 0.74 (D0.5) and 0.93 (D0.1) for PC3 cell lines respectively. For the first time, this study has shown that 154 MeV electrons can be used to effectively kill lung and prostate cancer cells, suggesting that VHEE would be a viable radiotherapy modality. Several studies have shown that VHEE has characteristics that would offer significant improvements over conventional photon radiotherapy for example, electrons are relatively easy to steer and can be used to deliver dose rapidly and with high efficiency. Studies have shown improved dose distribution with VHEE in treatment plans, in comparison to VMAT, indicating that VHEE can offer improved and safer treatment plans with reduced side effects. The biological response of cancer cells to VHEE has not been sufficiently studied as of yet, however this initial study provides some initial insights into cell damage. VHEE offers significant benefits over photon radiotherapy and therefore more studies are required to fully understand the biological effectiveness of VHEE.
Collapse
Affiliation(s)
- Hannah C Wanstall
- Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK.
- Daresbury Laboratory, The Cockcroft Institute, Daresbury, Warrington, WA4 4AD, UK.
| | - Florian Burkart
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Hannes Dinter
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Max Kellermeier
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Willi Kuropka
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Frank Mayet
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Thomas Vinatier
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Elham Santina
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Amy L Chadwick
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Michael J Merchant
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Nicholas T Henthorn
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Michael Köpke
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Blae Stacey
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Sonja Jaster-Merz
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Roger M Jones
- Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Daresbury Laboratory, The Cockcroft Institute, Daresbury, Warrington, WA4 4AD, UK
| |
Collapse
|
14
|
Yamaguchi S, Ariga H, Yoshioka K. Development of a dose-rate dosimeter using a silicon photodiode for a medical linear accelerator in a 10 MV flattening filter-free mode. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:053102. [PMID: 38743570 DOI: 10.1063/5.0179656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
This study was aimed at developing a dose-rate dosimeter to measure the instantaneous dose rate of a commercially available medical linear accelerator. A dose-rate dosimeter composed of a silicon photodiode (Si-PD), a complementary metal-oxide semiconductor single operational amplifier, a resistor of 20 MΩ, a capacitor of 100 pF, and a mini-substrate measuring 16 × 16 mm2 was evaluated. Voltage outputs from the proposed dosimeter were measured using an analog-to-digital converter on a microcomputer. A custom-made x-ray tube generator at an energy of 120 kV with a tube current ranging from 0.1 to 2.0 mA was used for the dose-rate calibration. Dose-rate calibration was performed 83.3 mm from an x-ray source using a commercially available semiconductor dosimeter. The developed Si-PD dosimeter could measure up to 0.6 Gy/s at a distance of 19.3 mm from the x-ray source. Measurements were also performed using a medical linear accelerator in a 10 MV flattening filter-free mode at depths of 0, 25, 50, and 100 mm with an irradiation field of 100 × 100 mm2 at a constant distance of 1000 mm from the source to the dosimeter. A peak voltage variation corresponding to the instantaneous dose rate was observed using a sampling period of 1.0 ms, and the peak voltages decreased with the depth. The detected pulse numbers were 512, 484, 491, and 511 at depths of 0, 25, 50, and 100 mm, respectively.
Collapse
Affiliation(s)
- Satoshi Yamaguchi
- Department of Radiology, School of Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan
| | - Hisanori Ariga
- Department of Radiation Oncology, Iwate Medical University Hospital, Iwate Medical University, 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan
| | - Kunihiro Yoshioka
- Department of Radiology, School of Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan
| |
Collapse
|
15
|
Fleta C, Pellegrini G, Godignon P, Rodríguez FG, Paz-Martín J, Kranzer R, Schüller A. State-of-the-art silicon carbide diode dosimeters for ultra-high dose-per-pulse radiation at FLASH radiotherapy. Phys Med Biol 2024; 69:095013. [PMID: 38530300 DOI: 10.1088/1361-6560/ad37eb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Objective.The successful implementation of FLASH radiotherapy in clinical settings, with typical dose rates >40 Gy s-1, requires accurate real-time dosimetry.Approach.Silicon carbide (SiC) p-n diode dosimeters designed for the stringent requirements of FLASH radiotherapy have been fabricated and characterized in an ultra-high pulse dose rate electron beam. The circular SiC PiN diodes were fabricated at IMB-CNM (CSIC) in 3μm epitaxial 4H-SiC. Their characterization was performed in PTB's ultra-high pulse dose rate reference electron beam. The SiC diode was operated without external bias voltage. The linearity of the diode response was investigated up to doses per pulse (DPP) of 11 Gy and pulse durations ranging from 3 to 0.5μs. Percentage depth dose measurements were performed in ultra-high dose per pulse conditions. The effect of the total accumulated dose of 20 MeV electrons in the SiC diode sensitivity was evaluated. The temperature dependence of the response of the SiC diode was measured in the range 19 °C-38 °C. The temporal response of the diode was compared to the time-resolved beam current during each electron beam pulse. A diamond prototype detector (flashDiamond) and Alanine measurements were used for reference dosimetry.Main results.The SiC diode response was independent both of DPP and of pulse dose rate up to at least 11 Gy per pulse and 4 MGy s-1, respectively, with tolerable deviation for relative dosimetry (<3%). When measuring the percentage depth dose under ultra-high dose rate conditions, the SiC diode performed comparably well to the reference flashDiamond. The sensitivity reduction after 100 kGy accumulated dose was <2%. The SiC diode was able to follow the temporal structure of the 20 MeV electron beam even for irregular pulse estructures. The measured temperature coefficient was (-0.079 ± 0.005)%/°C.Significance.The results of this study demonstrate for the first time the suitability of silicon carbide diodes for relative dosimetry in ultra-high dose rate pulsed electron beams up to a DPP of 11 Gy per pulse.
Collapse
Affiliation(s)
- Celeste Fleta
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona, Spain
| | - Giulio Pellegrini
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona, Spain
| | - Philippe Godignon
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona, Spain
| | - Faustino Gómez Rodríguez
- Departamento de Física de Partículas, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Laboratorio de Radiofísica, RIAIDT, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Paz-Martín
- Departamento de Física de Partículas, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Rafael Kranzer
- PTW-Freiburg (R&D), Freiburg 79115, Germany
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University Oldenburg, 26121, Germany
| | - Andreas Schüller
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| |
Collapse
|
16
|
Rank L, Dogan O, Kopp B, Mein S, Verona-Rinati G, Kranzer R, Marinelli M, Mairani A, Tessonnier T. Development and benchmarking of a dose rate engine for raster-scanned FLASH helium ions. Med Phys 2024; 51:2251-2262. [PMID: 37847027 PMCID: PMC10939952 DOI: 10.1002/mp.16793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Radiotherapy with charged particles at high dose and ultra-high dose rate (uHDR) is a promising technique to further increase the therapeutic index of patient treatments. Dose rate is a key quantity to predict the so-called FLASH effect at uHDR settings. However, recent works introduced varying calculation models to report dose rate, which is susceptible to the delivery method, scanning path (in active beam delivery) and beam intensity. PURPOSE This work introduces an analytical dose rate calculation engine for raster scanned charged particle beams that is able to predict dose rate from the irradiation plan and recorded beam intensity. The importance of standardized dose rate calculation methods is explored here. METHODS Dose is obtained with an analytical pencil beam algorithm, using pre-calculated databases for integrated depth dose distributions and lateral penumbra. Dose rate is then calculated by combining dose information with the respective particle fluence (i.e., time information) using three dose-rate-calculation models (mean, instantaneous, and threshold-based). Dose rate predictions for all three models are compared to uHDR helium ion beam (145.7 MeV/u, range in water of approximatively 14.6 cm) measurements performed at the Heidelberg Ion Beam Therapy Center (HIT) with a diamond-detector prototype. Three scanning patterns (scanned or snake-like) and four field sizes are used to investigate the dose rate differences. RESULTS Dose rate measurements were in good agreement with in-silico generated distributions using the here introduced engine. Relative differences in dose rate were below 10% for varying depths in water, from 2.3 to 14.8 cm, as well as laterally in a near Bragg peak area. In the entrance channel of the helium ion beam, dose rates were predicted within 7% on average for varying irradiated field sizes and scanning patterns. Large differences in absolute dose rate values were observed for varying calculation methods. For raster-scanned irradiations, the deviation between mean and threshold-based dose rate at the investigated point was found to increase with the field size up to 63% for a 10 mm × 10 mm field, while no significant differences were observed for snake-like scanning paths. CONCLUSIONS This work introduces the first dose rate calculation engine benchmarked to instantaneous dose rate, enabling dose rate predictions for physical and biophysical experiments. Dose rate is greatly affected by varying particle fluence, scanning path, and calculation method, highlighting the need for a consensus among the FLASH community on how to calculate and report dose rate in the future. The here introduced engine could help provide the necessary details for the analysis of the sparing effect and uHDR conditions.
Collapse
Affiliation(s)
- Luisa Rank
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Karlsruhe Institute of Technology (KIT), Faculty of Physics, Karlsruhe, Germany
| | - Ozan Dogan
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg University, Faculty of Physics and Astronomy, Heidelberg, Germany
| | - Benedikt Kopp
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stewart Mein
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital (UKHD), Heidelberg Faculty of Medicine (MFHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Rafael Kranzer
- PTW-Freiburg, Freiburg, Germany
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Marco Marinelli
- Industrial Engineering Department, University of Rome “Tor Vergata”, Rome, Italy
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital (UKHD), Heidelberg Faculty of Medicine (MFHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Physics, National Centre of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital (UKHD), Heidelberg Faculty of Medicine (MFHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
17
|
Spruijt K, Mossahebi S, Lin H, Lee E, Kraus J, Dhabaan A, Poulsen P, Lowe M, Ayan A, Spiessens S, Godart J, Hoogeman M. Multi-institutional consensus on machine QA for isochronous cyclotron-based systems delivering ultra-high dose rate (FLASH) pencil beam scanning proton therapy in transmission mode. Med Phys 2024; 51:786-798. [PMID: 38103260 DOI: 10.1002/mp.16854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/07/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The first clinical trials to assess the feasibility of FLASH radiotherapy in humans have started (FAST-01, FAST-02) and more trials are foreseen. To increase comparability between trials it is important to assure treatment quality and therefore establish a standard for machine quality assurance (QA). Currently, the AAPM TG-224 report is considered as the standard on machine QA for proton therapy, however, it was not intended to be used for ultra-high dose rate (UHDR) proton beams, which have gained interest due to the observation of the FLASH effect. PURPOSE The aim of this study is to find consensus on practical guidelines on machine QA for UHDR proton beams in transmission mode in terms of which QA is required, how they should be done, which detectors are suitable for UHDR machine QA, and what tolerance limits should be applied. METHODS A risk assessment to determine the gaps in the current standard for machine QA was performed by an international group of medical physicists. Based on that, practical guidelines on how to perform machine QA for UHDR proton beams were proposed. RESULTS The risk assessment clearly identified the need for additional guidance on temporal dosimetry, addressing dose rate (constancy), dose spillage, and scanning speed. In addition, several minor changes from AAPM TG-224 were identified; define required dose rate levels, the use of clinically relevant dose levels, and the use of adapted beam settings to minimize activation of detector and phantom materials or to avoid saturation effects of specific detectors. The final report was created based on discussions and consensus. CONCLUSIONS Consensus was reached on what QA is required for UHDR scanning proton beams in transmission mode for isochronous cyclotron-based systems and how they should be performed. However, the group discussions also showed that there is a lack of high temporal resolution detectors and sufficient QA data to set appropriate limits for some of the proposed QA procedures.
Collapse
Affiliation(s)
- Kees Spruijt
- HollandPTC, Delft, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sina Mossahebi
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Haibo Lin
- New York Proton Center, New York, New York, USA
| | - Eunsin Lee
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, Ohio, USA
| | - James Kraus
- Department of Radiation Oncology, University of Alabama-Birmingham, Birmingham, Alabama, USA
| | - Anees Dhabaan
- Department of Radiation Oncology, Emory University of Medicine, Atlanta, Georgia, USA
| | - Per Poulsen
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Matthew Lowe
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Ahmet Ayan
- Department of Radiation Oncology, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Sylvie Spiessens
- Varian, a Siemens Healthineers Company, Groot-Bijgaarden, Belgium
| | - Jeremy Godart
- HollandPTC, Delft, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mischa Hoogeman
- HollandPTC, Delft, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Oh K, Gallagher KJ, Hyun M, Schott D, Wisnoskie S, Lei Y, Hendley S, Wong J, Wang S, Graff B, Jenkins C, Rutar F, Ahmed M, McNeur J, Taylor J, Schmidt M, Senadheera L, Smith W, Umstadter D, Lele SM, Dai R, Jianghu (James) D, Yan Y, Su‐min Z. Initial experience with an electron FLASH research extension (FLEX) for the Clinac system. J Appl Clin Med Phys 2024; 25:e14159. [PMID: 37735808 PMCID: PMC10860433 DOI: 10.1002/acm2.14159] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
PURPOSE Radiotherapy delivered at ultra-high-dose-rates (≥40 Gy/s), that is, FLASH, has the potential to effectively widen the therapeutic window and considerably improve the care of cancer patients. The underlying mechanism of the FLASH effect is not well understood, and commercial systems capable of delivering such dose rates are scarce. The purpose of this study was to perform the initial acceptance and commissioning tests of an electron FLASH research product for preclinical studies. METHODS A linear accelerator (Clinac 23EX) was modified to include a non-clinical FLASH research extension (the Clinac-FLEX system) by Varian, a Siemens Healthineers company (Palo Alto, CA) capable of delivering a 16 MeV electron beam with FLASH and conventional dose rates. The acceptance, commissioning, and dosimetric characterization of the FLEX system was performed using radiochromic film, optically stimulated luminescent dosimeters, and a plane-parallel ionization chamber. A radiation survey was conducted for which the shielding of the pre-existing vault was deemed sufficient. RESULTS The Clinac-FLEX system is capable of delivering a 16 MeV electron FLASH beam of approximately 1 Gy/pulse at isocenter and reached a maximum dose rate >3.8 Gy/pulse near the upper accessory mount on the linac gantry. The percent depth dose curves of the 16 MeV FLASH and conventional modes for the 10 × 10 cm2 applicator agreed within 0.5 mm at a range of 50% of the maximum dose. Their respective profiles agreed well in terms of flatness but deviated for field sizes >10 × 10 cm2 . The output stability of the FLASH system exhibited a dose deviation of <1%. Preliminary cell studies showed that the FLASH dose rate (180 Gy/s) had much less impact on the cell morphology of 76N breast normal cells compared to the non-FLASH dose rate (18 Gy/s), which induced large-size cells. CONCLUSION Our studies characterized the non-clinical Clinac-FLEX system as a viable solution to conduct FLASH research that could substantially increase access to ultra-high-dose-rate capabilities for scientists.
Collapse
Affiliation(s)
- Kyuhak Oh
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Megan Hyun
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Diane Schott
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Yu Lei
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Jeffrey Wong
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Shuo Wang
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Brendan Graff
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Frank Rutar
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Md Ahmed
- Varian Medical SystemsPalo AltoCaliforniaUSA
| | | | | | | | | | - Wendy Smith
- Varian Medical SystemsPalo AltoCaliforniaUSA
| | | | | | - Ran Dai
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Ying Yan
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Zhou Su‐min
- University of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
19
|
Tessonnier T, Verona-Rinati G, Rank L, Kranzer R, Mairani A, Marinelli M. Diamond detectors for dose and instantaneous dose-rate measurements for ultra-high dose-rate scanned helium ion beams. Med Phys 2024; 51:1450-1459. [PMID: 37742343 PMCID: PMC10922163 DOI: 10.1002/mp.16757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND The possible emergence of the FLASH effect-the sparing of normal tissue while maintaining tumor control-after irradiations at dose-rates exceeding several tens of Gy per second, has recently spurred a surge of studies attempting to characterize and rationalize the phenomenon. Investigating and reporting the dose and instantaneous dose-rate of ultra-high dose-rate (UHDR) particle radiotherapy beams is crucial for understanding and assessing the FLASH effect, towards pre-clinical application and quality assurance programs. PURPOSE The purpose of the present work is to investigate a novel diamond-based detector system for dose and instantaneous dose-rate measurements in UHDR particle beams. METHODS Two types of diamond detectors, a microDiamond (PTW 60019) and a diamond detector prototype specifically designed for operation in UHDR beams (flashDiamond), and two different readout electronic chains, were investigated for absorbed dose and instantaneous dose-rate measurements. The detectors were irradiated with a helium beam of 145.7 MeV/u under conventional and UHDR delivery. Dose-rate delivery records by the monitoring ionization chamber and diamond detectors were studied for single spot irradiations. Dose linearity at 5 cm depth and in-depth dose response from 2 to 16 cm were investigated for both measurement chains and both detectors in a water tank. Measurements with cylindrical and plane-parallel ionization chambers as well as Monte-Carlo simulations were performed for comparisons. RESULTS Diamond detectors allowed for recording the temporal structure of the beam, in good agreement with the one obtained by the monitoring ionization chamber. A better time resolution of the order of few μs was observed as compared to the approximately 50 μs of the monitoring ionization chamber. Both diamonds detectors show an excellent linearity response in both delivery modalities. Dose values derived by integrating the measured instantaneous dose-rates are in very good agreement with the ones obtained by the standard electrometer readings. Bragg peak curves confirmed the consistency of the charge measurements by the two systems. CONCLUSIONS The proposed novel dosimetric system allows for a detailed investigation of the temporal evolution of UHDR beams. As a result, reliable and accurate determinations of dose and instantaneous dose-rate are possible, both required for a comprehensive characterization of UHDR beams and relevant for FLASH effect assessment in clinical treatments.
Collapse
Affiliation(s)
- Thomas Tessonnier
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Luisa Rank
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Rafael Kranzer
- PTW-Freiburg, Freiburg, Germany
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Andrea Mairani
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Physics department, National Centre of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Marco Marinelli
- Industrial Engineering Department, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
20
|
Pettinato S, Felici G, Galluzzo L, Rossi MC, Girolami M, Salvatori S. A readout system for highly sensitive diamond detectors for FLASH dosimetry. Phys Imaging Radiat Oncol 2024; 29:100538. [PMID: 38317851 PMCID: PMC10839766 DOI: 10.1016/j.phro.2024.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Accurate dosimetry of ultra-high dose-rate beams using diamond detectors remains challenging, primarily due to the elevated photocurrent peaks exceeding the input dynamics of precision electrometers. This work aimed at demonstrating the effectiveness of compact gated-integration electronics in conditioning the current peaks (>20 mA) generated by a highly sensitive (S ≃ 26 nC/Gy) custom-made diamond photoconductor under electron FLASH irradiation, as well as in real-time monitoring of beam dose and dose-rate. For the emerging FLASH technology, this study provided a new perspective on using commercially available diamond dosimeters with high sensitivity, currently employed in conventional radiotherapy.
Collapse
Affiliation(s)
- Sara Pettinato
- Dept. of Engineering, Niccolò Cusano University, via don Carlo Gnocchi 3, 00166 Rome, Italy
| | - Giuseppe Felici
- SIT – Sordina IORT Technologies S.p.A., Aprilia, Latina, Italy
| | | | - Maria Cristina Rossi
- Dept. of Industrial, Electronic, and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
| | - Marco Girolami
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM–CNR), Sede Secondaria di Montelibretti, Strada Provinciale 35/D n. 9, 00010 Montelibretti, Rome, Italy
| | - Stefano Salvatori
- Dept. of Engineering, Niccolò Cusano University, via don Carlo Gnocchi 3, 00166 Rome, Italy
| |
Collapse
|
21
|
No HJ, Wu YF, Dworkin ML, Manjappa R, Skinner L, Ashraf MR, Lau B, Melemenidis S, Viswanathan V, Yu ASJ, Surucu M, Schüler E, Graves EE, Maxim PG, Loo BW. Clinical Linear Accelerator-Based Electron FLASH: Pathway for Practical Translation to FLASH Clinical Trials. Int J Radiat Oncol Biol Phys 2023; 117:482-492. [PMID: 37105403 DOI: 10.1016/j.ijrobp.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE Ultrahigh-dose-rate (UHDR) radiation therapy (RT) has produced the FLASH effect in preclinical models: reduced toxicity with comparable tumor control compared with conventional-dose-rate RT. Early clinical trials focused on UHDR RT feasibility using specialized devices. We explore the technical feasibility of practical electron UHDR RT on a standard clinical linear accelerator (LINAC). METHODS AND MATERIALS We tuned the program board of a decommissioned electron energy for UHDR electron delivery on a clinical LINAC without hardware modification. Pulse delivery was controlled using the respiratory gating interface. A short source-to-surface distance (SSD) electron setup with a standard scattering foil was configured and tested on an anthropomorphic phantom using circular blocks with 3- to 20-cm field sizes. Dosimetry was evaluated using radiochromic film and an ion chamber profiler. RESULTS UHDR open-field mean dose rates at 100, 80, 70, and 59 cm SSD were 36.82, 59.52, 82.01, and 112.83 Gy/s, respectively. At 80 cm SSD, mean dose rate was ∼60 Gy/s for all collimated field sizes, with an R80 depth of 6.1 cm corresponding to an energy of 17.5 MeV. Heterogeneity was <5.0% with asymmetry of 2.2% to 6.2%. The short SSD setup was feasible under realistic treatment conditions simulating broad clinical indications on an anthropomorphic phantom. CONCLUSIONS Short SSD and tuning for high electron beam current on a standard clinical LINAC can deliver flat, homogenous UHDR electrons over a broad, clinically relevant range of field sizes and depths with practical working distances in a configuration easily reversible to standard clinical use.
Collapse
Affiliation(s)
- Hyunsoo Joshua No
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Yufan Fred Wu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Michael Louis Dworkin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - M Ramish Ashraf
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Amy Shu-Jung Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edward Elliot Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Peter Gregor Maxim
- Department of Radiation Oncology, University of California, Irvine, Orange, California
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
22
|
Vanreusel V, Gasparini A, Galante F, Mariani G, Pacitti M, Colijn A, Reniers B, Yalvac B, Vandenbroucke D, Peeters M, Leblans P, Felici G, Verellen D, de Freitas Nascimento L. Optically stimulated luminescence system as an alternative for radiochromic film for 2D reference dosimetry in UHDR electron beams. Phys Med 2023; 114:103147. [PMID: 37804712 DOI: 10.1016/j.ejmp.2023.103147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/18/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
Radiotherapy is part of the treatment of over 50% of cancer patients. Its efficacy is limited by the radiotoxicity to the healthy tissue. FLASH-RT is based on the biological effect that ultra-high dose rates (UHDR) and very short treatment times strongly reduce normal tissue toxicity, while preserving the anti-tumoral effect. Despite many positive preclinical results, the translation of FLASH-RT to the clinic is hampered by the lack of accurate dosimetry for UHDR beams. To date radiochromic film is commonly used for dose assessment but has the drawback of lengthy and cumbersome read out procedures. In this work, we investigate the equivalence of a 2D OSL system to radiochromic film dosimetry in terms of dose rate independency. The comparison of both systems was done using the ElectronFlash linac. We investigated the dose rate dependence by variation of the (1) modality, (2) pulse repetition frequency, (3) pulse length and (4) source to surface distance. Additionally, we compared the 2D characteristics by field size measurements. The OSL calibration showed transferable between conventional and UHDR modality. Both systems are equally independent of average dose rate, pulse length and instantaneous dose rate. The OSL system showed equivalent in field size determination within 3 sigma. We show the promising nature of the 2D OSL system to serve as alternative for radiochromic film in UHDR electron beams. However, more in depth characterization is needed to assess its full potential.
Collapse
Affiliation(s)
- Verdi Vanreusel
- Research in Dosimetric Applications, SCK CEN, Boeretang 200, 2400 Mol, Belgium; CORE, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Iridium Netwerk, Oosterveldlaan 22, 2610 Wilrijk, Belgium.
| | - Alessia Gasparini
- CORE, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Iridium Netwerk, Oosterveldlaan 22, 2610 Wilrijk, Belgium
| | - Federica Galante
- Sordina IORT Technologies S.p.A., Via dell'Industria, 1/A, 04011 Aprilia, Latina, Italy
| | - Giulia Mariani
- Sordina IORT Technologies S.p.A., Via dell'Industria, 1/A, 04011 Aprilia, Latina, Italy
| | - Matteo Pacitti
- Sordina IORT Technologies S.p.A., Via dell'Industria, 1/A, 04011 Aprilia, Latina, Italy
| | - Arnaud Colijn
- CORE, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Brigitte Reniers
- NuTeC, CMK, Hasselt University, Wetenschapspark 27, 3590 Diepenbeek, Belgium
| | - Burak Yalvac
- NuTeC, CMK, Hasselt University, Wetenschapspark 27, 3590 Diepenbeek, Belgium
| | | | | | - Paul Leblans
- Agfa N.V., Septestraat 27, 2640 Mortsel, Belgium
| | - Giuseppe Felici
- Sordina IORT Technologies S.p.A., Via dell'Industria, 1/A, 04011 Aprilia, Latina, Italy
| | - Dirk Verellen
- CORE, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Iridium Netwerk, Oosterveldlaan 22, 2610 Wilrijk, Belgium
| | | |
Collapse
|
23
|
Marinelli M, di Martino F, Del Sarto D, Pensavalle JH, Felici G, Giunti L, De Liso V, Kranzer R, Verona C, Verona Rinati G. A diamond detector based dosimetric system for instantaneous dose rate measurements in FLASH electron beams. Phys Med Biol 2023; 68:175011. [PMID: 37494946 DOI: 10.1088/1361-6560/acead0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
Objective.A reliable determination of the instantaneous dose rate (I-DR) delivered in FLASH radiotherapy treatments is believed to be crucial to assess the so-called FLASH effect in preclinical and biological studies. At present, no detectors nor real-time procedures are available to do that in ultra high dose rate (UH-DR) electron beams, typically consisting ofμs pulses characterized by I-DRs of the order of MGy/s. A dosimetric system is proposed possibly overcoming the above reported limitation, based on the recently developed flashDiamond (fD) detector (model 60025, PTW-Freiburg, Germany).Approach.A dosimetric system is proposed, based on a flashDiamond detector prototype, properly modified and adapted for very fast signal transmission. It was used in combination with a fast transimpedance amplifier and a digital oscilloscope to record the temporal traces of the pulses delivered by an ElectronFlash linac (SIT S.p.A., Italy). The proposed dosimetric systems was investigated in terms of the temporal characteristics of its response and the capability to measure the absolute delivered dose and instantaneous dose rate (I-DR). A 'standard' flashDiamond was also investigated and its response compared with the one of the specifically designed prototype.Main results. Temporal traces recorded in several UH-DR irradiation conditions showed very good signal to noise ratios and rise and decay times of the order of a few tens ns, faster than the ones obtained by the current transformer embedded in the linac head. By analyzing such signals, a calibration coefficient was derived for the fD prototype and found to be in agreement within 1% with the one obtained under reference60Co irradiation. I-DRs as high as about 2 MGy s-1were detected without any undesired saturation effect. Absolute dose per pulse values extracted by integrating the I-DR signals were found to be linear up to at least 7.13 Gy and in very good agreement with the ones obtained by connecting the fD to a UNIDOS electrometer (PTW-Freiburg, Germany). A good short term reproducibility of the linac output was observed, characterized by a pulse-to-pulse variation coefficient of 0.9%. Negligible differences were observed when replacing the fD prototype with a standard one, with the only exception of a somewhat slower response time for the latter detector type.Significance.The proposed fD-based system was demonstrated to be a suitable tool for a thorough characterization of UH-DR beams, providing accurate and reliable time resolved I-DR measurements from which absolute dose values can be straightforwardly derived.
Collapse
Affiliation(s)
- Marco Marinelli
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Roma, Italy
| | - Fabio di Martino
- U.O.Fisica Sanitaria, Azienda Universitaria Ospedaliera Pisana, Pisa, Italy
| | - Damiano Del Sarto
- U.O.Fisica Sanitaria, Azienda Universitaria Ospedaliera Pisana, Pisa, Italy
| | | | | | | | | | - Rafael Kranzer
- PTW-Freiburg, Freiburg D-79115, Germany
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University Oldenburg, D-26121 Germany
| | - Claudio Verona
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Roma, Italy
| | | |
Collapse
|
24
|
Siddique S, Ruda HE, Chow JCL. FLASH Radiotherapy and the Use of Radiation Dosimeters. Cancers (Basel) 2023; 15:3883. [PMID: 37568699 PMCID: PMC10417829 DOI: 10.3390/cancers15153883] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Radiotherapy (RT) using ultra-high dose rate (UHDR) radiation, known as FLASH RT, has shown promising results in reducing normal tissue toxicity while maintaining tumor control. However, implementing FLASH RT in clinical settings presents technical challenges, including limited depth penetration and complex treatment planning. Monte Carlo (MC) simulation is a valuable tool for dose calculation in RT and has been investigated for optimizing FLASH RT. Various MC codes, such as EGSnrc, DOSXYZnrc, and Geant4, have been used to simulate dose distributions and optimize treatment plans. Accurate dosimetry is essential for FLASH RT, and radiation detectors play a crucial role in measuring dose delivery. Solid-state detectors, including diamond detectors such as microDiamond, have demonstrated linear responses and good agreement with reference detectors in UHDR and ultra-high dose per pulse (UHDPP) ranges. Ionization chambers are commonly used for dose measurement, and advancements have been made to address their response nonlinearities at UHDPP. Studies have proposed new calculation methods and empirical models for ion recombination in ionization chambers to improve their accuracy in FLASH RT. Additionally, strip-segmented ionization chamber arrays have shown potential for the experimental measurement of dose rate distribution in proton pencil beam scanning. Radiochromic films, such as GafchromicTM EBT3, have been used for absolute dose measurement and to validate MC simulation results in high-energy X-rays, triggering the FLASH effect. These films have been utilized to characterize ionization chambers and measure off-axis and depth dose distributions in FLASH RT. In conclusion, MC simulation provides accurate dose calculation and optimization for FLASH RT, while radiation detectors, including diamond detectors, ionization chambers, and radiochromic films, offer valuable tools for dosimetry in UHDR environments. Further research is needed to refine treatment planning techniques and improve detector performance to facilitate the widespread implementation of FLASH RT, potentially revolutionizing cancer treatment.
Collapse
Affiliation(s)
- Sarkar Siddique
- Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada;
| | - Harry E. Ruda
- Centre of Advance Nanotechnology, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada;
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
25
|
Keppel C, Weisenberger A, Atanasijevic T, Wang S, Zubal G, Buchsbaum J, Brechbiel M, Capala J, Escorcia F, Obcemea C, Boehnlein A, Heyes G, Bourne P, Cherry S, Colby E, El Fakhri G, Gillo J, Gropler R, Gueye P, Tourassi G, Peggs S, Woody C. The United States Department of Energy and National Institutes of Health Collaboration: Medical Care Advances via Discovery in Physical Sciences. Med Phys 2023; 50:e53-e61. [PMID: 36705550 PMCID: PMC10033422 DOI: 10.1002/mp.16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/21/2022] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Over several months, representatives from the U.S. Department of Energy (DOE) Office of Science and National Institutes of Health (NIH) had a number of meetings that lead to the conclusion that innovations in the Nation's health care could be realized by more directed interactions between NIH and DOE. It became clear that the expertise amassed and instrumentation advances developed at the DOE physical science laboratories to enable cutting-edge research in particle physics could also feed innovation in medical healthcare. To meet their scientific mission, the DOE laboratories created advances in such technologies as particle beam generation, radioisotope production, high-energy particle detection and imaging, superconducting particle accelerators, superconducting magnets, cryogenics, high-speed electronics, artificial intelligence, and big data. To move forward, NIH and DOE initiated the process of convening a joint workshop which occurred on July 12th and 13th, 2021. This Special Report presents a summary of the findings of the collaborative workshop and introduces the goals of the next one.
Collapse
Affiliation(s)
- Cynthia Keppel
- Experimental Nuclear Physics, Thomas Jefferson National Accelerator Facility, Virginia, USA
| | - Andrew Weisenberger
- Experimental Nuclear Physics, Thomas Jefferson National Accelerator Facility, Virginia, USA
| | | | - Shumin Wang
- National Institute of Biomedical Imaging and Bioengineering, Maryland, USA
| | - George Zubal
- National Institute of Biomedical Imaging and Bioengineering, Maryland, USA
| | | | | | | | | | | | - Amber Boehnlein
- Computational Sciences & Technology, Thomas Jefferson National Accelerator Facility, Virginia, USA
| | - Graham Heyes
- Computational Sciences & Technology, Thomas Jefferson National Accelerator Facility, Virginia, USA
| | - Philip Bourne
- School of Data Science, University of Virginia, Virginia, USA
| | - Simon Cherry
- Biomedical Engineering/Radiology, University of California, Davis, California, USA
| | - Eric Colby
- Office of High Energy Physics, Department of Energy, Washington, DC, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Massachusetts, USA
| | - Jehanne Gillo
- Office of Isotope R&D and Production, Department of Energy, Washington, DC, USA
| | - Robert Gropler
- Mallinckrodt Institute of Radiology, Washington University, USA
| | - Paul Gueye
- Facility for Rare Isotope Beams, Michigan State University, Michigan, USA
| | - Georgia Tourassi
- Director of the National Center for Computational Sciences and the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory, Tennessee, USA
| | - Steve Peggs
- Collider Accelerator Department, Brookhaven National Laboratory, New York, USA
| | - Craig Woody
- Physics Department, Brookhaven National Laboratory, New York, USA
| |
Collapse
|