1
|
Nelson A, Papawassiliou W, Paul S, Hediger S, Hung I, Gan Z, Venkatesh A, Franks WTT, Smith ME, Gajan D, De Paëpe G, Bonhomme C, Laurencin D, Gervais C. Temperature-induced mobility in octacalcium phosphate impacts crystal symmetry: water dynamics studied by NMR crystallography. Faraday Discuss 2025; 255:451-482. [PMID: 39390961 PMCID: PMC11710991 DOI: 10.1039/d4fd00108g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Octacalcium phosphate (OCP, Ca8(PO4)4(HPO4)2·5H2O) is a notable calcium phosphate due to its biocompatibility, making it a widely studied material for bone substitution. It is known to be a precursor of bone mineral, but its role in biomineralisation remains unclear. While the structure of OCP has been the subject of thorough investigations (including using Rietveld refinements of X-ray diffraction data, and NMR crystallography studies), important questions regarding the symmetry and H-bonding network in the material remain. In this study, it is shown that OCP undergoes a lowering of symmetry below 200 K, evidenced by 1H, 17O, 31P and 43Ca solid-state NMR experiments. Using ab initio molecular-dynamics (MD) simulations and gauge including projected augmented wave (GIPAW) DFT calculations of NMR parameters, the presence of rapid motions of the water molecules in the crystal cell at room temperature is proved. This information leads to an improved description of the OCP structure at both low and ambient temperatures, and helps explain long-standing issues of symmetry. Remaining challenges related to the understanding of the structure of OCP are then discussed.
Collapse
Affiliation(s)
- Adam Nelson
- LCMCP, UMR 7574, Sorbonne Université, CNRS, Paris, France.
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Subhradip Paul
- IRIG, MEM, Univ. Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France
| | - Sabine Hediger
- IRIG, MEM, Univ. Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France
| | - Ivan Hung
- National High Magnetic Laboratory (NHMFL), Tallahassee, Florida, USA
| | - Zhehong Gan
- National High Magnetic Laboratory (NHMFL), Tallahassee, Florida, USA
| | - Amrit Venkatesh
- National High Magnetic Laboratory (NHMFL), Tallahassee, Florida, USA
| | | | - Mark E Smith
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Southampton, SO17 1BJ, UK
| | - David Gajan
- CRMN Lyon, UMR 5082, CNRS, ENS Lyon, Université Lyon 1, Villeurbanne, France
| | - Gaël De Paëpe
- IRIG, MEM, Univ. Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France
| | | | | | | |
Collapse
|
2
|
Susaki N, Saito T, Yokoi T, Ogura Y, Matsunaga K. Revealing Atomic Structure of Hybrid Octacalcium-Phosphate Derivative. Inorg Chem 2024; 63:15924-15930. [PMID: 39121449 DOI: 10.1021/acs.inorgchem.4c02259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Octacalcium phosphate (OCP), which is one of the bioactive calcium phosphates, can incorporate various organic molecules in its crystal lattice, forming the organic-inorganic hybrid derivatives. However, detailed atomic arrangements of OCP hybridized with organic molecules such as dicarboxylate are still unknown, although many years have passed since the first discovery of the materials systems. In the present study, some black-box optimization methods combined with first-principles calculations were used to theoretically identify the most stable atomic structure of the OCP with the incorporation of malonate ions as a typical case study. The results showed that the calculated interplanar spacing on the (100) plane of the most stable structure agrees well with experimental data, by taking account of implicit solvent of aqueous solution. An underlying mechanism that realizes the bridging feature of the incorporated malonate ions between the apatitic layers is also discussed. The present methodology can pave the way to accurately explore reliable atomic structures of such complicated organic-inorganic hybrid biomaterials with high structural degrees of freedom.
Collapse
Affiliation(s)
- Nao Susaki
- Department of Materials Physics, Nagoya University, Nagoya 464-8603, Japan
| | - Tatsushi Saito
- Department of Materials Physics, Nagoya University, Nagoya 464-8603, Japan
| | - Tatsuya Yokoi
- Department of Materials Physics, Nagoya University, Nagoya 464-8603, Japan
| | - Yu Ogura
- Department of Materials Physics, Nagoya University, Nagoya 464-8603, Japan
| | - Katsuyuki Matsunaga
- Department of Materials Physics, Nagoya University, Nagoya 464-8603, Japan
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587, Japan
| |
Collapse
|
3
|
Bryce DL. Double-rotation (DOR) NMR spectroscopy: Progress and perspectives. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 130:101923. [PMID: 38471386 DOI: 10.1016/j.ssnmr.2024.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Double-rotation (DOR) solid-state NMR spectroscopy is a high-resolution technique developed in the late 1980s. Although multiple-quantum magic-angle spinning (MQMAS) became the most widely used high-resolution method for half-integer spin quadrupoles after 1995, development and application of DOR NMR to a variety of chemical and materials science problems has endured. This Trend article recapitulates the development of DOR NMR, discusses various applications, and describes possible future directions. The main technical limitations specific to DOR NMR are simply related to the size of the double rotor system. The relatively large outer rotor (and thus coil) used for most applications over the past 35 years translates into relatively low rotor spinning frequencies, a low filling factor, and weak radiofrequency powers available for excitation and for proton decoupling. Ongoing developments in NMR instrumentation, including ever-shrinking MAS rotors and spherical NMR rotors, could solve many of these problems and may augur a renaissance for DOR NMR.
Collapse
Affiliation(s)
- David L Bryce
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, and Nexus for Quantum Technologies, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
4
|
Georges T, Chèvre R, Cousin SF, Gervais C, Thureau P, Mollica G, Azaïs T. 43Ca MAS-DNP NMR of Frozen Solutions for the Investigation of Calcium Ion Complexation. ACS OMEGA 2024; 9:4881-4891. [PMID: 38313477 PMCID: PMC10831850 DOI: 10.1021/acsomega.3c08292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024]
Abstract
Calcium ion complexation in aqueous solutions is of paramount importance in biology as it is related to cell signaling, muscle contraction, or biomineralization. However, Ca2+-complexes are dynamic soluble entities challenging to describe at the molecular level. Nuclear magnetic resonance appears as a method of choice to probe Ca2+-complexes. However, 43Ca NMR exhibits severe limitations arising from the low natural abundance coupled to the low gyromagnetic ratio and the quadrupolar nature of 43Ca, which overall make it a very unreceptive nucleus. Here, we show that 43Ca dynamic nuclear polarization (DNP) NMR of 43Ca-labeled frozen solutions is an efficient approach to enhance the NMR receptivity of 43Ca and to obtain structural insights about calcium ions complexed with representative ligands including water molecules, ethylenediaminetetraacetic acid (EDTA), and l-aspartic acid (l-Asp). In these conditions and in combination with numerical simulations and calculations, we show that 43Ca nuclei belonging to Ca2+ complexed to the investigated ligands exhibit rather low quadrupolar couplings (with CQ typically ranging from 0.6 to 1 MHz) due to high symmetrical environments and potential residual dynamics in vitrified solutions at a temperature of 100 K. As a consequence, when 1H→43Ca cross-polarization (CP) is used to observe 43Ca central transition, "high-power" νRF(43Ca) conditions, typically used to detect spin 1/2 nuclei, provide ∼120 times larger sensitivity than "low-power" conditions usually employed for detection of quadrupolar nuclei. These "high-power" CPMAS conditions allow two-dimensional (2D) 1H-43Ca HetCor spectra to be readily recorded, highlighting various Ca2+-ligand interactions in solution. This significant increase in 43Ca NMR sensitivity results from the combination of distinct advantages: (i) an efficient 1H-mediated polarization transfer from DNP, resembling the case of low-natural-abundance spin 1/2 nuclei, (ii) a reduced dynamics, allowing the use of CP as a sensitivity enhancement technique, and (iii) the presence of a relatively highly symmetrical Ca environment, which, combined to residual dynamics, leads to the averaging of the quadrupolar interaction and hence to efficient high-power CP conditions. Interestingly, these results indicate that the use of high-power CP conditions is an effective way of selecting symmetrical and/or dynamic 43Ca environments of calcium-containing frozen solution, capable of filtering out more rigid and/or anisotropic 43Ca sites characterized by larger quadrupolar constants. This approach could open the way to the atomic-level investigation of calcium environments in more complex, heterogeneous frozen solutions, such as those encountered at the early stages of calcium phosphate or calcium carbonate biomineralization events.
Collapse
Affiliation(s)
- Tristan Georges
- Sorbonne
Université, CNRS, Laboratoire de Chimie de la Matière
Condensée de Paris (LCMCP), 4 Place Jussieu, 75005 Paris, France
| | - Romain Chèvre
- Aix
Marseille Univ, CNRS, ICR, 13397 Marseille, France
| | | | - Christel Gervais
- Sorbonne
Université, CNRS, Laboratoire de Chimie de la Matière
Condensée de Paris (LCMCP), 4 Place Jussieu, 75005 Paris, France
| | | | | | - Thierry Azaïs
- Sorbonne
Université, CNRS, Laboratoire de Chimie de la Matière
Condensée de Paris (LCMCP), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
5
|
Goldberga I, Jensen ND, Combes C, Mentink-Vigier F, Wang X, Hung I, Gan Z, Trébosc J, Métro TX, Bonhomme C, Gervais C, Laurencin D. 17O solid state NMR as a valuable tool for deciphering reaction mechanisms in mechanochemistry: the case study on the 17O-enrichment of hydrated Ca-pyrophosphate biominerals. Faraday Discuss 2023; 241:250-265. [PMID: 36134444 PMCID: PMC9813801 DOI: 10.1039/d2fd00127f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/12/2022] [Indexed: 01/22/2023]
Abstract
The possibility of enriching in 17O the water molecules within hydrated biominerals belonging to the Ca-pyrophosphate family was investigated, using liquid assisted grinding (LAG) in the presence of 17O-labelled water. Two phases with different hydration levels, namely triclinic calcium pyrophosphate dihydrate (Ca2P2O7·2H2O, denoted t-CPPD) and monoclinic calcium pyrophosphate tetrahydrate (Ca2P2O7·4H2O, denoted m-CPPT β) were enriched in 17O using a "post-enrichment" strategy, in which the non-labelled precursors were ground under gentle milling conditions in the presence of stoichiometric quantities of 17O-enriched water (introduced here in very small volumes ∼10 μL). Using high-resolution 17O solid-state NMR (ssNMR) analyses at multiple magnetic fields, and dynamic nuclear polarisation (DNP)-enhanced 17O NMR, it was possible to show that the labelled water molecules are mainly located at the core of the crystal structures, but that they can enter the lattice in different ways, namely by dissolution/recrystallisation or by diffusion. Overall, this work sheds light on the importance of high-resolution 17O NMR to help decipher the different roles that water can play as a liquid-assisted grinding agent and as a reagent for 17O-isotopic enrichment.
Collapse
Affiliation(s)
- Ieva Goldberga
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Christèle Combes
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP - ENSIACET, Toulouse, France
| | | | - Xiaoling Wang
- National High Magnetic Field Laboratory (NHMFL), Tallahassee, Florida, USA
| | - Ivan Hung
- National High Magnetic Field Laboratory (NHMFL), Tallahassee, Florida, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory (NHMFL), Tallahassee, Florida, USA
| | - Julien Trébosc
- Université de Lille, CNRS, INRAE, Centrale Lille, Université d'Artois FR2638 - IMEC - Institut Michel Eugène Chevreul, 59000 Lille, France
| | | | | | | | | |
Collapse
|
6
|
Yokoi T, Shimabukuro M, Kawashita M. Octacalcium phosphate with incorporated carboxylate ions: a review. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:434-445. [PMID: 35875328 PMCID: PMC9307112 DOI: 10.1080/14686996.2022.2094728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Octacalcium phosphate (OCP) belongs to a family of calcium phosphate compounds. OCP has unique crystal-chemical properties; among calcium phosphate compounds, only OCP can incorporate carboxylate ions into its crystal lattice. An OCP with incorporated carboxylate ions is called an OCP carboxylate (OCPC). OCPCs are investigated for applications in novel adsorbents, electrochemical devices, and biomaterials. Several wet methods are available for the synthesis of OCPCs, and the characteristics and advantages of each method are explained. Representative characterization methods, i.e. X-ray diffraction and Fourier transform infrared spectroscopy, used for the detection of carboxylate ion incorporation into the OCP interlayers are explained. Various carboxylic acids can be incorporated into OCP, and these types of carboxylic acid are presented with reference to the latest research results. The incorporation of carboxylate ions into OCP represents a modification of the OCP crystal at the molecular level and can impart various functions. Challenging physicochemical and biomaterial applications of OCPCs are thus introduced, although they are still in the research phase. Finally, future perspectives and challenges for OCPC research are described.
Collapse
Affiliation(s)
- Taishi Yokoi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masaya Shimabukuro
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masakazu Kawashita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
7
|
Molecular conformations and dynamics in the extracellular matrix of mammalian structural tissues: Solid-state NMR spectroscopy approaches. Matrix Biol Plus 2021; 12:100086. [PMID: 34746737 PMCID: PMC8551230 DOI: 10.1016/j.mbplus.2021.100086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Solid-state NMR spectroscopy probes molecular conformation and dynamics in intact ECM. Collagen conformational dynamics has roles in mechanical properties of fibrils and cell adhesion. Solid-state NMR spectroscopy has shed new light on the chemical structure of bone mineral.
Solid-state NMR spectroscopy has played an important role in multidisciplinary studies of the extracellular matrix. Here we review how solid-state NMR has been used to probe collagen molecular conformations, dynamics, post-translational modifications and non-enzymatic chemical changes, and in calcified tissues, the molecular structure of bone mineral and its interface with collagen. We conclude that NMR spectroscopy can deliver vital information that in combination with data from structural imaging techniques, can result in significant new insight into how the extracellular matrix plays its multiple roles.
Collapse
|
8
|
Leroy C, Bonhomme-Coury L, Gervais C, Tielens F, Babonneau F, Daudon M, Bazin D, Letavernier E, Laurencin D, Iuga D, Hanna J, Smith M, Bonhomme C. A novel multinuclear solid-state NMR approach for the characterization of kidney stones. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:653-671. [PMID: 37905220 PMCID: PMC10539836 DOI: 10.5194/mr-2-653-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/15/2021] [Indexed: 11/01/2023]
Abstract
The spectroscopic study of pathological calcifications (including kidney stones) is extremely rich and helps to improve the understanding of the physical and chemical processes associated with their formation. While Fourier transform infrared (FTIR) imaging and optical/electron microscopies are routine techniques in hospitals, there has been a dearth of solid-state NMR studies introduced into this area of medical research, probably due to the scarcity of this analytical technique in hospital facilities. This work introduces effective multinuclear and multidimensional solid-state NMR methodologies to study the complex chemical and structural properties characterizing kidney stone composition. As a basis for comparison, three hydrates (n = 1 , 2 and 3) of calcium oxalate are examined along with nine representative kidney stones. The multinuclear magic angle spinning (MAS) NMR approach adopted investigates the 1 H , 13 C , 31 P and 31 P nuclei, with the 1 H and 13 C MAS NMR data able to be readily deconvoluted into the constituent elements associated with the different oxalates and organics present. For the first time, the full interpretation of highly resolved 1 H NMR spectra is presented for the three hydrates, based on the structure and local dynamics. The corresponding 31 P MAS NMR data indicates the presence of low-level inorganic phosphate species; however, the complexity of these data make the precise identification of the phases difficult to assign. This work provides physicians, urologists and nephrologists with additional avenues of spectroscopic investigation to interrogate this complex medical dilemma that requires real, multitechnique approaches to generate effective outcomes.
Collapse
Affiliation(s)
- César Leroy
- Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, CNRS, 75005 Paris, France
- Institut Charles Gerhardt Montpellier, CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Laure Bonhomme-Coury
- Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, CNRS, 75005 Paris, France
| | - Christel Gervais
- Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, CNRS, 75005 Paris, France
| | - Frederik Tielens
- Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, CNRS, 75005 Paris, France
- General Chemistry (ALGC) – Materials Modelling Group, Vrije
Universiteit Brussel (Free University Brussels – VUB), Pleinlaan 2, 1050
Brussels, Belgium
| | - Florence Babonneau
- Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, CNRS, 75005 Paris, France
| | - Michel Daudon
- AP-HP, Hôpital Tenon, Explorations Fonctionnelles
Multidisciplinaires et INSERM UMRS 1155, Sorbonne Université, Hôpital Tenon, Paris, France
| | - Dominique Bazin
- Institut de Chimie Physique, UMR CNRS 8000, Bâtiment 350,
Université Paris Saclay, 91405 Orsay CEDEX, France
- Laboratoire de Physique des Solides, UMR CNRS 8502, Bâtiment 510, Université Paris-Sud, 91405 Orsay CEDEX, France
| | - Emmanuel Letavernier
- AP-HP, Hôpital Tenon, Explorations Fonctionnelles
Multidisciplinaires et INSERM UMRS 1155, Sorbonne Université, Hôpital Tenon, Paris, France
| | - Danielle Laurencin
- Institut Charles Gerhardt Montpellier, CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Dinu Iuga
- Department of Physics, University of Warwick, Gibbet Hill Road,
Coventry CV4 7AL, United Kingdom
| | - John V. Hanna
- Department of Physics, University of Warwick, Gibbet Hill Road,
Coventry CV4 7AL, United Kingdom
| | - Mark E. Smith
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Christian Bonhomme
- Laboratoire Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|