1
|
Rodríguez-Godina IJ, García JE, Morales JL, Contreras V, Véliz FG, Macías-Cruz U, Avendaño-Reyes L, Mellado M. Effect of heat stress during the dry period on milk yield and reproductive performance of Holstein cows. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:883-890. [PMID: 38308728 DOI: 10.1007/s00484-024-02633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
This study aimed to determine the influence of heat stress during the dry period on milk yield and reproductive performance of Holstein cows in a hot environment. Breeding and milk production records of cows, as well as meteorological data between 2017 and 2020 from a commercial dairy herd (n = 12,102 lactations), were used to determine the relationship between climatic conditions during the dry period (average of the temperature-humidity index (THI) at the beginning, middle, and end of the dry period) and reproductive efficiency and milk yield traits. THI was divided into < 70 (no heat stress), 70-80 (moderate heat stress), and > 80 (severe heat stress). First-service pregnancy rate of cows decreased (P < 0.01) with increasing hyperthermia during the dry period (9.5, 7.3, and 3.4% for THI < 70, 70-80, and > 80, respectively). All-service pregnancy rate was highest (P < 0.01) for cows not undergoing heat stress during the dry period (60.2%) and lowest (42.6%) for cows with severe heat stress during the dry period. Cows not experiencing heat stress during the dry period required a mean ± SD of 5.6 ± 3.8 services per pregnancy compared with 6.5 ± 3.6 (P < 0.01) for cows subjected to THI > 80 during the dry period. Cows not suffering heat stress during the dry period produced more (P < 0.01) 305-day milk (10,926 ± 1206 kg) than cows subjected to moderate (10,799 ± 1254 kg) or severe (10,691 ± 1297 kg) heat stress during the dry period. Total milk yield did not differ (P > 0.10) between cows not undergoing heat stress (13,337 ± 3346 kg) and cows subjected to severe heat stress during the dry period (13,911 ± 4018 kg). It was concluded that environmental management of dry cows during hot months is warranted to maximize reproductive performance and milk yield in the following lactation.
Collapse
Affiliation(s)
- Iris J Rodríguez-Godina
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, 25315, Saltillo, Mexico
| | - José E García
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, 25315, Saltillo, Mexico
| | - Juan L Morales
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, 27054, Torreon, Mexico
| | - Viridiana Contreras
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, 27054, Torreon, Mexico
| | - Francisco G Véliz
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, 27054, Torreon, Mexico
| | - Ulises Macías-Cruz
- Institute of Agriculture Science, Autonomous University of Baja California, 21705, Mexicali, Mexico
| | - Leonel Avendaño-Reyes
- Institute of Agriculture Science, Autonomous University of Baja California, 21705, Mexicali, Mexico
| | - Miguel Mellado
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, 25315, Saltillo, Mexico.
| |
Collapse
|
2
|
Ducreux B, Patrat C, Trasler J, Fauque P. Transcriptomic integrity of human oocytes used in ARTs: technical and intrinsic factor effects. Hum Reprod Update 2024; 30:26-47. [PMID: 37697674 DOI: 10.1093/humupd/dmad025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/04/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Millions of children have been born throughout the world thanks to ARTs, the harmlessness of which has not yet been fully demonstrated. For years, efforts to evaluate the specific effects of ART have focused on the embryo; however, it is the oocyte quality that mainly dictates first and foremost the developmental potential of the future embryo. Ovarian stimulation, cryopreservation, and IVM are sometimes necessary steps to obtain a mature oocyte, but they could alter the appropriate expression of the oocyte genome. Additionally, it is likely that female infertility, environmental factors, and lifestyle have a significant influence on oocyte transcriptomic quality, which may interfere with the outcome of an ART attempt. OBJECTIVE AND RATIONALE The objective of this review is to identify transcriptomic changes in the human oocyte caused by interventions specific to ART but also intrinsic factors such as age, reproductive health issues, and lifestyle. We also provide recommendations for future good practices to be conducted when attempting ART. SEARCH METHODS An in-depth literature search was performed on PubMed to identify studies assessing the human oocyte transcriptome following ART interventions, or in the context of maternal aging, suboptimal lifestyle, or reproductive health issues. OUTCOMES ART success is susceptible to external factors, maternal aging, lifestyle factors (smoking, BMI), and infertility due to endometriosis or polycystic ovary syndrome. Indeed, all of these are likely to increase oxidative stress and alter mitochondrial processes in the foreground. Concerning ART techniques themselves, there is evidence that different ovarian stimulation regimens shape the oocyte transcriptome. The perturbation of processes related to the mitochondrion, oxidative phosphorylation, and metabolism is observed with IVM. Cryopreservation might dysregulate genes belonging to transcriptional regulation, ubiquitination, cell cycle, and oocyte growth pathways. For other ART laboratory factors such as temperature, oxygen tension, air pollution, and light, the evidence remains scarce. Focusing on genes involved in chromatin-based processes such as DNA methylation, heterochromatin modulation, histone modification, and chromatin remodeling complexes, but also genomic imprinting, we observed systematic dysregulation of such genes either after ART intervention or lifestyle exposure, as well as due to internal factors such as maternal aging and reproductive diseases. Alteration in the expression of such epigenetic regulators may be a common mechanism linked to adverse oocyte environments, explaining global transcriptomic modifications. WIDER IMPLICATIONS Many IVF factors and additional external factors have the potential to impair oocyte transcriptomic integrity, which might not be innocuous for the developing embryo. Fortunately, it is likely that such dysregulations can be minimized by adapting ART protocols or reducing adverse exposure.
Collapse
Affiliation(s)
- Bastien Ducreux
- Université Bourgogne Franche-Comtés-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France
| | - Catherine Patrat
- Université de Paris Cité, Faculty of Medicine, Inserm 1016, Paris, France
- Department of Reproductive Biology-CECOS, aphp.centre-Université Paris Cité, Paris, France
| | - Jacquetta Trasler
- Department of Pediatrics, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pharmacology & Therapeutics, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Patricia Fauque
- Université Bourgogne Franche-Comtés-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, Dijon, France
| |
Collapse
|
3
|
Rhoads ML. Review: Reproductive consequences of whole-body adaptations of dairy cattle to heat stress. Animal 2023; 17 Suppl 1:100847. [PMID: 37567679 DOI: 10.1016/j.animal.2023.100847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 08/13/2023] Open
Abstract
Heat stress has far-reaching ramifications for agricultural production and the severity of its impact has increased alongside the growing threats of global warming. Climate change is exacerbating the already-severe consequences of seasonal heat stress and is predicted to cause additional losses in reproductive performance, milk production and overall productivity. Estimated and predicted losses are staggering, and without advancement in production practices during heat stress, these projected losses will threaten the human food supply. This is particularly concerning as the worldwide population and, thus, demand for animal products grows. As such, there is an urgent need for the development of technologies and management strategies capable of improving animal production capacity and efficiency during periods of heat stress. Reproduction is a major component of animal productivity, and subfertility during thermal stress is ultimately the result of both reproductive and whole-body physiological responses to heat stress. Improving reproductive performance during seasonal heat stress requires a thorough understanding of its effects on the reproductive system as well as other physiological systems involved in the whole-body response to elevated ambient temperature. To that end, this review will explore the reproductive repercussions of whole-body consequences of heat stress, including elevated body temperature, altered metabolism and circulating lipopolysaccharide. A comprehensive understanding of the physiological responses to heat stress is a prerequisite for improving fertility, and thus, the overall productivity of dairy cattle experiencing heat stress.
Collapse
Affiliation(s)
- M L Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
4
|
SAKATANI M. «The role of reproductive biology in SDGs» Global warming and cattle reproduction: Will increase in cattle numbers progress to global warming? J Reprod Dev 2022; 68:90-95. [PMID: 35095022 PMCID: PMC8979800 DOI: 10.1262/jrd.2021-149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The livestock industry produces a large amount of greenhouse gases (GHG) that cause global warming. A high percentage of GHG emissions are derived from cattle and has been suggested to be a
factor in global warming. With the global increase in the consumption of livestock products, the number of farm animals has increased. In addition, the reduction in productivity and
reproductive capacity of cattle has resulted in accelerated GHG emissions. In a high-temperature environment, the pregnancy rate decreases, leading to an increase in animals that do not
contribute to production. Consequently, GHG emission per unit product increases, thereby accelerating global warming. To reduce this environmental impact, it is important to improve the
breeding efficiency of cattle by the use of reproductive technology and, thus, reduce the number of non-productive animals. Thus, reproductive biology plays a major role in mitigating global
warming related to the livestock industry.
Collapse
Affiliation(s)
- Miki SAKATANI
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tochigi 329-2793, Japan
| |
Collapse
|
5
|
Contreras-Benicio D, Castro-Valenzuela BE, Grado-Ahuir JA, Burrola-Barraza M. Well-of-the-well (WOW) versus polyester mesh (PM): a comparison of single-embryo culture systems in bovines. REV COLOMB CIENC PEC 2021. [DOI: 10.17533/udea.rccp.v35n2a03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Behavioural, physiological, neuro-endocrine and molecular responses of cattle against heat stress: an updated review. Trop Anim Health Prod 2021; 53:400. [PMID: 34255188 DOI: 10.1007/s11250-021-02790-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/30/2021] [Indexed: 10/20/2022]
Abstract
The negative impact of heat stress on cattle growth, development, reproduction and production has been quite alarming across the world. Climate change elevates earth surface temperature which exacerbates the wrath of heat stress on cattle. Moreover, cattle in tropical and sub-tropical countries are most commonly affected by the menace of heat stress which severely wane their production and productivity. In general, cattle exhibit various thermoregulatory responses such as behavioural, physiological, neuro-endocrine and molecular responses to counteract the terrible effects of heat stress. Amongst the aforementioned thermoregulatory responses, behavioural, physiological and neuro-endocrine responses are regarded as most conventional and expeditious responses shown by cattle against heat stress. Furthermore, molecular responses serve as the major adaptive response to attenuate the harmful effects of heat stress. Therefore, present review highlights the significance of behavioural, physiological, neuro-endocrine and molecular responses which act synergistically to combat the deleterious effects of heat stress thereby confer thermo-tolerance in cattle.
Collapse
|
7
|
Novaes MAS, Lima LF, Sá NAR, Ferreira ACA, Paes VM, Souza JF, Alves BG, Gramosa NV, Torres CAA, Pukazhenthi B, Gastal EL, Figueiredo JR. Impact of ethanol and heat stress-dependent effect of ultra-diluted Arnica montana 6 cH on in vitro embryo production in cattle. Theriogenology 2021; 162:105-110. [PMID: 33453574 DOI: 10.1016/j.theriogenology.2020.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 01/09/2023]
Abstract
This study evaluated the effect of adding ultra-diluted and dynamized Arnica montana 6 cH, and its vehicle (0.3% ethanol) to the in vitro maturation (IVM) medium, in the absence (experiment 1) or presence (experiment 2) of heat stress (HS), on bovine oocyte maturation and in vitro embryo production (IVEP). In experiment 1 (n = 902 cumulus oocyte complexes, COCs), the treatments were 1) IVM medium (Control treatment), 2) IVM medium + 0.3% ethanol, and 3) IVM medium + Arnica montana 6 cH. In experiment 2 (n = 1064 COCs), the treatments were 1) IVM medium without HS, 2) IVM medium under HS, 3) IVM medium + ethanol under HS, and 4) IVM medium + Arnica montana under HS. In the absence of HS (experiment 1), the addition of Arnica montana to the IVM medium had a deleterious effect on the IVEP (cleavage and blastocyst rates) and the total cell number/blastocysts. On the other hand, ethanol (0.3%) increased IVEP in relation to the Control and Arnica montana treatments. However, in the presence of HS during IVM (experiment 2), the addition of ethanol or Arnica montana increased IVEP when compared to the HS treatment alone, and the Arnica montana treatment resulted in greater total cell number/blastocysts compared to the other treatments. In conclusion, this study showed for the first time that the negative or positive effect of Arnica montana 6 cH on IVEP depends on the culture condition (i.e., absence or presence of HS during IVM). On the other hand, ethanol showed beneficial and consistent results on IVEP regardless of exposure to HS.
Collapse
Affiliation(s)
- M A S Novaes
- Laboratório de Reprodução Animal, Departamento de Zootecnia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - L F Lima
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - N A R Sá
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - A C A Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - V M Paes
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - J F Souza
- Laboratory Brio Genetics and Biotechnology Ltd., Araguaína, Tocantins, Brazil
| | - B G Alves
- Postgraduate Program in Animal Bioscience, Federal University of Goiás, Jataí, GO, Brazil
| | - N V Gramosa
- Department of Organic and Inorganic Chemistry, Federal University of Ceara, Fortaleza, CE, Brazil
| | - C A A Torres
- Laboratório de Reprodução Animal, Departamento de Zootecnia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - B Pukazhenthi
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, USA
| | - E L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
8
|
Zhao X, Ma R, Zhang X, Cheng R, Jiang N, Guo M, Rong B, Liu Y, Chen M, Feng W, Xia T. Reduced growth capacity of preimplantation mouse embryos in chronic unpredictable stress model. Mol Reprod Dev 2020; 88:80-95. [PMID: 33216405 DOI: 10.1002/mrd.23439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 12/19/2022]
Abstract
Psychological stress can affect female reproduction by deteriorating oocyte quality, but the molecular mechanism is unclear. In this study, we used the chronic unpredictable stress model to study the effect of psychological stress on mouse oocyte competence during preimplantation stage, and RNA sequencing in single oocytes to analyze differential gene expression at the transcription level. Stress changed the serum levels of glucocorticoids and reduced oocyte developmental potential, depending on the strength of the stress. Strong stress (two stressors per day) reduced the fertilization rate and induced significant apoptosis in blastocysts. Moderate stress (one stressor per day) reduced the cleavage rate and blastocyst formation rate. Weak stress (one stressor every 2 days) did not have any significant negative effect on the fertilization, cleavage, and blastocyst formation. Hatching rate was not affected by stress, but stress retarded the development of the expanded blastocysts and inhibited the embryo development at early stages. Transcriptome analysis revealed that stress disturbed the expression of cell cycle regulators and apoptotic genes. The hub genes identified through protein-protein interaction analysis include Msln, Ceacam12, Psg16, Psg17, and Psg23, which are all carcinoembryonic or related genes involved in cell adhesion, proliferation, and migration. Thus, stress was inhibitory on fertilization and early embryo development in mice.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruihong Ma
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoyu Zhang
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Cheng
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Jiang
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengjia Guo
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Beilei Rong
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Liu
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingli Chen
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weihua Feng
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tian Xia
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Zheng HY, Yang CY, Yu NQ, Huang JX, Zheng W, Abdelnour SA, Shang JH. Effect of season on the in-vitro maturation and developmental competence of buffalo oocytes after somatic cell nuclear transfer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7729-7735. [PMID: 31904101 DOI: 10.1007/s11356-019-07470-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Somatic cell nuclear transfer (SCNT) is a valuable technology tool with various uses in transgenic animals, regenerative medicine, and stem cell research. However, the efficiency of SCNT embryos appears to have poor developmental competency. Environmental issues may adversely affect SCNT embryos in buffalo. Thereafter, the present study aimed to explore the effect of season on the maturation of buffalo oocytes and subsequent developmental capability after parthenogenetic activation and SCNT in buffalo. Buffalo oocytes (n = 6353) were collected from local slaughterhouse at various seasons; spring (March-April), summer (May-August), autumn (September-November), and winter (December-January). A significant increase (p < 0.05) was recorded in the maturation rate (57.07%) at autumn compared with spring, summer, and winter (50.46, 50.93, and 50.66%, respectively). No significant differences were recorded in the fusion and the cleavage rates among all seasons. Blastocyst development rate was higher (p < 0.05) in autumn and winter (16.52 ± 8.45% and 15.98 ± 7.17%, respectively) than in spring and summer (9.47 ± 6.71% and 10.84 ± 6.58%, respectively) seasons. It could be concluded that the season had a significant effect on oocyte development competence which can be used for SCNT in buffalo.
Collapse
Affiliation(s)
- Hai-Ying Zheng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Chun-Yan Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Nong-Qi Yu
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Jia-Xiang Huang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Wei Zheng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Sameh A Abdelnour
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
- College of Animal Science & Technology, Guangxi University, Nanning, 530004, Guangxi, China
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Jiang-Hua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China.
| |
Collapse
|
10
|
Lucy MC. Stress, strain, and pregnancy outcome in postpartum cows. Anim Reprod 2019; 16:455-464. [PMID: 32435289 PMCID: PMC7234163 DOI: 10.21451/1984-3143-ar2019-0063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/25/2019] [Indexed: 12/02/2022] Open
Abstract
Stress affects the productivity and fertility of cattle. Stress causes strain and individual animals experience different amounts of strain in response to the same amount of stress. The amount of strain determines the impact of stress on fertility. Typical stresses experienced by cattle include environmental, disease, production, nutritional, and psychological. The effect of stress on the reproductive system is mediated by body temperature (heat stress), energy metabolites and metabolic hormones (production and nutritional stresses), the functionality of the hypothalamus-pituitary-gonadal (HPG) axis and (or) the activation of the hypothalamus-pituitary-adrenal (HPA) axis. The strain that occurs in response to stress affects uterine health, oocyte quality, ovarian function, and the developmental capacity of the conceptus. Cows that have less strain in response to a given stress will be more fertile. The goal for future management and genetic selection in farm animals is to reduce production stress, manage the remaining strain, and genetically select cattle with minimal strain in response to stress.
Collapse
Affiliation(s)
- Matthew C. Lucy
- Division of Animal Sciences, University of Missouri, Animal Science Research Center, Columbia, MO, USA.
| |
Collapse
|