1
|
Warstadt M, Winegar B, Shah LM. Imaging of Cervical Spine Trauma: Update of Techniques and Clinical Relevance. Clin Spine Surg 2024; 37:440-450. [PMID: 39315684 DOI: 10.1097/bsd.0000000000001677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Imaging of cervical spine trauma most commonly begins with computed tomography (CT) for initial osseous and basic soft tissue evaluation, followed by magnetic resonance imaging (MRI) for complementary evaluation of the neural structures (i.e., spinal cord, nerves) and soft tissues (i.e., ligaments). Although CT and conventional MRI sequences have been the mainstay of trauma imaging for decades, there have been significant advances in CT processing, imaging sequences and techniques made possible by hardware and software development, and artificial intelligence. These advancements may provide advantages in increasing sensitivity for detection of pathology as well as in decreasing imaging and interpretation time. Unquestionably, the most important role of imaging is to provide information to help direct patient care, including diagnosis, next steps in treatment plan, and prognosis. As such, there has been a growing body of research investigating the clinical relevance of imaging findings to clinical outcomes in the setting of spinal cord injury. This article will focus on these recent advances in imaging of cervical spinal trauma.
Collapse
Affiliation(s)
- Melissa Warstadt
- Department of Radiology, University of Utah, 30 N Mario Capecchi Dr. Salt Lake City, UT
| | | | | |
Collapse
|
2
|
Costanzo R, Brunasso L, Paolini F, Benigno UE, Porzio M, Giammalva GR, Gerardi RM, Umana GE, di Bonaventura R, Sturiale CL, Visocchi M, Iacopino DG, Maugeri R. Spinal Tractography as a Potential Prognostic Tool in Spinal Cord Injury: A Systematic Review. World Neurosurg 2022; 164:25-32. [PMID: 35500874 DOI: 10.1016/j.wneu.2022.04.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023]
Abstract
Magnetic resonance imaging is considered the most accurate examination to study the spinal cord. Nevertheless, the use of diffusion tensor imaging (DTI) can demonstrate additional key details about spinal cord lesions. We examined the literature to investigate and discuss the role, limitations, and possible evolution as a prognostic tool of DTI in spinal cord injury (SCI). For this systematic literature review, a detailed search was performed using PubMed (2005-2021), Cochrane Database of Systematic Reviews (2016-2021), and Cochrane Central Register of Controlled Trials (2016-2021). To be included, studies had to report the use of DTI in SCIs, its clinical relevance, and its use as a prognostic tool. We identified 17 studies comprising 299 patients. The mean age of patients was 41.22 ± 10.62 years. There was a prevalence of males (70.9%) compared with females (29.1%). The main spinal cord tract involved and studied in SCIs was the cervical tract (57.5%), followed by conus terminalis (15.4%) and dorsal tract (13.7%). In all studies based on American Spine Injury Association impairment scale score for neurological assessment, a correlation was found between FA values and American Spine Injury Association impairment scale: patients with complete SCI had a statistically significative lower FA value at the injured site compared with patients with incomplete SCI. Published clinical studies showed promising results for the utility of DTI parameters as noninvasive biomarkers in SCI grade evaluation, remaining an evolving area of further investigation.
Collapse
Affiliation(s)
- Roberta Costanzo
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Lara Brunasso
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Federica Paolini
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Umberto Emanuele Benigno
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Massimiliano Porzio
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Giuseppe Roberto Giammalva
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Rosa Maria Gerardi
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Giuseppe Emmanuele Umana
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
| | - Rina di Bonaventura
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carmelo Lucio Sturiale
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimiliano Visocchi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Domenico Gerardo Iacopino
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Rosario Maugeri
- Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
3
|
Kauthankar AA, Jaseemudheen M. Diffusion Tensor Imaging in Spinal Cord Injury: A Review. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2022. [DOI: 10.1055/s-0042-1751068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractMagnetic resonance diffusion tensor imaging (DTI) is a recent technique that can measure the direction and magnitude of diffusion of water. It is widely being utilized to evaluate several brain and spinal cord pathologies. The objective of this review is to evaluate the importance of the DTI in patients with spinal cord injury (SCI). It aims to review various articles on DTI SCI and includes both animal and human studies. This will help to describe the current status of the clinical applications of DTI and show its potential as a helpful instrument in clinical practice. The PubMed database was searched for articles relating to the application of DTI in SCI. Relevant articles were also used for the review. A variety of DTI parameters have been studied in various articles. The standard parameters are fractional anisotropy (FA) values, apparent diffusion coefficient (ADC) values, radial diffusivity values, and axial diffusivity values, followed by tractography. FA and ADC values are the most commonly used parameters. The findings observed in most of the studies are increased FA and reduced ADC values following injury to the spinal cord. DTI data metrics possess the potential to become a potent clinical tool in patients with SCI. It is helpful for diagnosis, prognosis, treatment planning, as well as to evaluate the recovery. Nonetheless, to overcome the limitations and determine its reliability clinically, more research has to be performed.
Collapse
Affiliation(s)
- Akshada Atchut Kauthankar
- Department of Radio-diagnosis and Imaging, K S Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - M.M Jaseemudheen
- Department of Radio-diagnosis and Imaging, K S Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
4
|
Imaging of Thoracolumbar Spine Traumas. Eur J Radiol 2022; 154:110343. [DOI: 10.1016/j.ejrad.2022.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/15/2022]
|
5
|
Tract-specific statistics based on diffusion-weighted probabilistic tractography. Commun Biol 2022; 5:138. [PMID: 35177755 PMCID: PMC8854429 DOI: 10.1038/s42003-022-03073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/24/2022] [Indexed: 11/09/2022] Open
Abstract
Diffusion-weighted neuroimaging approaches provide rich evidence for estimating the structural integrity of white matter in vivo, but typically do not assess white matter integrity for connections between two specific regions of the brain. Here, we present a method for deriving tract-specific diffusion statistics, based upon predefined regions of interest. Our approach derives a population distribution using probabilistic tractography, based on the Nathan Kline Institute (NKI) Enhanced Rockland sample. We determine the most likely geometry of a path between two regions and express this as a spatial distribution. We then estimate the average orientation of streamlines traversing this path, at discrete distances along its trajectory, and the fraction of diffusion directed along this orientation for each participant. The resulting participant-wise metrics (tract-specific anisotropy; TSA) can then be used for statistical analysis on any comparable population. Based on this method, we report both negative and positive associations between age and TSA for two networks derived from published meta-analytic studies (the “default mode” and “what-where” networks), along with more moderate sex differences and age-by-sex interactions. The proposed method can be applied to any arbitrary set of brain regions, to estimate both the spatial trajectory and DWI-based anisotropy specific to those regions. Andrew Reid et al. use publicly available data to present a method for deriving tract-specific statistics based on diffusion-weighted MRI, based upon arbitrarily-defined regions of interest. Their approach enables them to report both negative and positive associations between age and tract-specific anisotropy along with more moderate sex differences and age-by-sex interactions.
Collapse
|
6
|
Mossa-Basha M, Peterson DJ, Hippe DS, Vranic JE, Hofstetter C, Reyes M, Bombardier C, Jarvik JG. Segmented quantitative diffusion tensor imaging evaluation of acute traumatic cervical spinal cord injury. Br J Radiol 2021; 94:20201000. [PMID: 33180553 DOI: 10.1259/bjr.20201000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES To evaluate segmented diffusion tensor imaging (DTI) white matter tract fractional anisotropy (FA) and mean diffusivity (MD) values in acute cervical spinal cord injury (CSCI). METHODS 15 patients with acute CSCI and 12 control subjects were prospectively recruited and underwent axial DTI as part of the spine trauma MRI. Datasets were put through a semi-automated probabilistic segmentation algorithm that analyzed white matter, motor and sensory tracts. FA and MD values were calculated for white matter, sensory (spinal lemniscal) and motor tracts (ventral/lateral corticospinal) at the level of clinical injury, levels remote from injury and in normal controls. RESULTS There were significant differences in FA between the level of injury and controls for total white matter (0.65 ± .09 vs 0.68 ± .07; p = .044), motor tracts (0.64 ± .07 vs 0.7 ± .09; p = .006), and combined motor/sensory tracts (0.63 ± .09 vs 0.69 ± .08; p = .022). In addition, there were significant FA differences between the level of injury and one level caudal to the injury for combined motor tracts (0.64 ± .07 vs 0.69 ± .05; p = .002) and combined motor/sensory tracts (0.63 ± .09 vs 0.7 ± .07; p = .011). There were no significant differences for MD between the level of injury and one level caudal to the injury or normal controls. CONCLUSION Abnormalities in DTI metrics of DTI-segmented white matter tracts were detected at the neurological level of injury relative to normal controls and levels remote from the injury site, confirming its value in CSCI assessment. ADVANCES IN KNOWLEDGE Segmented DTI analysis can help identify microstructural spinal cord abnormalities in the setting of traumatic cervical spinal cord injury.
Collapse
Affiliation(s)
| | | | - Daniel S Hippe
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Justin E Vranic
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Maria Reyes
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Charles Bombardier
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Jeffrey G Jarvik
- Department of Radiology, University of Washington, Seattle, WA, USA.,Department of Neurosurgery, University of Washington, Seattle, WA, USA.,Department of Health Services, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
ÖZTÜRK G, SİLAV G, İNCİR S, ARSLANHAN A, AKÇETİN MA, TOKTAŞ OZ, KONYA D. Ratlarda Deneysel Spinal Kord Hasar Modelinde Genisteinin Nöroprotektif Etkisinin Araştırılması, Diffüz Tensor Görüntüleme ile Değerlendirilmesi. İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2020. [DOI: 10.38079/igusabder.742525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
8
|
Kaushal M, Shabani S, Budde M, Kurpad S. Diffusion Tensor Imaging in Acute Spinal Cord Injury: A Review of Animal and Human Studies. J Neurotrauma 2019; 36:2279-2286. [PMID: 30950317 DOI: 10.1089/neu.2019.6379] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Diffusion tensor imaging (DTI), based on the property of preferential diffusion of water molecules in biological tissue, is seeing increasing clinical application in the pathologies of the central nervous system. Spinal cord injury (SCI) is one such area where the use of DTI allows for the evaluation of changes to microstructure of the spinal cord not detected on routine conventional magnetic resonance imaging. The insights obtained from pre-clinical models of SCI indicate correlation of quantitative DTI indices with histology and function, which points to the potential of DTI as a non-invasive, viable biomarker for integrity of white matter tracts in the spinal cord. In this review, we describe DTI alterations in the acute phase of SCI in both animal models and human subjects and explore the underlying pathophysiology behind these changes.
Collapse
Affiliation(s)
- Mayank Kaushal
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Saman Shabani
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shekar Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
9
|
Shabani S, Kaushal M, Budde M, Kurpad SN. Correlation of magnetic resonance diffusion tensor imaging parameters with American Spinal Injury Association score for prognostication and long-term outcomes. Neurosurg Focus 2019; 46:E2. [DOI: 10.3171/2018.12.focus18595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/13/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVEConventional MRI is routinely used to demonstrate the anatomical site of spinal cord injury (SCI). However, quantitative and qualitative imaging parameters have limited use in predicting neurological outcomes. Currently, there are no reliable neuroimaging biomarkers to predict short- and long-term outcome after SCI.METHODSA prospective cohort of 23 patients with SCI (19 with cervical SCI [CSCI] and 4 with thoracic SCI [TSCI]) treated between 2007 and 2014 was included in the study. The American Spinal Injury Association (ASIA) score was determined at the time of arrival and at 1-year follow-up. Only 15 patients (12 with CSCI and 3 with TSCI) had 1-year follow-up. Whole-cord fractional anisotropy (FA) was determined at C1–2, following which C1–2 was divided into upper, middle, and lower segments and the corresponding FA value at each of these segments was calculated. Correlation analysis was performed between FA and ASIA score at time of arrival and 1-year follow-up.RESULTSCorrelation analysis showed a positive but nonsignificant correlation (p = 0.095) between FA and ASIA score for all patients (CSCI and TCSI) at the time of arrival. Additional regression analysis consisting of only patients with CSCI showed a significant correlation (p = 0.008) between FA and ASIA score at time of arrival as well as at 1-year follow-up (p = 0.025). Furthermore, in case of patients with CSCI, a significant correlation between FA value at each of the segments (upper, middle, and lower) of C1–2 and ASIA score at time of arrival was found (p = 0.017, p = 0.015, and p = 0.002, respectively).CONCLUSIONSIn patients with CSCI, the measurement of diffusion anisotropy of the high cervical cord (C1–2) correlates significantly with injury severity and long-term follow-up. However, this correlation is not seen in patients with TSCI. Therefore, FA can be used as an imaging biomarker for evaluating neural injury and monitoring recovery in patients with CSCI.
Collapse
|
10
|
Motovylyak A, Skinner NP, Schmit BD, Wilkins N, Kurpad SN, Budde MD. Longitudinal In Vivo Diffusion Magnetic Resonance Imaging Remote from the Lesion Site in Rat Spinal Cord Injury. J Neurotrauma 2018; 36:1389-1398. [PMID: 30259800 DOI: 10.1089/neu.2018.5964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diffusion tensor imaging (DTI) has demonstrated success as a biomarker of spinal cord injury (SCI) severity as shown from numerous pre-clinical studies. However, artifacts from stabilization hardware at the lesion have precluded its use for longitudinal assessments. Previous research has documented ex vivo diffusion changes in the spinal cord both caudal and cranial to the injury epicenter. The aim of this study was to use a rat contusion model of SCI to evaluate the utility of in vivo cervical DTI after a thoracic injury. Forty Sprague-Dawley rats underwent a thoracic contusion (T8) of mild, moderate, severe, or sham severity. Magnetic resonance imaging (MRI) of the cervical cord was performed at 2, 30, and 90 days post-injury, and locomotor performance was assessed weekly using the Basso, Bresnahan, and Beattie (BBB) scoring scale. The relationships between BBB scores and MRI were assessed using region of interest analysis and voxel-wise linear regression of DTI, and free water elimination (FWE) modeling to reduce partial volume effects. At 90 days, axial diffusivity (ADFWE), mean diffusivity (MDFWE), and free water fraction (FWFFWE) using the FWE model were found to be significantly correlated with BBB score. FWE was found to be more predictive of injury severity than conventional DTI, specifically at later time-points. This study validated the use of FWE technique in spinal cord and demonstrated its sensitivity to injury remotely.
Collapse
Affiliation(s)
- Alice Motovylyak
- 1 Department of Biomedical Engineering, Marquette University/Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nathan P Skinner
- 2 Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin.,3 Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian D Schmit
- 1 Department of Biomedical Engineering, Marquette University/Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Natasha Wilkins
- 2 Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shekar N Kurpad
- 2 Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew D Budde
- 2 Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
11
|
Evaluation of two collagen conduits and autograft in rabbit sciatic nerve regeneration with quantitative magnetic resonance DTI, electrophysiology, and histology. Eur Radiol Exp 2018; 2:19. [PMID: 30148252 PMCID: PMC6091702 DOI: 10.1186/s41747-018-0049-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022] Open
Abstract
Background We compared different surgical techniques for nerve regeneration in a rabbit sciatic nerve gap model using magnetic resonance diffusion tensor imaging (DTI), electrophysiology, limb function, and histology. Methods A total of 24 male New Zealand white rabbits were randomized into three groups: autograft (n = 8), hollow conduit (n = 8), and collagen-filled conduit (n = 8). A 10-mm segment of the rabbit proximal sciatic nerve was cut, and autograft or collagen conduit was used to bridge the gap. DTI on a 3-T system was performed preoperatively and 13 weeks after surgery using the contralateral, nonoperated nerve as a control. Results Overall, autograft performed better compared with both conduit groups. Differences in axonal diameter were significant (autograft > hollow conduit > collagen-filled conduit) at 13 weeks (autograft vs. hollow conduit, p = 0.001, and hollow conduit vs. collagen-filled conduit, p < 0.001). Significant group differences were found for axial diffusivity but not for any of the other DTI metrics (autograft > hollow conduit > collagen-filled conduit) (autograft vs. hollow conduit, p = 0.001 and hollow conduit vs. collagen-filled conduit, p = 0.021). As compared with hollow conduit (autograft > collagen-filled conduit > hollow conduit), collagen-filled conduit animals demonstrated a nonsignificant increased maximum tetanic force. Conclusions Autograft-treated rabbits demonstrated improved sciatic nerve regeneration compared with collagen-filled and hollow conduits as assessed by histologic, functional, and DTI parameters at 13 weeks.
Collapse
|
12
|
Liu CB, Yang DG, Zhang X, Zhang WH, Li DP, Zhang C, Qin C, Du LJ, Li J, Gao F, Zhang J, Zuo ZT, Yang ML, Li JJ. Degeneration of white matter and gray matter revealed by diffusion tensor imaging and pathological mechanism after spinal cord injury in canine. CNS Neurosci Ther 2018; 25:261-272. [PMID: 30076687 DOI: 10.1111/cns.13044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/07/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022] Open
Abstract
AIM Exploration of the mechanism of spinal cord degeneration may be the key to treatment of spinal cord injury (SCI). This study aimed to investigate the degeneration of white matter and gray matter and pathological mechanism in canine after SCI. METHODS Diffusion tensor imaging (DTI) was performed on canine models with normal (n = 5) and injured (n = 7) spinal cords using a 3.0T MRI scanner at precontusion and 3 hours, 24 hours, 6 weeks, and 12 weeks postcontusion. The tissue sections were stained using H&E and immunohistochemistry. RESULTS For white matter, fractional anisotropy (FA) values significantly decreased in lesion epicenter, caudal segment 1 cm away from epicenter, and caudal segment 2 cm away from epicenter (P = 0.003, P = 0.004, and P = 0.013, respectively) after SCI. Apparent diffusion coefficient (ADC) values were initially decreased and then increased in lesion epicenter and caudal segment 1 cm away from epicenter (P < 0.001 and P = 0.010, respectively). There are no significant changes in FA and ADC values in rostral segments (P > 0.05). For gray matter, ADC values decreased initially and then increased in lesion epicenter (P < 0.001), and overall trend decreased in caudal segment 1 cm away from epicenter (P = 0.039). FA values did not change significantly (P > 0.05). Pathological examination confirmed the dynamic changes of DTI parameters. CONCLUSION Diffusion tensor imaging is more sensitive to degeneration of white matter than gray matter, and the white matter degeneration may be not symmetrical which meant the caudal degradation appeared to be more severe than the rostral one.
Collapse
Affiliation(s)
- Chang-Bin Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - De-Gang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Wen-Hao Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Da-Peng Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chao Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chuan Qin
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jie Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zhen-Tao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,The Innovation Center of Excellence on Brain Science, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Liang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
13
|
Budde MD, Skinner NP. Diffusion MRI in acute nervous system injury. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 292:137-148. [PMID: 29773299 DOI: 10.1016/j.jmr.2018.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/06/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Diffusion weighted magnetic resonance imaging (DWI) and related techniques such as diffusion tensor imaging (DTI) are uniquely sensitive to the microstructure of the brain and spinal cord. In the acute aftermath of nervous system injury, for example, DWI reveals changes caused by injury that remains invisible on other MRI contrasts such as T2-weighted imaging. This ability has led to a demonstrated clinical utility in cerebral ischemia. However, despite strong promise in preclinical models and research settings, DWI has not been as readily adopted for other acute injuries such as traumatic spinal cord, brain, or peripheral nerve injury. Furthermore, the precise biophysical mechanisms that underlie DWI and DTI changes are not fully understood. In this report, we review the DWI and DTI changes that occur in acute neurological injury of cerebral ischemia, spinal cord injury, traumatic brain injury, and peripheral nerve injury. Their associations with the underlying biology are examined with an emphasis on the role of acute axon and dendrite beading. Lastly, emerging DWI techniques to overcome the limitations of DTI are discussed as these may offer the needed improvements to translate to clinical settings.
Collapse
Affiliation(s)
- Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States.
| | - Nathan P Skinner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
14
|
Yoon H, Moon WJ, Nahm SS, Kim J, Eom K. Diffusion Tensor Imaging of Scarring, Necrosis, and Cavitation Based on Histopathological Findings in Dogs with Chronic Spinal Cord Injury: Evaluation of Multiple Diffusion Parameters and Their Correlations with Histopathological Findings. J Neurotrauma 2018; 35:1387-1397. [DOI: 10.1089/neu.2017.5409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Hakyoung Yoon
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Sang-Soep Nahm
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jaehwan Kim
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Kidong Eom
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
15
|
Calabrese E, Adil SM, Cofer G, Perone CS, Cohen-Adad J, Lad SP, Johnson GA. Postmortem diffusion MRI of the entire human spinal cord at microscopic resolution. Neuroimage Clin 2018; 18:963-971. [PMID: 29876281 PMCID: PMC5988447 DOI: 10.1016/j.nicl.2018.03.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/15/2018] [Accepted: 03/21/2018] [Indexed: 11/20/2022]
Abstract
The human spinal cord is a central nervous system structure that plays an important role in normal motor and sensory function, and can be affected by many debilitating neurologic diseases. Due to its clinical importance, the spinal cord is frequently the subject of imaging research. Common methods for visualizing spinal cord anatomy and pathology include histology and magnetic resonance imaging (MRI), both of which have unique benefits and drawbacks. Postmortem microscopic resolution MRI of fixed specimens, sometimes referred to as magnetic resonance microscopy (MRM), combines many of the benefits inherent to both techniques. However, the elongated shape of the human spinal cord, along with hardware and scan time limitations, have restricted previous microscopic resolution MRI studies (both in vivo and ex vivo) to small sections of the cord. Here we present the first MRM dataset of the entire postmortem human spinal cord. These data include 50 μm isotropic resolution anatomic image data and 100 μm isotropic resolution diffusion data, made possible by a 280 h long multi-segment acquisition and automated image segment composition. We demonstrate the use of these data for spinal cord lesion detection, automated volumetric gray matter segmentation, and quantitative spinal cord morphometry including estimates of cross sectional dimensions and gray matter fraction throughout the length of the cord.
Collapse
Affiliation(s)
- Evan Calabrese
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA; Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA.
| | - Syed M Adil
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Gary Cofer
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
| | - Christian S Perone
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Shivanand P Lad
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
16
|
Lewis MJ, Yap PT, McCullough S, Olby NJ. The Relationship between Lesion Severity Characterized by Diffusion Tensor Imaging and Motor Function in Chronic Canine Spinal Cord Injury. J Neurotrauma 2017; 35:500-507. [PMID: 28974151 DOI: 10.1089/neu.2017.5255] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lesion heterogeneity among chronically paralyzed dogs after acute, complete thoracolumbar spinal cord injury (TLSCI) is poorly described. We hypothesized that lesion severity quantified by diffusion tensor imaging (DTI) is associated with hindlimb motor function. Our objectives were to quantify lesion severity with fractional anisotropy (FA), mean diffusivity (MD), and tractography and investigate associations with motor function. Twenty-two dogs with complete TLSCI in the chronic stage were enrolled and compared with six control dogs. All underwent thoracolumbar magnetic resonance imaging (MRI) with DTI and gait analysis. FA and MD were calculated on regions of interest (ROI) at the lesion epicenter and cranial and caudal to the visible lesion on conventional MRI and in corresponding ROI in controls. Tractography was performed to detect translesional fibers. Gait was quantified using an ordinal scale (OFS). FA and MD values were compared between cases and controls, and relationships between FA, MD, presence of translesional fibers and OFS were investigated. The FA at the epicenter (median: 0.228, 0.107-0.320), cranial (median: 0.420, 0.391-0.561), and caudal to the lesion (median: 0.369, 0.265-0.513) was lower than combined ROI in controls (median: 0.602, 0.342-0.826, p < 0.0001). The MD at the epicenter (median: 2.06 × 10-3, 1.33-2.96 × 10-3) and cranially (median: 1.52 × 10-3, 1.03-1.87 × 10-3) was higher than combined ROI in controls (median: 1.28 × 10-3, 0.81-1.44 × 10-3, p ≤ 0.001). Four dogs had no translesional fibers. Median OFS was 2 (0-6). The FA at the lesion epicenter and presence of translesional fibers were associated with OFS (p ≤ 0.0299). DTI can detect degeneration and physical transection after severe TLSCI. Findings suggest DTI quantifies injury severity and suggests motor recovery in apparently complete dogs is because of supraspinal input.
Collapse
Affiliation(s)
- Melissa J Lewis
- 1 Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University , Raleigh, North Carolina.,2 Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina
| | - Pew-Thian Yap
- 3 Department of Radiology, School of Medicine, University of North Carolina , Chapel Hill, North Carolina
| | - Susan McCullough
- 4 Animal Scan Advanced Veterinary Imaging , Raleigh, North Carolina
| | - Natasha J Olby
- 1 Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University , Raleigh, North Carolina.,2 Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina
| |
Collapse
|
17
|
Rutman AM, Peterson DJ, Cohen WA, Mossa-Basha M. Diffusion Tensor Imaging of the Spinal Cord: Clinical Value, Investigational Applications, and Technical Limitations. Curr Probl Diagn Radiol 2017; 47:257-269. [PMID: 28869104 DOI: 10.1067/j.cpradiol.2017.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 11/22/2022]
Abstract
Although diffusion-weighted imaging (DWI) has become a mainstay in modern brain imaging, it remains less utilized in the evaluation of the spinal cord. Many studies have shown promise in using DWI and diffusion-tensor imaging (DTI) for evaluation of the spinal cord; however, application has been stalled by technical obstacles and artifacts, and questions remain regarding its clinical utility on an individual examination level. This review discusses the background, concepts, and technical aspects of DWI and DTI, specifically for imaging of the spinal cord. The clinical and investigational applications of spinal cord DTI, as well as the practical difficulties and limitations of DWI and DTI for the evaluation of the spinal cord are examined.
Collapse
Affiliation(s)
- Aaron M Rutman
- Department of Radiology, University of Washington, Seattle, WA.
| | | | - Wendy A Cohen
- Department of Radiology, University of Washington, Seattle, WA
| | | |
Collapse
|
18
|
Yoon H, Kim J, Moon WJ, Nahm SS, Zhao J, Kim HM, Eom K. Characterization of Chronic Axonal Degeneration Using Diffusion Tensor Imaging in Canine Spinal Cord Injury: A Quantitative Analysis of Diffusion Tensor Imaging Parameters According to Histopathological Differences. J Neurotrauma 2017; 34:3041-3050. [PMID: 28173745 DOI: 10.1089/neu.2016.4886] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Diffusion tensor imaging (DTI) is more sensitive than conventional magnetic resonance imaging (MRI) for the identification of axonal degeneration. However, no study to date has used DTI to evaluate the severity of axonal degeneration in canine spinal cord injury (SCI). Therefore, the aim of this study was to characterize multi-grade axonal degeneration (mild, moderate, and severe) in a canine model of spinal cord compression injury using DTI. MRI data were obtained from 6 normal dogs and 5 dogs with lumbar SCI 78 days after SCI (L1-L3) using a 3 Tesla MRI scanner. For DTI, transverse multi-shot echo planar imaging sequences (b-value = 0; 800 s/mm2; 12 directions) were used. Regions of interest on DTI maps were selected based on areas of normal white matter (NWM) and mild, moderate, and severe axonal degeneration (AxD) on histopathological images. Statistically significant differences were observed between NWM and AxD, and among different severities of AxD. The severity of AxD demonstrated a negative linear correlation with fractional anisotropy and positive linear correlations with spherical index and radial diffusivity; additionally, positive U-shaped correlations were identified between the severity of AxD and mean diffusivity and axial diffusity (AD). These results demonstrate a potential clinical application for DTI in the noninvasive monitoring of histological changes post-SCI. DTI could be utilized for the early diagnosis and assessment of SCI and, ultimately, used to optimize the treatment and rehabilitation of SCI patients.
Collapse
Affiliation(s)
- Hakyoung Yoon
- 1 Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University , Seoul, Korea
| | - Jaehwan Kim
- 1 Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University , Seoul, Korea
| | - Won-Jin Moon
- 2 Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine , Seoul, Korea
| | - Sang-Soep Nahm
- 3 Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Konkuk University , Seoul, Korea
| | - Jun Zhao
- 4 Department of Applied Statistics, Konkuk University , Seoul, Korea
| | - Hyoung-Moon Kim
- 4 Department of Applied Statistics, Konkuk University , Seoul, Korea
| | - Kidong Eom
- 1 Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University , Seoul, Korea
| |
Collapse
|
19
|
D'souza MM, Choudhary A, Poonia M, Kumar P, Khushu S. Diffusion tensor MR imaging in spinal cord injury. Injury 2017; 48:880-884. [PMID: 28242068 DOI: 10.1016/j.injury.2017.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 02/20/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND The ability of diffusion tensor imaging (DTI) to complement conventional MR imaging by diagnosing subtle injuries to the spinal cord is a subject of intense research. We attempted to study change in the DTI indices, namely fractional anisotropy (FA) and mean diffusivity (MD) after traumatic cervical spinal cord injury and compared these with corresponding data from a control group of individuals with no injury. The correlation of these quantitative indices to the neurological profile of the patients was assessed. MATERIAL AND METHODS 20 cases of acute cervical trauma and 30 age and sex matched healthy controls were enrolled. Scoring of extent of clinical severity was done based on the Frankel grading system. MRI was performed on a 3T system. Following the qualitative tractographic evaluation of white matter tracts, quantitative datametrics were calculated. RESULTS In patients, the Mean FA value at the level of injury (0.43+/-0.08) was less than in controls (0.62+/-0.06), which was statistically significant (p value <0.001). Further, the Mean MD value at the level of injury (1.30+/-0.24) in cases was higher than in controls (1.07+/-0.12, p value <0.001). Statistically significant positive correlation was found between clinical grading (Frankel grade) and FA values at the level of injury (r value=0.86). Negative correlation was found between clinical grade and Mean MD at the level of injury (r value=-0.38) which was however statistically not significant. CONCLUSION Quantitative DTI indices are a useful parameter for detection of spinal cord injury. FA value was significantly decreased while MD value was significantly increased at the level of injury in cases as compared to controls. Further, FA showed significant correlation with clinical grade. DTI could thus serve as a reliable objective imaging tool for assessment of white matter integrity and prognostication of functional outcome.
Collapse
Affiliation(s)
| | | | | | - Pawan Kumar
- INMAS, Brig SK Majumdar Marg, Delhi, 110054, India
| | | |
Collapse
|
20
|
Cohen Y, Anaby D, Morozov D. Diffusion MRI of the spinal cord: from structural studies to pathology. NMR IN BIOMEDICINE 2017; 30:e3592. [PMID: 27598689 DOI: 10.1002/nbm.3592] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 06/01/2016] [Accepted: 07/05/2016] [Indexed: 05/27/2023]
Abstract
Diffusion MRI is extensively used to study brain microarchitecture and pathologies, and water diffusion appears highly anisotropic in the white matter (WM) of the spinal cord (SC). Despite these facts, the use of diffusion MRI to study the SC, which has increased in recent years, is much less common than that in the brain. In the present review, after a brief outline of early studies of diffusion MRI (DWI) and diffusion tensor MRI (DTI) of the SC, we provide a short survey on DTI and on diffusion MRI methods beyond the tensor that have been used to study SC microstructure and pathologies. After introducing the porous view of WM and describing the q-space approach and q-space diffusion MRI (QSI), we describe other methodologies that can be applied to study the SC. Selected applications of the use of DTI, QSI, and other more advanced diffusion MRI methods to study SC microstructure and pathologies are presented, with some emphasis on the use of less conventional diffusion methodologies. Because of length constraints, we concentrate on structural studies and on a few selected pathologies. Examples of the use of diffusion MRI to study dysmyelination, demyelination as in experimental autoimmune encephalomyelitis and multiple sclerosis, amyotrophic lateral sclerosis, and traumatic SC injury are presented. We conclude with a brief summary and a discussion of challenges and future directions for diffusion MRI of the SC. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yoram Cohen
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Debbie Anaby
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Darya Morozov
- The Sackler School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
21
|
|
22
|
Yoon H, Park NW, Ha YM, Kim J, Moon WJ, Eom K. Diffusion tensor imaging of white and grey matter within the spinal cord of normal Beagle dogs: Sub-regional differences of the various diffusion parameters. Vet J 2016; 215:110-7. [DOI: 10.1016/j.tvjl.2016.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/14/2016] [Accepted: 03/20/2016] [Indexed: 12/16/2022]
|
23
|
Mussel M, Inzelberg L, Nevo U. Insignificance of active flow for neural diffusion weighted imaging: A negative result. Magn Reson Med 2016; 78:746-753. [DOI: 10.1002/mrm.26375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Matan Mussel
- The Iby and Aladar Fleischman Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv University; Tel Aviv Israel
| | - Lilah Inzelberg
- The Iby and Aladar Fleischman Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv University; Tel Aviv Israel
- Sagol School of Neuroscience; Tel Aviv University; Tel Aviv Israel
| | - Uri Nevo
- The Iby and Aladar Fleischman Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv University; Tel Aviv Israel
- Sagol School of Neuroscience; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
24
|
Talekar K, Poplawski M, Hegde R, Cox M, Flanders A. Imaging of Spinal Cord Injury: Acute Cervical Spinal Cord Injury, Cervical Spondylotic Myelopathy, and Cord Herniation. Semin Ultrasound CT MR 2016; 37:431-47. [PMID: 27616315 DOI: 10.1053/j.sult.2016.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We review the pathophysiology and imaging findings of acute traumatic spinal cord injury (SCI), cervical spondylotic myelopathy, and briefly review the much less common cord herniation as a unique cause of myelopathy. Acute traumatic SCI is devastating to the patient and the costs to society are staggering. There are currently no "cures" for SCI and the only accepted pharmacologic treatment regimen for traumatic SCI is currently being questioned. Evaluation and prognostication of SCI is a demanding area with significant deficiencies, including lack of biomarkers. Accurate classification of SCI is heavily dependent on a good clinical examination, the results of which can vary substantially based upon the patient׳s condition or comorbidities and the skills of the examiner. Moreover, the full extent of a patients׳ neurologic injury may not become apparent for days after injury; by then, therapeutic response may be limited. Although magnetic resonance imaging (MRI) is the best imaging modality for the evaluation of spinal cord parenchyma, conventional MR techniques do not appear to differentiate edema from axonal injury. Recently, it is proposed that in addition to characterizing the anatomic extent of injury, metrics derived from conventional MRI and diffusion tensor imaging, in conjunction with the neurological examination, can serve as a reliable objective biomarker for determination of the extent of neurologic injury and early identification of patients who would benefit from treatment. Cervical spondylosis is a common disorder affecting predominantly the elderly with a potential to narrow the spinal canal and thereby impinge or compress upon the neural elements leading to cervical spondylotic myelopathy and radiculopathy. It is the commonest nontraumatic cause of spinal cord disorder in adults. Imaging plays an important role in grading the severity of spondylosis and detecting cord abnormalities suggesting myelopathy.
Collapse
Affiliation(s)
- Kiran Talekar
- Section of Neuroradiology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA.
| | - Michael Poplawski
- Department of Radiology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA
| | - Rahul Hegde
- Section of Neuroradiology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA
| | - Mougnyan Cox
- Department of Radiology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA
| | - Adam Flanders
- Section of Neuroradiology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
25
|
Talbott JF, Nout-Lomas YS, Wendland MF, Mukherjee P, Huie JR, Hess CP, Mabray MC, Bresnahan JC, Beattie MS. Diffusion-Weighted Magnetic Resonance Imaging Characterization of White Matter Injury Produced by Axon-Sparing Demyelination and Severe Contusion Spinal Cord Injury in Rats. J Neurotrauma 2016; 33:929-42. [PMID: 26483094 DOI: 10.1089/neu.2015.4102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alterations in magnetic resonance imaging (MRI)-derived measurements of water diffusion parallel (D∥) and perpendicular (D⊥) to white matter tracts have been specifically attributed to pathology of axons and myelin, respectively. We test the hypothesis that directional diffusion measurements can distinguish between axon-sparing chemical demyelination and severe contusion spinal cord white matter injury. Adult rats received either unilateral ethidium bromide (EB) microinjections (chemical demyelination) into the lateral funiculus of the spinal cord at C5 or were subjected to unilateral severe contusion spinal cord injury (SCI). Diffusion MRI metrics in the lateral funiculus were analyzed at early and late time-points following injury and correlated with histology. Early EB-demyelination resulted in a significant elevation in D⊥ and significant reduction in D∥ at the injury epicenter, with histological evidence of uniform axon preservation. Alterations in D⊥ and D∥ at the epicenter of early EB-demyelination were not significantly different from those observed with severe contusion at the epicenter, where histology demonstrated severe combined axonal and myelin injury. Diffusion abnormalities away from the injury epicenter were seen with contusion injury, but not with EB-demyelination. Chronic EB lesions underwent endogenous remyelination with normalization of diffusion metrics, whereas chronic contusion resulted in persistently altered diffusivities. In the early setting, directional diffusion measurements at the injury epicenter associated with chemical demyelination are indistinguishable from those seen with severe contusive SCI, despite dramatic pathologic differences between injury models. Caution is advised in interpretation of diffusion metrics with respect to specific white matter structural alterations. Diffusion analysis should not be limited to the epicenter of focal spinal lesions as alterations marginal to the epicenter are useful for assessing the nature of focal white matter injury.
Collapse
Affiliation(s)
- Jason F Talbott
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - Yvette S Nout-Lomas
- 2 College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| | - Michael F Wendland
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California
| | - Pratik Mukherjee
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - J Russell Huie
- 3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - Christopher P Hess
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California
| | - Marc C Mabray
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California
| | - Jacqueline C Bresnahan
- 3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - Michael S Beattie
- 3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| |
Collapse
|
26
|
Abstract
The goal of imaging in spine trauma is to gauge the extent of bony, vascular, and neurologic compromise. Neurologic and mechanical stability are key pieces of information that must be efficiently communicated to the referring clinician. From immobilization and steroid therapy, to vascular repair and emergent surgical intervention, clinical outcomes of spine-injured patients depend on timely and well-chosen imaging studies. Multidetector computed tomography (CT) has essentially replaced radiography in clearance of the spine and is the gold standard in evaluation of the bony spinal column. Magnetic resonance imaging (MRI) is typically reserved for patients with neurologic deficits or for obtunded/impaired patients in whom the neurologic exam is not reliable, even in the absence of osseous injury on CT. MRI is the only available imaging modality that is able to clearly depict the internal architecture of the spinal cord, and, as such, has a central role in depicting parenchymal changes resulting from injury. Intramedullary edema and hemorrhage have been shown to correlate with the degree of neurologic deficit and prognosis. Moreover, advanced MRI techniques, such as diffusion and diffusion tensor imaging, have shifted the focus to determining structural and functional integrity of neural structures. Here, we review the role of imaging in spine trauma, as well as the key radiologic features of injury to the spinal column and spinal cord.
Collapse
Affiliation(s)
- Vahe M Zohrabian
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Adam E Flanders
- Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
27
|
Woodworth D, Mayer E, Leu K, Ashe-McNalley C, Naliboff BD, Labus JS, Tillisch K, Kutch JJ, Farmer MA, Apkarian AV, Johnson KA, Mackey SC, Ness TJ, Landis JR, Deutsch G, Harris RE, Clauw DJ, Mullins C, Ellingson BM. Unique Microstructural Changes in the Brain Associated with Urological Chronic Pelvic Pain Syndrome (UCPPS) Revealed by Diffusion Tensor MRI, Super-Resolution Track Density Imaging, and Statistical Parameter Mapping: A MAPP Network Neuroimaging Study. PLoS One 2015; 10:e0140250. [PMID: 26460744 PMCID: PMC4604194 DOI: 10.1371/journal.pone.0140250] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/23/2015] [Indexed: 12/27/2022] Open
Abstract
Studies have suggested chronic pain syndromes are associated with neural reorganization in specific regions associated with perception, processing, and integration of pain. Urological chronic pelvic pain syndrome (UCPPS) represents a collection of pain syndromes characterized by pelvic pain, namely Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) and Interstitial Cystitis/Painful Bladder Syndrome (IC/PBS), that are both poorly understood in their pathophysiology, and treated ineffectively. We hypothesized patients with UCPPS may have microstructural differences in the brain compared with healthy control subjects (HCs), as well as patients with irritable bowel syndrome (IBS), a common gastrointestinal pain disorder. In the current study we performed population-based voxel-wise DTI and super-resolution track density imaging (TDI) in a large, two-center sample of phenotyped patients from the multicenter cohort with UCPPS (N = 45), IBS (N = 39), and HCs (N = 56) as part of the MAPP Research Network. Compared with HCs, UCPPS patients had lower fractional anisotropy (FA), lower generalized anisotropy (GA), lower track density, and higher mean diffusivity (MD) in brain regions commonly associated with perception and integration of pain information. Results also showed significant differences in specific anatomical regions in UCPPS patients when compared with IBS patients, consistent with microstructural alterations specific to UCPPS. While IBS patients showed clear sex related differences in FA, MD, GA, and track density consistent with previous reports, few such differences were observed in UCPPS patients. Heat maps illustrating the correlation between specific regions of interest and various pain and urinary symptom scores showed clustering of significant associations along the cortico-basal ganglia-thalamic-cortical loop associated with pain integration, modulation, and perception. Together, results suggest patients with UCPPS have extensive microstructural differences within the brain, many specific to syndrome UCPPS versus IBS, that appear to be localized to regions associated with perception and integration of sensory information and pain modulation, and seem to be a consequence of longstanding pain.
Collapse
Affiliation(s)
- Davis Woodworth
- Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Biomedical Physics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Oppenheimer Center for the Neurobiology of Stress, and PAIN, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Emeran Mayer
- Oppenheimer Center for the Neurobiology of Stress, and PAIN, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Digestive Diseases and Gastroenterology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kevin Leu
- Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Bioengineering, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Cody Ashe-McNalley
- Oppenheimer Center for the Neurobiology of Stress, and PAIN, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Digestive Diseases and Gastroenterology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Bruce D. Naliboff
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jennifer S. Labus
- Oppenheimer Center for the Neurobiology of Stress, and PAIN, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Digestive Diseases and Gastroenterology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kirsten Tillisch
- Oppenheimer Center for the Neurobiology of Stress, and PAIN, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Digestive Diseases and Gastroenterology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jason J. Kutch
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, United States of America
| | - Melissa A. Farmer
- Department of Physiology, Northwestern University, Chicago, Illinois, United States of America
| | - A. Vania Apkarian
- Department of Physiology, Northwestern University, Chicago, Illinois, United States of America
| | - Kevin A. Johnson
- Department of Neurology, Stanford University, Palo Alto, California, United States of America
| | - Sean C. Mackey
- Department of Neurology, Stanford University, Palo Alto, California, United States of America
| | - Timothy J. Ness
- Department of Anesthesiology, University of Alabama, Birmingham, Alabama, United States of America
| | - J. Richard Landis
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Georg Deutsch
- Department of Radiology, University of Alabama, Birmingham, Alabama, United States of America
| | - Richard E. Harris
- Department of Anestesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Daniel J. Clauw
- Department of Anestesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Chris Mullins
- Division of Kidney, Urologic, and Hematologic Diseases; National Institute of Diabetes and Digestive and Kidney Diseases; National Institutes of Health, Bethesda, Maryland, United States of America
| | - Benjamin M. Ellingson
- Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Biomedical Physics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Oppenheimer Center for the Neurobiology of Stress, and PAIN, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Bioengineering, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | | |
Collapse
|
28
|
Niu XK, Bhetuwal A, Yang HF. Diffusion-Weighted Imaging for Pretreatment Evaluation and Prediction of Treatment Effect in Patients Undergoing CT-Guided Injection for Lumbar Disc Herniation. Korean J Radiol 2015; 16:874-880. [PMID: 26175588 PMCID: PMC4499553 DOI: 10.3348/kjr.2015.16.4.874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/12/2015] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE To determine whether a change in apparent diffusion coefficient (ADC) value could predict early response to CT-guided Oxygen-Ozone (O2-O3) injection therapy in patients with unilateral mono-radiculopathy due to lumbar disc herniation. MATERIALS AND METHODS A total of 52 patients with unilateral mono-radiculopathy received a single intradiscal (3 mL) and periganglionic (5 mL) injection of an O2-O3 mixture. An ADC index of the involved side to the intact side was calculated using the following formula: pre-treatment ADC index = ([ADC involved side - ADC intact side] / ADC intact side) × 100. We analyzed the relationship between the pre-treatment Oswestry Disability Index (ODI) and the ADC index. In addition, the correlation between ODI recovery ratio and ADC index was investigated. The sensitivity and specificity of the ADC index for predicting response in O2-O3 therapy was determined. RESULTS Oswestry Disability Index and the ADC index was not significantly correlated (r = -0.125, p = 0.093). The ADC index and ODI recovery ratio was significantly correlated (r = 0.819, p < 0.001). When using 7.10 as the cut-off value, the ADC index obtained a sensitivity of 86.3% and a specificity of 82.9% for predicting successful response to therapy around the first month of follow-up. CONCLUSION This preliminary study demonstrates that the patients with decreased ADC index tend to show poor improvement of clinical symptoms. The ADC index may be a useful indicator to predict early response to CT-guided O2-O3 injection therapy in patients with unilateral mono-radiculopathy due to lumbar disc herniation.
Collapse
Affiliation(s)
- Xiang-Ke Niu
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan Province 610000, China
| | - Anup Bhetuwal
- Sichuan Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province 637000, China
| | - Han-Feng Yang
- Sichuan Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province 637000, China
| |
Collapse
|
29
|
Jirjis MB, Vedantam A, Budde MD, Kalinosky B, Kurpad SN, Schmit BD. Severity of spinal cord injury influences diffusion tensor imaging of the brain. J Magn Reson Imaging 2015; 43:63-74. [DOI: 10.1002/jmri.24964] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/18/2015] [Indexed: 01/07/2023] Open
Affiliation(s)
- Michael B. Jirjis
- Department of Biomedical Engineering; Marquette University; Milwaukee Wisconsin USA
| | - Aditya Vedantam
- Department of Neurosurgery; Medical College of Wisconsin; Milwaukee Wisconsin USA
| | - Matthew D. Budde
- Department of Neurosurgery; Medical College of Wisconsin; Milwaukee Wisconsin USA
| | - Benjamin Kalinosky
- Department of Biomedical Engineering; Marquette University; Milwaukee Wisconsin USA
| | - Shekar N. Kurpad
- Department of Neurosurgery; Medical College of Wisconsin; Milwaukee Wisconsin USA
| | - Brian D. Schmit
- Department of Biomedical Engineering; Marquette University; Milwaukee Wisconsin USA
| |
Collapse
|
30
|
Abstract
Magnetic resonance imaging (MRI) is the state of the art approach for assessing the status of the spinal cord noninvasively, and can be used as a diagnostic and prognostic tool in cases of disease or injury. Diffusion weighted imaging (DWI), is sensitive to the thermal motion of water molecules and allows for inferences of tissue microstructure. This report describes a protocol to acquire and analyze DWI of the rat cervical spinal cord on a small-bore animal system. It demonstrates an imaging setup for the live anesthetized animal and recommends a DWI acquisition protocol for high-quality imaging, which includes stabilization of the cord and control of respiratory motion. Measurements with diffusion weighting along different directions and magnitudes (b-values) are used. Finally, several mathematical models of the resulting signal are used to derive maps of the diffusion processes within the spinal cord tissue that provide insight into the normal cord and can be used to monitor injury or disease processes noninvasively.
Collapse
Affiliation(s)
| | - Brian Schmit
- Department of Biomedical Engineering, Marquette University
| | - Shekar Kurpad
- Department of Neurosurgery, Medical College of Wisconsin
| | | |
Collapse
|
31
|
Vedantam A, Jirjis MB, Schmit BD, Wang MC, Ulmer JL, Kurpad SN. Diffusion tensor imaging of the spinal cord: insights from animal and human studies. Neurosurgery 2014; 74:1-8; discussion 8; quiz 8. [PMID: 24064483 DOI: 10.1227/neu.0000000000000171] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diffusion tensor imaging (DTI) provides a measure of the directional diffusion of water molecules in tissues. The measurement of DTI indexes within the spinal cord provides a quantitative assessment of neural damage in various spinal cord pathologies. DTI studies in animal models of spinal cord injury indicate that DTI is a reliable imaging technique with important histological and functional correlates. These studies demonstrate that DTI is a noninvasive marker of microstructural change within the spinal cord. In human studies, spinal cord DTI shows definite changes in subjects with acute and chronic spinal cord injury, as well as cervical spondylotic myelopathy. Interestingly, changes in DTI indexes are visualized in regions of the cord, which appear normal on conventional magnetic resonance imaging and are remote from the site of cord compression. Spinal cord DTI provides data that can help us understand underlying microstructural changes within the cord and assist in prognostication and planning of therapies. In this article, we review the use of DTI to investigate spinal cord pathology in animals and humans and describe advances in this technique that establish DTI as a promising biomarker for spinal cord disorders.
Collapse
Affiliation(s)
- Aditya Vedantam
- *Department of Neurosurgery, and §Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin; ‡Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| | | | | | | | | | | |
Collapse
|
32
|
Richardson S, Siow B, Panagiotaki E, Schneider T, Lythgoe MF, Alexander DC. Viable and fixed white matter: diffusion magnetic resonance comparisons and contrasts at physiological temperature. Magn Reson Med 2013; 72:1151-61. [PMID: 24243402 DOI: 10.1002/mrm.25012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 12/11/2022]
Abstract
PURPOSE Fixed samples have been used extensively in diffusion MRI (dMRI) studies. However, fixation causes significant structural changes in tissue. The purpose of this study was to evaluate fixed white matter as a surrogate for viable white matter during development and validation of dMRI methods. METHODS dMRI data was acquired from fixed and viable rat optic nerves maintained in identical conditions in a viable isolated tissue (VIT) chamber. The chamber preserves tissue integrity for 10 h at 37°C. Diffusion tensors (DT) and multi-compartment white matter signal models were fitted to the data. RESULTS When comparing VIT and fixed tissue, DT parameters demonstrated that fixation causes significant reductions in axial diffusivity and increases in radial diffusivity. However, both tissues exhibited similar responses to changes in diffusion times and gradient strengths. Multicompartment models demonstrated differences in parameter estimates (e.g., directional diffusivities) that were analogous to differences in DT parameters. Similarities in multi-compartment model rankings suggested that tissue water populations were broadly maintained postfixation. CONCLUSIONS The data demonstrate that fixed tissue, while maintaining the broad water environment of viable tissue, differs significantly in diffusion parameters. Results from dMRI experiments on fixed tissue may correlate with-but will not directly translate into-results from viable tissue.
Collapse
Affiliation(s)
- Simon Richardson
- UCL Centre for Advanced Biomedical Imaging, Department of Medicine, University College London, London, UK; Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
33
|
Zhang JS, Huan Y. Multishot diffusion-weighted MR imaging features in acute trauma of spinal cord. Eur Radiol 2013; 24:685-92. [PMID: 24346823 DOI: 10.1007/s00330-013-3051-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/25/2013] [Accepted: 10/05/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To analyse diffusion-weighted MRI of acute spinal cord trauma and evaluate its diagnostic value. METHODS Conventional MRI and multishot, navigator-corrected DWI were performed in 20 patients with acute spinal cord trauma using 1.5-T MR within 72 h after the onset of trauma. RESULTS Twenty cases were classified into four categories according to the characteristics of DWI: (1) Oedema type: ten cases presented with variable hyperintense areas within the spinal cord. There were significant differences in the apparent diffusion coefficients (ADCs) between lesions and unaffected regions (t = -7.621, P < 0.01). ADC values of lesions were markedly lower than those of normal areas. (2) Mixed type: six cases showed heterogeneously hyperintense areas due to a mixture of haemorrhage and oedema. (3) Haemorrhage type: two cases showed lesions as marked hypointensity due to intramedullary haemorrhage. (4) Compressed type (by epidural haemorrhage): one of the two cases showed an area of mild hyperintensity in the markedly compressed cord due to epidural haematoma. CONCLUSIONS Muti-shot DWI of the spinal cord can help visualise and evaluate the injured spinal cord in the early stage, especially in distinguishing the cytotoxic oedema from vasogenic oedema. It can assist in detecting intramedullary haemorrhage and may have a potential role in the evaluation of compressed spinal cord. KEY POINTS • Multishot, navigator-corrected diffusion-weighted MRI is helpful when evaluating spinal cord injury (SCI). • Four types of SCI may be classified according to the DWI characteristics. • DWI differentiates cytotoxic from vasogenic oedema, thereby determining the centre of SCI. • DWI can assist in detecting intramedullary haemorrhage. • DWI can help evaluate the degree of compressed spinal cord.
Collapse
Affiliation(s)
- Jin Song Zhang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No. 127 Changle xilu, Xi'an, 710032, People's Republic of China,
| | | |
Collapse
|
34
|
Jirjis MB, Kurpad SN, Schmit BD. Ex vivo diffusion tensor imaging of spinal cord injury in rats of varying degrees of severity. J Neurotrauma 2013; 30:1577-86. [PMID: 23782233 DOI: 10.1089/neu.2013.2897] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to characterize magnetic resonance diffusion tensor imaging (DTI) in proximal regions of the spinal cord following a thoracic spinal cord injury (SCI). Sprague-Dawley rats (n=40) were administered a control, mild, moderate, or severe contusion injury at the T8 vertebral level. Six direction diffusion weighted images (DWIs) were collected ex vivo along the length of the spinal cord, with an echo/repetition time of 31.6 ms/14 sec and b=500 sec/mm². Diffusion metrics were correlated to hindlimb motor function. Significant differences were found for whole cord region of interest (ROI) drawings for fractional anisotropy (FA), mean diffusivity (MD), longitudinal diffusion coefficient (LD), and radial diffusion coefficient (RD) at each of the cervical levels (p<0.01). Motor function correlated with MD in the cervical segments of the spinal cord (r(2)=0.80). The diffusivity of water significantly decreased throughout "uninjured" portions of the spinal cord following a contusion injury (p<0.05). Diffusivity metrics were found to be altered following SCI in both white and gray matter regions. Injury severity was associated with diffusion changes over the entire length of the cord. This study demonstrates that DTI is sensitive to SCI in regions remote from injury, suggesting that the diffusion metrics may be used as a biomarker for severity of injury.
Collapse
Affiliation(s)
- Michael B Jirjis
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53201-1881, USA
| | | | | |
Collapse
|
35
|
Liu M, Gross DW, Wheatley BM, Concha L, Beaulieu C. The acute phase of Wallerian degeneration: longitudinal diffusion tensor imaging of the fornix following temporal lobe surgery. Neuroimage 2013; 74:128-39. [PMID: 23396161 DOI: 10.1016/j.neuroimage.2013.01.069] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/16/2013] [Accepted: 01/31/2013] [Indexed: 12/24/2022] Open
Abstract
Numerous animal studies have shown the applicability of diffusion tensor imaging (DTI) to track Wallerian degeneration that occurs after injury to the neural fiber. Non-invasive biomarkers that may differentiate the early axonal breakdown and later myelin degradation have been attributed to either reduced parallel and elevated perpendicular diffusivity, respectively. While several human DTI studies have shown this potential at subacute and chronic time points, the diffusion changes that occur within the first week are unknown. Anterior temporal lobectomy (i.e. resection of hippocampus) is the standard surgical treatment of medically refractory temporal lobe epilepsy. The concomitant transection of the fimbria-fornix serves as a unique opportunity to examine the process of Wallerian degeneration since the timing is known. Six temporal lobe epilepsy patients underwent brain DTI before the surgery, three to four times within the first week post-operatively, and at one to four months following surgery. Both parallel and perpendicular diffusivities decreased markedly by a similar amount in the ipsilateral fornix within the first two days post-surgery. Approaching the end of the first week, perpendicular (but not parallel) diffusivity pseudo-recovered towards its pre-surgical value, but then increased dramatically months later. Fractional anisotropy, as a result of the combined action of the parallel and perpendicular diffusivities, stayed relatively stable within the first week and only reduced drastically at the chronic stage. DTI demonstrated acute water diffusion changes within days of transection that are not just limited to parallel diffusivity. While the chronic diffusion changes in the fornix are compatible with myelin degradation, the acute changes may reflect beading and swelling of axolemma, granular disintegration of the axonal neurofilaments, ischemia induced cytotoxic edema, and/or changes in the extra-axonal space including inflammatory changes and gliosis.
Collapse
Affiliation(s)
- Min Liu
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
36
|
Vedantam A, Jirjis M, Eckhardt G, Sharma A, Schmit BD, Wang MC, Ulmer JL, Kurpad S. Diffusion tensor imaging of the spinal cord: a review. COLUNA/COLUMNA 2013. [DOI: 10.1590/s1808-18512013000100014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diffusion tensor imaging (DTI) is a magnetic resonance technique capable of measuring the magnitude and direction of water molecule diffusion in various tissues. The use of DTI is being expanded to evaluate a variety of spinal cord disorders both for prognostication and to guide therapy. The purpose of this article is to review the literature on spinal cord DTI in both animal models and humans in different neurosurgical conditions. DTI of the spinal cord shows promise in traumatic spinal cord injury, cervical spondylotic myelopathy, and intramedullary tumors. However, scanning protocols and image processing need to be refined and standardized.
Collapse
|
37
|
Ellingson BM, Salamon N, Holly LT. Imaging techniques in spinal cord injury. World Neurosurg 2012; 82:1351-8. [PMID: 23246741 DOI: 10.1016/j.wneu.2012.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/05/2012] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Spinal imaging plays a critical role in the diagnosis, treatment, and rehabilitation of patients with spinal cord injury (SCI). In recent years there has been increasing interest in the development of advanced imaging techniques to provide pertinent microstructural and metabolic information that is not provided by conventional modalities. METHODS This review details the pathophysiological structural changes that accompany SCI, as well as their imaging correlates. The potential clinical applications of novel spinal cord imaging techniques to SCI are presented. RESULTS There are a variety of novel advanced imaging techniques that are principally focused on the microstructural and/or biochemical function of the spinal cord, and can potentially be applied to traumatic SCI, including diffusion tensor imaging, magnetic resonance spectroscopy, positron emission tomography, single-photon emission computed tomography, and functional magnetic resonance imaging. These techniques are presently in various stages of development, including some whose applications are primarily limited to laboratory investigation, whereas others are being actively used in clinical practice. CONCLUSION Advanced imaging of the spinal cord has tremendous potential to provide patient-specific physiological information about the status of cord integrity and health. Advanced spinal cord imaging is still at early stages of development and clinical implementation but is likely to play an increasingly important role in the management of spinal cord health in the foreseeable future.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA; Department of Biomedical Physics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA; Department of Bioengineering, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Langston T Holly
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
38
|
Lindberg P, Feydy A, Sanchez K, Rannou F, Maier M. Measures of spinal canal stenosis and relationship to spinal cord structure in patients with cervical spondylosis. J Neuroradiol 2012; 39:236-42. [DOI: 10.1016/j.neurad.2011.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 10/16/2022]
|
39
|
Diffusion tensor imaging in radiosurgical callosotomy. Seizure 2012; 21:473-7. [DOI: 10.1016/j.seizure.2012.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/25/2012] [Accepted: 03/27/2012] [Indexed: 11/20/2022] Open
|
40
|
Barakat N, Mohamed FB, Hunter LN, Shah P, Faro SH, Samdani AF, Finsterbusch J, Betz R, Gaughan J, Mulcahey MJ. Diffusion tensor imaging of the normal pediatric spinal cord using an inner field of view echo-planar imaging sequence. AJNR Am J Neuroradiol 2012; 33:1127-33. [PMID: 22300927 PMCID: PMC8013244 DOI: 10.3174/ajnr.a2924] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/05/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE DTI in the brain has been well established, but its application in the spinal cord, especially in pediatrics, poses several challenges. The small cord size has inherent low SNR of the diffusion signal intensity, respiratory and cardiac movements induce artifacts, and EPI sequences used for obtaining diffusion indices cause eddy-current distortions. The purpose of this study was to 1) evaluate the accuracy of cervical spinal cord DTI in children using a newly developed iFOV sequence with spatially selective 2D-RF excitations, and 2) examine reproducibility of the DTI measures. MATERIALS AND METHODS Twenty-five typically developing subjects were imaged twice using a 3T scanner. Axial DTI images of the cervical spinal cord were acquired with this sequence. After motion correction, DTI indices were calculated using regions of interest manually drawn at every axial section location along the cervical spinal cord for both acquisitions. Various DTI indices were calculated: FA, AD, RD, MD, RA, and VR. Geometric diffusion measures were also calculated: Cp, Cl, and Cs. RESULTS The following average values for each index were obtained: FA = 0.50 ± 0.11; AD = 0.97 ± 0.20 × 10(-3)mm(2)/s; RD = 0.41 ± 0.13 × 10(-3)mm(2)/s; MD = 0.59 ± 0.15 × 10(-3)mm(2)/s; RA = 0.35 ± 0.08; VR = 0.03 ± 0.00; Cp = 0.13 ± 0.07; Cl = 0.29 ± 0.09; and Cs = 0.58 ± 0.11. The reproducibility tests showed moderate to strong ICC in all subjects for all DTI parameters (ICC>0.72). CONCLUSIONS This study showed that accurate and reproducible DTI parameters can be estimated in the pediatric cervical spinal cord using an iFOV EPI sequence.
Collapse
Affiliation(s)
- N Barakat
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Petersen JA, Wilm BJ, von Meyenburg J, Schubert M, Seifert B, Najafi Y, Dietz V, Kollias S. Chronic Cervical Spinal Cord Injury: DTI Correlates with Clinical and Electrophysiological Measures. J Neurotrauma 2012; 29:1556-66. [DOI: 10.1089/neu.2011.2027] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jens A. Petersen
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Institute of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Bertram J. Wilm
- Institute of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University & ETH Zurich, Zurich, Switzerland
| | - Jan von Meyenburg
- Institute of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Schubert
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - Burkhardt Seifert
- Division of Biostatistics, Institute of Social and Preventive Medicine, University of Zurich, Zurich, Switzerland
| | - Yousef Najafi
- Institute of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Volker Dietz
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - Spyridon Kollias
- Institute of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Cohen-Adad J, Leblond H, Delivet-Mongrain H, Martinez M, Benali H, Rossignol S. Wallerian degeneration after spinal cord lesions in cats detected with diffusion tensor imaging. Neuroimage 2011; 57:1068-76. [PMID: 21596140 DOI: 10.1016/j.neuroimage.2011.04.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 04/25/2011] [Accepted: 04/25/2011] [Indexed: 12/19/2022] Open
Abstract
One goal of in vivo neuroimaging is the detection of neurodegenerative processes and anatomical reorganizations after spinal cord (SC) injury. Non-invasive examination of white matter fibers in the living SC can be conducted using magnetic resonance diffusion-weighted imaging. However, this technique is challenging at the spinal level due to the small cross-sectional size of the cord and the presence of physiological motion and susceptibility artifacts. In this study, we acquired in vivo high angular resolution diffusion imaging (HARDI) data at 3T in cats submitted to partial SC injury. Cats were imaged before, 3 and 21 days after injury. Spatial resolution was enhanced to 1.5 × 1.5 × 1 mm(3) using super-resolution technique and distortions were corrected using the reversed gradient method. Tractography-derived regions of interest were generated in the dorsal, ventral, right and left quadrants, to evaluate diffusion tensor imaging (DTI) and Q-Ball imaging metrics with regards to their sensitivity in detecting primary and secondary lesions. A three-way ANOVA tested the effect of session (intact, D3, D21), cross-sectional region (left, right, dorsal and ventral) and rostrocaudal location. Significant effect of session was found for FA (P<0.001), GFA (P<0.05) and radial diffusivity (P<0.001). Post-hoc paired T-test corrected for multiple comparisons showed significant changes at the lesion epicenter (P<0.005). More interestingly, significant changes were also found several centimeters from the lesion epicenter at both 3 and 21 days. This decrease was specific to the type of fibers, i.e., rostrally to the lesion on the dorsal aspect of the cord and caudally to the lesion ipsilaterally, suggesting the detection of Wallerian degeneration.
Collapse
Affiliation(s)
- J Cohen-Adad
- GRSNC, Department of Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| | | | | | | | | | | |
Collapse
|
43
|
Morisaki S, Kawai Y, Umeda M, Nishi M, Oda R, Fujiwara H, Yamada K, Higuchi T, Tanaka C, Kawata M, Kubo T. In vivo assessment of peripheral nerve regeneration by diffusion tensor imaging. J Magn Reson Imaging 2011; 33:535-42. [DOI: 10.1002/jmri.22442] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/20/2010] [Indexed: 11/11/2022] Open
|
44
|
Abstract
Different MR techniques, such as relaxation times, diffusion, perfusion, and spectroscopy have been employed to study rodent spinal cord. In this chapter, a description of these methods is given, along with examples of normal metrics that can be derived from the MR acquisitions, as well as examples of applications to pathology.
Collapse
Affiliation(s)
- Virginie Callot
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 6612, CNRS, Université de la Méditerranée, 13385 Marseille Cedex 05, France.
| | | | | |
Collapse
|
45
|
Ellingson BM, Sulaiman O, Kurpad SN. High-resolution in vivo diffusion tensor imaging of the injured cat spinal cord using self-navigated, interleaved, variable-density spiral acquisition (SNAILS-DTI). Magn Reson Imaging 2010; 28:1353-60. [PMID: 20797830 DOI: 10.1016/j.mri.2010.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/12/2010] [Accepted: 06/10/2010] [Indexed: 11/25/2022]
Abstract
Diffusion tensor magnetic resonance imaging (DTI) is useful for studying the microstructural changes in the spinal cord following traumatic injury; however, image quality is generally poor due to the small size of the spinal cord, physiological motion and susceptibility artifacts. Self-navigated, interleaved, variable-density spiral diffusion tensor imaging (SNAILS-DTI) is a distinctive pulse sequence that bypasses many of the challenges associated with DTI of the spinal cord, particularly if imaging gradient hardware is of conventional quality. In the current study, we have demonstrated the feasibility of implementing SNAILS-DTI on a clinical 3.0-T MR scanner and examined the effect of navigator filter parameters on image quality and reconstruction time. Results demonstrate high-quality, high-resolution (546 μm×546 μm) in vivo DTI images of the cat spinal cord after traumatic spinal cord injury.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
46
|
Ellingson BM, Schmit BD, Kurpad SN. Lesion growth and degeneration patterns measured using diffusion tensor 9.4-T magnetic resonance imaging in rat spinal cord injury. J Neurosurg Spine 2010; 13:181-92. [PMID: 20672953 DOI: 10.3171/2010.3.spine09523] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECT Using diffusion tensor MR imaging, the authors conducted a study to explore lesion growth and degeneration patterns, from the acute through chronic stages of spinal cord injury (SCI), in an experimental animal model. METHODS In vivo and ex vivo diffusion tensor imaging was performed using a 9.4-T MR imaging system in rats allowed to recover from traumatic contusion SCI from 2 weeks through 25 weeks postinjury, mimicking progression of human SCI from the acute through chronic stages. RESULTS Results showed significant growth of the traumatic lesion up to 15 weeks postinjury, where both the size and mean diffusivity (MD) reached a maximum that was maintained through the remainder of recovery. Mean diffusivity was sensitive to overall spinal cord integrity, whereas fractional anisotropy showed specificity to sites of cavity formation. The use of an MD contour map for in vivo data and a 3D surface map for ex vivo data, showing MD as a function of rostral-caudal distance and recovery time, allowed documentation of rostral and caudal spreading of the lesion. CONCLUSIONS Results from this study demonstrate changes in both lesion morphology and diffusivity beyond previously reported time points and provide a unique perspective on the process of cavity formation and degeneration following traumatic SCI. Additionally, results suggest that MD more accurately defines regions of histological damage than do regions of T2 signal hyperintensity. This could have significant clinical implications in the detection and potential treatment of posttraumatic syringes in SCI.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin 53201, USA
| | | | | |
Collapse
|
47
|
Farrell JAD, Zhang J, Jones MV, Deboy CA, Hoffman PN, Landman BA, Smith SA, Reich DS, Calabresi PA, van Zijl PCM. q-space and conventional diffusion imaging of axon and myelin damage in the rat spinal cord after axotomy. Magn Reson Med 2010; 63:1323-35. [PMID: 20432303 DOI: 10.1002/mrm.22389] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Parallel and perpendicular diffusion properties of water in the rat spinal cord were investigated 3 and 30 days after dorsal root axotomy, a specific insult resulting in early axonal degeneration followed by later myelin damage in the dorsal column white matter. Results from q-space analysis (i.e., the diffusion probability density function) obtained with strong diffusion weighting were compared to conventional anisotropy and diffusivity measurements at low b-values, as well as to histology for axon and myelin damage. q-Space contrasts included the height (return to zero displacement probability), full width at half maximum, root mean square displacement, and kurtosis excess of the probability density function, which quantifies the deviation from gaussian diffusion. Following axotomy, a significant increase in perpendicular diffusion (with decreased kurtosis excess) and decrease in parallel diffusion (with increased kurtosis excess) were found in lesions relative to uninjured white matter. Notably, a significant change in abnormal parallel diffusion was detected from 3 to 30 days with full width at half maximum, but not with conventional diffusivity. Also, directional full width at half maximum and root mean square displacement measurements exhibited different sensitivities to white matter damage. When compared to histology, the increase in perpendicular diffusion was not specific to demyelination, whereas combined reduced parallel diffusion and increased perpendicular diffusion was associated with axon damage.
Collapse
Affiliation(s)
- Jonathan A D Farrell
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ackerman JJH, Neil JJ. The use of MR-detectable reporter molecules and ions to evaluate diffusion in normal and ischemic brain. NMR IN BIOMEDICINE 2010; 23:725-33. [PMID: 20669147 PMCID: PMC3080095 DOI: 10.1002/nbm.1530] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As a result of the technical challenges associated with distinguishing the MR signals arising from intracellular and extracellular water, a variety of endogenous and exogenous MR-detectable molecules and ions have been employed as compartment-specific reporters of water motion. Although these reporter molecules and ions do not have the same apparent diffusion coefficients (ADCs) as water, their ADCs are assumed to be directly related to the ADC of the water in which they are solvated. This approach has been used to probe motion in the intra- and extracellular space of cultured cells and intact tissue. Despite potential interpretative challenges with the use of reporter molecules or ions and the wide variety used, the following conclusions are consistent considering all studies: (i) the apparent free diffusive motion in the intracellular space is approximately one-half of that in dilute aqueous solution; (ii) ADCs for intracellular and extracellular water are similar; (iii) the intracellular ADC decreases in association with brain injury. These findings provide support for the hypothesis that the overall brain water ADC decrease that accompanies brain injury is driven primarily by a decrease in the ADC of intracellular water. We review the studies supporting these conclusions, and interpret them in the context of explaining the decrease in overall brain water ADC that accompanies brain injury.
Collapse
Affiliation(s)
- Joseph J H Ackerman
- Department of Chemistry, Campus Box 1134, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
49
|
Yablonskiy DA, Sukstanskii AL. Theoretical models of the diffusion weighted MR signal. NMR IN BIOMEDICINE 2010; 23:661-81. [PMID: 20886562 PMCID: PMC6429954 DOI: 10.1002/nbm.1520] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Diffusion MRI plays a very important role in studying biological tissue structure and functioning both in health and disease. Proper interpretation of experimental data requires development of theoretical models that connect the diffusion MRI signal to salient features of tissue microstructure at the cellular level. In this review, we present some models (mostly, relevant to the brain) for describing diffusion attenuated MR signals. These range from the simplest approach, where the signal is described in terms of an apparent diffusion coefficient, to rather complicated models, where consideration is given to signals originating from extra- and intracellular spaces and where account is taken of the specific geometry and orientation distribution of cells. To better understand the characteristics of the diffusion attenuated MR signal arising from the complex structure of whole tissue, it is instructive to appreciate first the characteristics of the signal arising from simple single-cell-like structures. For this purpose, we also present here a theoretical analysis of models allowing exact analytical calculation of the MR signal, specifically, a single-compartment model with impermeable boundaries and a periodic structure of identical cells separated by permeable membranes. Such pure theoretical models give important insights into mechanisms contributing to the MR signal formation in the presence of diffusion. In this review we targeted both scientists just entering the MR field and more experienced MR researchers interested in applying diffusion methods to study biological tissues.
Collapse
|
50
|
Tu TW, Kim JH, Wang J, Song SK. Full tensor diffusion imaging is not required to assess the white-matter integrity in mouse contusion spinal cord injury. J Neurotrauma 2010; 27:253-62. [PMID: 19715399 DOI: 10.1089/neu.2009.1026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In vivo diffusion tensor imaging (DTI) derived indices have been demonstrated to quantify accurately white-matter injury after contusion spinal cord injury (SCI) in rodents. In general, a full diffusion tensor analysis requires the acquisition of diffusion-weighted images (DWI) along at least six independent directions of diffusion-sensitizing gradients. Thus, DTI measurements of the rodent central nervous system are time consuming. In this study, diffusion indices derived using the two-direction DWI (parallel and perpendicular to axonal tracts) were compared with those obtained using six-direction DTI in a mouse model of SCI. It was hypothesized that the mouse spinal cord ventral-lateral white-matter (VLWM) tracts, T8-T10 in this study, aligned with the main magnet axis (z) allowing the apparent diffusion coefficient parallel and perpendicular to the axis of the spine to be derived with diffusion-weighting gradients in the z and y axes of the magnet coordinate respectively. Compared with six-direction full tensor DTI, two-direction DWI provided comparable diffusion indices in mouse spinal cords. The measured extent of spared white matter after injury, estimated by anisotropy indices, using both six-direction DTI and two-direction DWI were in close agreement and correlated well with histological staining and behavioral assessment. The results suggest that the two-direction DWI derived indices may be used, with significantly reduced imaging time, to estimate accurately spared white matter in mouse SCI.
Collapse
Affiliation(s)
- Tsang-Wei Tu
- Department of Mechanical, Aerospace and Structural Engineering, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|