1
|
Jafree DJ, Perera C, Ball M, Tolomeo D, Pomeranz G, Wilson L, Davis B, Mason WJ, Funk EM, Kolatsi-Joannou M, Polschi R, Malik S, Stewart BJ, Price KL, Mitchell H, Motallebzadeh R, Muto Y, Lees R, Needham S, Moulding D, Chandler JC, Nandanwar S, Walsh CL, Winyard PJD, Scambler PJ, Hägerling R, Clatworthy MR, Humphreys BD, Lythgoe MF, Walker-Samuel S, Woolf AS, Long DA. Microvascular aberrations found in human polycystic kidneys are an early feature in a Pkd1 mutant mouse model. Dis Model Mech 2025; 18:dmm052024. [PMID: 40114603 DOI: 10.1242/dmm.052024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Therapies targeting blood vessels hold promise for autosomal dominant polycystic kidney disease (ADPKD), the most common inherited disorder causing kidney failure. However, the onset and nature of kidney vascular abnormalities in ADPKD are poorly defined. Accordingly, we employed a combination of single-cell transcriptomics; three-dimensional imaging with geometric, topological and fractal analyses; and multimodal magnetic resonance imaging with arterial spin labelling to investigate aberrant microvasculature in ADPKD kidneys. Within human ADPKD kidneys with advanced cystic pathology and excretory failure, we identified a molecularly distinct blood microvascular subpopulation, characterised by impaired angiogenic signalling and metabolic dysfunction, differing from endothelial injury profiles observed in non-cystic human kidney diseases. Next, Pkd1 mutant mouse kidneys were examined postnatally, when cystic pathology is well established, but before excretory failure. An aberrant endothelial subpopulation was also detected, concurrent with reduced cortical blood perfusion. Disorganised kidney cortical microvasculature was also present in Pkd1 mutant mouse fetal kidneys when tubular dilation begins. Thus, aberrant features of cystic kidney vasculature are harmonised between human and mouse ADPKD, supporting early targeting of the vasculature as a strategy to ameliorate ADPKD progression.
Collapse
Affiliation(s)
- Daniyal J Jafree
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- UCL Centre for Kidney and Bladder Health, University College London, London WC1E 6BT, UK
- Specialised Foundation Programme in Research, NHS East of England, Cambridge CB21 5XB, UK
| | - Charith Perera
- UCL Centre for Advanced Biomedical Imaging, University College London, London WC1E 6DD, UK
| | - Mary Ball
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Daniele Tolomeo
- UCL Centre for Advanced Biomedical Imaging, University College London, London WC1E 6DD, UK
| | - Gideon Pomeranz
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- UCL Centre for Kidney and Bladder Health, University College London, London WC1E 6BT, UK
| | - Laura Wilson
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- UCL Centre for Kidney and Bladder Health, University College London, London WC1E 6BT, UK
| | - Benjamin Davis
- Central Laser Facility, Science and Technologies Facilities Council, UK Research and Innovation, Didcot OX11 0QX, UK
| | - William J Mason
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- UCL Centre for Kidney and Bladder Health, University College London, London WC1E 6BT, UK
| | - Eva Maria Funk
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Lymphovascular Medicine and Translational 3D-Histopathology Research Group, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin 10117, Germany
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- UCL Centre for Kidney and Bladder Health, University College London, London WC1E 6BT, UK
| | - Radu Polschi
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Saif Malik
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- UCL Centre for Kidney and Bladder Health, University College London, London WC1E 6BT, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 1TN, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Karen L Price
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- UCL Centre for Kidney and Bladder Health, University College London, London WC1E 6BT, UK
| | - Hannah Mitchell
- Mathematical Sciences Research Centre, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Reza Motallebzadeh
- UCL Centre for Kidney and Bladder Health, University College London, London WC1E 6BT, UK
- Research Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London NW3 2PF, UK
- UCL Institute of Immunity and Transplantation, University College London, London NW3 2PF, UK
| | - Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Robert Lees
- Central Laser Facility, Science and Technologies Facilities Council, UK Research and Innovation, Didcot OX11 0QX, UK
| | - Sarah Needham
- Central Laser Facility, Science and Technologies Facilities Council, UK Research and Innovation, Didcot OX11 0QX, UK
| | - Dale Moulding
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Jennie C Chandler
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- UCL Centre for Kidney and Bladder Health, University College London, London WC1E 6BT, UK
| | - Sonal Nandanwar
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- UCL Centre for Kidney and Bladder Health, University College London, London WC1E 6BT, UK
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Claire L Walsh
- UCL Centre for Advanced Biomedical Imaging, University College London, London WC1E 6DD, UK
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Paul J D Winyard
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- UCL Centre for Kidney and Bladder Health, University College London, London WC1E 6BT, UK
| | - Peter J Scambler
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - René Hägerling
- Lymphovascular Medicine and Translational 3D-Histopathology Research Group, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin 10117, Germany
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 1TN, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, University College London, London WC1E 6DD, UK
| | - Simon Walker-Samuel
- UCL Centre for Advanced Biomedical Imaging, University College London, London WC1E 6DD, UK
| | - Adrian S Woolf
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - David A Long
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- UCL Centre for Kidney and Bladder Health, University College London, London WC1E 6BT, UK
| |
Collapse
|
2
|
Casamitjana A, Mancini M, Robinson E, Peter L, Annunziata R, Althonayan J, Crampsie S, Blackburn E, Billot B, Atzeni A, Puonti O, Balbastre Y, Schmidt P, Hughes J, Augustinack JC, Edlow BL, Zöllei L, Thomas DL, Kliemann D, Bocchetta M, Strand C, Holton JL, Jaunmuktane Z, Iglesias JE. A next-generation, histological atlas of the human brain and its application to automated brain MRI segmentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579016. [PMID: 39282320 PMCID: PMC11398399 DOI: 10.1101/2024.02.05.579016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Magnetic resonance imaging (MRI) is the standard tool to image the human brain in vivo. In this domain, digital brain atlases are essential for subject-specific segmentation of anatomical regions of interest (ROIs) and spatial comparison of neuroanatomy from different subjects in a common coordinate frame. High-resolution, digital atlases derived from histology (e.g., Allen atlas [7], BigBrain [13], Julich [15]), are currently the state of the art and provide exquisite 3D cytoarchitectural maps, but lack probabilistic labels throughout the whole brain. Here we present NextBrain, a next-generation probabilistic atlas of human brain anatomy built from serial 3D histology and corresponding highly granular delineations of five whole brain hemispheres. We developed AI techniques to align and reconstruct ~10,000 histological sections into coherent 3D volumes with joint geometric constraints (no overlap or gaps between sections), as well as to semi-automatically trace the boundaries of 333 distinct anatomical ROIs on all these sections. Comprehensive delineation on multiple cases enabled us to build the first probabilistic histological atlas of the whole human brain. Further, we created a companion Bayesian tool for automated segmentation of the 333 ROIs in any in vivo or ex vivo brain MRI scan using the NextBrain atlas. We showcase two applications of the atlas: automated segmentation of ultra-high-resolution ex vivo MRI and volumetric analysis of Alzheimer's disease and healthy brain ageing based on ~4,000 publicly available in vivo MRI scans. We publicly release: the raw and aligned data (including an online visualisation tool); the probabilistic atlas; the segmentation tool; and ground truth delineations for a 100 μm isotropic ex vivo hemisphere (that we use for quantitative evaluation of our segmentation method in this paper). By enabling researchers worldwide to analyse brain MRI scans at a superior level of granularity without manual effort or highly specific neuroanatomical knowledge, NextBrain holds promise to increase the specificity of MRI findings and ultimately accelerate our quest to understand the human brain in health and disease.
Collapse
Affiliation(s)
- Adrià Casamitjana
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Research Institute of Computer Vision and Robotics, University of Girona, Girona, Spain
| | - Matteo Mancini
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, Rome, Italy
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom
| | - Eleanor Robinson
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Loïc Peter
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Roberto Annunziata
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Juri Althonayan
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Shauna Crampsie
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Emily Blackburn
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Benjamin Billot
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Alessia Atzeni
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yaël Balbastre
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Peter Schmidt
- Advanced Research Computing Centre, University College London, London, United Kingdom
| | - James Hughes
- Advanced Research Computing Centre, University College London, London, United Kingdom
| | - Jean C Augustinack
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Brian L Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lilla Zöllei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - David L Thomas
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Dorit Kliemann
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Centre for Cognitive and Clinical Neuroscience, Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, United Kingdom
| | - Catherine Strand
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Zane Jaunmuktane
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Juan Eugenio Iglesias
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Álvarez MGM, Madhuranthakam AJ, Udayakumar D. Quantitative non-contrast perfusion MRI in the body using arterial spin labeling. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01188-1. [PMID: 39105949 DOI: 10.1007/s10334-024-01188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024]
Abstract
Arterial spin labeling (ASL) is a non-invasive magnetic resonance imaging (MRI) method that enables the assessment and the quantification of perfusion without the need for an exogenous contrast agent. ASL was originally developed in the early 1990s to measure cerebral blood flow. The utility of ASL has since then broadened to encompass various organ systems, offering insights into physiological and pathological states. In this review article, we present a synopsis of ASL for quantitative non-contrast perfusion MRI, as a contribution to the special issue titled "Quantitative MRI-how to make it work in the body?" The article begins with an introduction to ASL principles, followed by different labeling strategies, such as pulsed, continuous, pseudo-continuous, and velocity-selective approaches, and their role in perfusion quantification. We proceed to address the technical challenges associated with ASL in the body and outline some of the innovative approaches devised to surmount these issues. Subsequently, we summarize potential clinical applications, challenges, and state-of-the-art ASL methods to quantify perfusion in some of the highly perfused organs in the thorax (lungs), abdomen (kidneys, liver, pancreas), and pelvis (placenta) of the human body. The article concludes by discussing future directions for successful translation of quantitative ASL in body imaging.
Collapse
Affiliation(s)
| | - Ananth J Madhuranthakam
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9061, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Durga Udayakumar
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9061, USA.
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Woods JG, Achten E, Asllani I, Bolar DS, Dai W, Detre JA, Fan AP, Fernández-Seara M, Golay X, Günther M, Guo J, Hernandez-Garcia L, Ho ML, Juttukonda MR, Lu H, MacIntosh BJ, Madhuranthakam AJ, Mutsaerts HJ, Okell TW, Parkes LM, Pinter N, Pinto J, Qin Q, Smits M, Suzuki Y, Thomas DL, Van Osch MJ, Wang DJJ, Warnert EA, Zaharchuk G, Zelaya F, Zhao M, Chappell MA. Recommendations for quantitative cerebral perfusion MRI using multi-timepoint arterial spin labeling: Acquisition, quantification, and clinical applications. Magn Reson Med 2024; 92:469-495. [PMID: 38594906 PMCID: PMC11142882 DOI: 10.1002/mrm.30091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/09/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.
Collapse
Affiliation(s)
- Joseph G. Woods
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Eric Achten
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Iris Asllani
- Department of Neuroscience, University of Sussex, UK and Department of Biomedical Engineering, Rochester Institute of Technology, USA
| | - Divya S. Bolar
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY, USA, 13902
| | - John A. Detre
- Department of Neurology, University of Pennsylvania, 3 Dulles Building, 3400 Spruce Street, Philadelphia, PA 19104 USA
| | - Audrey P. Fan
- Department of Biomedical Engineering, Department of Neurology, University of California Davis, Davis, CA, USA
| | - Maria Fernández-Seara
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Xavier Golay
- UCL Queen Square Institute of Neurology, University College London, London, UK; Gold Standard Phantoms, UK
| | - Matthias Günther
- Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- Departments of Physics and Electrical Engineering, University of Bremen, Bremen, Germany
| | - Jia Guo
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | | | - Mai-Lan Ho
- Department of Radiology, University of Missouri, Columbia, MO, USA. ORCID: 0000-0002-9455-1350
| | - Meher R. Juttukonda
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bradley J. MacIntosh
- Hurvitz Brain Sciences Program, Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Computational Radiology & Artificial Intelligence unit, Oslo University Hospital, Oslo, Norway
| | - Ananth J. Madhuranthakam
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Henk-Jan Mutsaerts
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laura M. Parkes
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, UK
| | - Nandor Pinter
- Dent Neurologic Institute, Buffalo, New York, USA; University at Buffalo Neurosurgery, Buffalo, New York, USA
| | - Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
- Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, NL
| | - Yuriko Suzuki
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David L. Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matthias J.P. Van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Danny JJ Wang
- Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Esther A.H. Warnert
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, NL
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Moss Zhao
- Department of Radiology, Stanford University, Stanford, CA, USA
- Maternal & Child Health Research Institute, Stanford University, Stanford, CA, USA
| | - Michael A. Chappell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Wang R, Lin Z, Quan S, Yang X, Zhao K, Sui X, Kong H, Wang X, Su T. Evaluation of renal tubular function by multiparametric functional MRI in early diabetes. Magn Reson Imaging 2024; 109:100-107. [PMID: 38494095 DOI: 10.1016/j.mri.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Purpose To evaluate the tubular function in an alloxan-induced type 1 diabetes mellitus (DM) rabbit model measured by renal oxygenation (R2*), oxygen extraction fraction (OEF), and renal blood flow (RBF) using blood oxygenation level dependent, asymmetric spin echo, and arterial spin labeling MRI. Methods Twenty-six rabbits were randomized into the 3-day DM group (n = 13) and the 7-day DM group (n = 13). We performed pairs of multiparametric MRIs (before and after furosemide injection) at baseline and 3/7 days post-DM, and scored pathological kidney injury. We performed statistical analyses using non-parametric, chi-square, and Spearman correlation tests. Results At baseline, medullary R2* significantly decreased by 24.97% and 16.74% in the outer and inner stripes of the outer medulla (OS and IS, p = 0.006 and 0.003, respectively) after furosemide administration. While the corresponding OEF decreased by 15.91% for OS and 16.67% for IS (both p = 0.003), and no significant change in medullary RBF was observed (p > 0.05). In the 3-day DM group, the decrease of medullary R2* and OEF post-furosemide became unremarkable, suggesting tubular dysfunction. We noticed similar changes in the 7-day DM group. Correlation analysis showed pathological tubular injury score significantly correlated with medullary ∆R2* (post-furosemide - pre-furosemide difference, r = 0.82 for OS and 0.82 for IS) and ∆OEF (r = 0.82 for OS and 0.82 for IS) (p < 0.001, respectively). Conclusion: The combination of medullary OEF and R2* in response to furosemide could detect renal tubular dysfunction in early DM.
Collapse
Affiliation(s)
- Rui Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Zhiyong Lin
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Shuo Quan
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Xuedong Yang
- Department of Radiology, China Academy of Chinese Medical Sciences Guanganmen Hospital, Beijing, China
| | - Kai Zhao
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Xueqing Sui
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hanjing Kong
- UIH Group, Beijing United Imaging Research Institute of Intelligent Imaging, Beijing, China
| | - Xiaoying Wang
- Department of Radiology, Peking University First Hospital, Beijing, China.
| | - Tao Su
- Department of Nephrology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
6
|
Haast RAM, Kashyap S, Ivanov D, Yousif MD, DeKraker J, Poser BA, Khan AR. Insights into hippocampal perfusion using high-resolution, multi-modal 7T MRI. Proc Natl Acad Sci U S A 2024; 121:e2310044121. [PMID: 38446857 PMCID: PMC10945835 DOI: 10.1073/pnas.2310044121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/26/2023] [Indexed: 03/08/2024] Open
Abstract
We present a comprehensive study on the non-invasive measurement of hippocampal perfusion. Using high-resolution 7 tesla arterial spin labeling (ASL) data, we generated robust perfusion maps and observed significant variations in perfusion among hippocampal subfields, with CA1 exhibiting the lowest perfusion levels. Notably, these perfusion differences were robust and already detectable with 50 perfusion-weighted images per subject, acquired in 5 min. To understand the underlying factors, we examined the influence of image quality metrics, various tissue microstructure and morphometric properties, macrovasculature, and cytoarchitecture. We observed higher perfusion in regions located closer to arteries, demonstrating the influence of vascular proximity on hippocampal perfusion. Moreover, ex vivo cytoarchitectonic features based on neuronal density differences appeared to correlate stronger with hippocampal perfusion than morphometric measures like gray matter thickness. These findings emphasize the interplay between microvasculature, macrovasculature, and metabolic demand in shaping hippocampal perfusion. Our study expands the current understanding of hippocampal physiology and its relevance to neurological disorders. By providing in vivo evidence of perfusion differences between hippocampal subfields, our findings have implications for diagnosis and potential therapeutic interventions. In conclusion, our study provides a valuable resource for extensively characterizing hippocampal perfusion.
Collapse
Affiliation(s)
- Roy A. M. Haast
- Centre of Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, ONN6A 3K7, Canada
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht6200, The Netherlands
- Krembil Brain Institute, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht6200, The Netherlands
| | - Mohamed D. Yousif
- Centre of Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, ONN6A 3K7, Canada
| | - Jordan DeKraker
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QCH3A 0G4, Canada
| | - Benedikt A. Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht6200, The Netherlands
| | - Ali R. Khan
- Centre of Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, ONN6A 3K7, Canada
| |
Collapse
|
7
|
Taso M, Alsop DC. Arterial Spin Labeling Perfusion Imaging. Magn Reson Imaging Clin N Am 2024; 32:63-72. [PMID: 38007283 DOI: 10.1016/j.mric.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Noninvasive imaging of tissue perfusion is a valuable tool for both research and clinical applications. Arterial spin labeling (ASL) is a contrast-free perfusion imaging method that enables measuring and quantifying tissue blood flow using MR imaging. ASL uses radiofrequency and magnetic field gradient pulses to label arterial blood water, which then serves as an endogenous tracer. This review highlights the basic mechanism of ASL perfusion imaging, labeling strategies, and quantification. ASL has been widely used during the past 30 years for the study of normal brain function as well as in multiple neurovascular, neuro-oncological and degenerative pathologic conditions.
Collapse
Affiliation(s)
- Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - David C Alsop
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Sollmann N, Hoffmann G, Schramm S, Reichert M, Hernandez Petzsche M, Strobel J, Nigris L, Kloth C, Rosskopf J, Börner C, Bonfert M, Berndt M, Grön G, Müller HP, Kassubek J, Kreiser K, Koerte IK, Liebl H, Beer A, Zimmer C, Beer M, Kaczmarz S. Arterial Spin Labeling (ASL) in Neuroradiological Diagnostics - Methodological Overview and Use Cases. ROFO-FORTSCHR RONTG 2024; 196:36-51. [PMID: 37467779 DOI: 10.1055/a-2119-5574] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
BACKGROUND Arterial spin labeling (ASL) is a magnetic resonance imaging (MRI)-based technique using labeled blood-water of the brain-feeding arteries as an endogenous tracer to derive information about brain perfusion. It enables the assessment of cerebral blood flow (CBF). METHOD This review aims to provide a methodological and technical overview of ASL techniques, and to give examples of clinical use cases for various diseases affecting the central nervous system (CNS). There is a special focus on recent developments including super-selective ASL (ssASL) and time-resolved ASL-based magnetic resonance angiography (MRA) and on diseases commonly not leading to characteristic alterations on conventional structural MRI (e. g., concussion or migraine). RESULTS ASL-derived CBF may represent a clinically relevant parameter in various pathologies such as cerebrovascular diseases, neoplasms, or neurodegenerative diseases. Furthermore, ASL has also been used to investigate CBF in mild traumatic brain injury or migraine, potentially leading to the establishment of imaging-based biomarkers. Recent advances made possible the acquisition of ssASL by selective labeling of single brain-feeding arteries, enabling spatial perfusion territory mapping dependent on blood flow of a specific preselected artery. Furthermore, ASL-based MRA has been introduced, providing time-resolved delineation of single intracranial vessels. CONCLUSION Perfusion imaging by ASL has shown promise in various diseases of the CNS. Given that ASL does not require intravenous administration of a gadolinium-based contrast agent, it may be of particular interest for investigations in pediatric cohorts, patients with impaired kidney function, patients with relevant allergies, or patients that undergo serial MRI for clinical indications such as disease monitoring. KEY POINTS · ASL is an MRI technique that uses labeled blood-water as an endogenous tracer for brain perfusion imaging.. · It allows the assessment of CBF without the need for administration of a gadolinium-based contrast agent.. · CBF quantification by ASL has been used in several pathologies including brain tumors or neurodegenerative diseases.. · Vessel-selective ASL methods can provide brain perfusion territory mapping in cerebrovascular diseases.. · ASL may be of particular interest in patient cohorts with caveats concerning gadolinium administration..
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- cBrain, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gabriel Hoffmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Severin Schramm
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Miriam Reichert
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Moritz Hernandez Petzsche
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Joachim Strobel
- Department of Nuclear Medicine, University Hospital Ulm, Ulm, Germany
| | - Lorenzo Nigris
- cBrain, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christopher Kloth
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Johannes Rosskopf
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Section of Neuroradiology, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Corinna Börner
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- LMU Hospital, Department of Pediatrics - Dr. von Hauner Children's Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michaela Bonfert
- LMU Hospital, Department of Pediatrics - Dr. von Hauner Children's Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maria Berndt
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Georg Grön
- Department of Psychiatry and Psychotherapy III, University Hospital Ulm, Ulm, Germany
| | | | - Jan Kassubek
- Department of Neurology, University Hospital Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm University, Ulm, Germany
| | - Kornelia Kreiser
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Radiology and Neuroradiology, Universitäts- und Rehabilitationskliniken Ulm, Ulm, Germany
| | - Inga K Koerte
- cBrain, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, United States
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, United States
| | - Hans Liebl
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology, Berufsgenossenschaftliche Unfallklinik Murnau, Murnau, Germany
| | - Ambros Beer
- Department of Nuclear Medicine, University Hospital Ulm, Ulm, Germany
- MoMan - Center for Translational Imaging, University Hospital Ulm, Ulm, Germany
- i2SouI - Innovative Imaging in Surgical Oncology, University Hospital Ulm, Ulm, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- MoMan - Center for Translational Imaging, University Hospital Ulm, Ulm, Germany
- i2SouI - Innovative Imaging in Surgical Oncology, University Hospital Ulm, Ulm, Germany
| | - Stephan Kaczmarz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Market DACH, Philips GmbH, Hamburg, Germany
| |
Collapse
|
9
|
Haast RAM, Kashyap S, Ivanov D, Yousif MD, DeKraker J, Poser BA, Khan AR. Novel insights into hippocampal perfusion using high-resolution, multi-modal 7T MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549533. [PMID: 37503042 PMCID: PMC10370151 DOI: 10.1101/2023.07.19.549533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
We present a comprehensive study on the non-invasive measurement of hippocampal perfusion. Using high-resolution 7 Tesla arterial spin labelling data, we generated robust perfusion maps and observed significant variations in perfusion among hippocampal subfields, with CA1 exhibiting the lowest perfusion levels. Notably, these perfusion differences were robust and detectable even within five minutes and just fifty perfusion-weighted images per subject. To understand the underlying factors, we examined the influence of image quality metrics, various tissue microstructure and morphometry properties, macrovasculature and cytoarchitecture. We observed higher perfusion in regions located closer to arteries, demonstrating the influence of vascular proximity on hippocampal perfusion. Moreover, ex vivo cytoarchitectonic features based on neuronal density differences appeared to correlate stronger with hippocampal perfusion than morphometric measures like gray matter thickness. These findings emphasize the interplay between microvasculature, macrovasculature, and metabolic demand in shaping hippocampal perfusion. Our study expands the current understanding of hippocampal physiology and its relevance to neurological disorders. By providing in vivo evidence of perfusion differences between hippocampal subfields, our findings have implications for diagnosis and potential therapeutic interventions. In conclusion, our study provides a valuable resource for extensively characterising hippocampal perfusion.
Collapse
Affiliation(s)
- Roy A M Haast
- Centre of Functional and Metabolic Mapping, Western University, London, Ontario, Canada
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Mohamed D Yousif
- Centre of Functional and Metabolic Mapping, Western University, London, Ontario, Canada
| | - Jordan DeKraker
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Ali R Khan
- Centre of Functional and Metabolic Mapping, Western University, London, Ontario, Canada
| |
Collapse
|
10
|
Guo J. Robust dual-module velocity-selective arterial spin labeling (dm-VSASL) with velocity-selective saturation and inversion. Magn Reson Med 2023; 89:1026-1040. [PMID: 36336852 PMCID: PMC9792445 DOI: 10.1002/mrm.29513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/02/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Compared to conventional arterial spin labeling (ASL) methods, velocity-selective ASL (VSASL) is more sensitive to artifacts from eddy currents, diffusion attenuation, and motion. Background suppression is typically suboptimal in VSASL, especially of CSF. As a result, the temporal SNR and quantification accuracy of VSASL are compromised, hindering its application despite its advantage of being delay-insensitive. METHODS A novel dual-module VSASL (dm-VSASL) strategy is developed to improve the SNR efficiency and the temporal SNR with a more balanced gradient configuration in the label/control image acquisition. This strategy applies for both VS saturation (VSS) and VS inversion (VSI) labeling. The dm-VSASL schemes were compared with single-module labeling and a previously developed multi-module schemes for the SNR performance, background suppression efficacy, and sensitivity to artifacts in simulation and in vivo experiments, using pulsed ASL as the reference. RESULTS Dm-VSASL enabled more robust labeling and efficient backgroud suppre across brain tissues, especially of CSF, resulting in significantly reduced artifacts and improved temporal SNR. Compared to single-module labeling, dm-VSASL significantly improved the temporal SNR in gray (by 90.8% and 94.9% for dm-VSS and dm-VSI, respectively; P < 0.001) and white (by 41.5% and 55.1% for dm-VSS and dm-VSI, respectively; P < 0.002) matter. Dm-VSI also improved the SNR of VSI by 5.4% (P = 0.018). CONCLUSION Dm-VSASL can significantly improve the robustness of VS labeling, reduce artifacts, and allow efficient background suppression. When implemented with VSI, it provides the highest SNR efficiency among VSASL methods. Dm-VSASL is a powerful ASL method for robust, accurate, and delay-insensitive perfusion mapping.
Collapse
Affiliation(s)
- Jia Guo
- Correspondence Jia Guo, PhD, Department of Bioengineering, 900 University Ave, University of California Riverside, Riverside, CA 92521, USA,
| |
Collapse
|
11
|
Troudi A, Tensaouti F, Baudou E, Péran P, Laprie A. Arterial Spin Labeling Perfusion in Pediatric Brain Tumors: A Review of Techniques, Quality Control, and Quantification. Cancers (Basel) 2022; 14:4734. [PMID: 36230655 PMCID: PMC9564035 DOI: 10.3390/cancers14194734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Arterial spin labeling (ASL) is a magnetic resonance imaging (MRI) technique for measuring cerebral blood flow (CBF). This noninvasive technique has added a new dimension to the study of several pediatric tumors before, during, and after treatment, be it surgery, radiotherapy, or chemotherapy. However, ASL has three drawbacks, namely, a low signal-to-noise-ratio, a minimum acquisition time of 3 min, and limited spatial summarize current resolution. This technique requires quality control before ASL-CBF maps can be extracted and before any clinical investigations can be conducted. In this review, we describe ASL perfusion principles and techniques, summarize the most recent advances in CBF quantification, report technical advances in ASL (resting-state fMRI ASL, BOLD fMRI coupled with ASL), set out guidelines for ASL quality control, and describe studies related to ASL-CBF perfusion and qualitative and semi-quantitative ASL weighted-map quantification, in healthy children and those with pediatric brain tumors.
Collapse
Affiliation(s)
- Abir Troudi
- Toulouse Neuro Imaging Center (ToNIC), INSERM-University of Toulouse Paul Sebatier, 31300 Toulouse, France
| | - Fatima Tensaouti
- Toulouse Neuro Imaging Center (ToNIC), INSERM-University of Toulouse Paul Sebatier, 31300 Toulouse, France
- Radiation Oncology Department, Claudius Regaud Institute, Toulouse University Cancer Institute-Oncopole, 31300 Toulouse, France
| | - Eloise Baudou
- Toulouse Neuro Imaging Center (ToNIC), INSERM-University of Toulouse Paul Sebatier, 31300 Toulouse, France
- Pediatric Neurology Department, Children’s Hospital, Toulouse University Hospital, 31300 Toulouse, France
| | - Patrice Péran
- Toulouse Neuro Imaging Center (ToNIC), INSERM-University of Toulouse Paul Sebatier, 31300 Toulouse, France
| | - Anne Laprie
- Toulouse Neuro Imaging Center (ToNIC), INSERM-University of Toulouse Paul Sebatier, 31300 Toulouse, France
- Radiation Oncology Department, Claudius Regaud Institute, Toulouse University Cancer Institute-Oncopole, 31300 Toulouse, France
| |
Collapse
|
12
|
Henriksen OM, del Mar Álvarez-Torres M, Figueiredo P, Hangel G, Keil VC, Nechifor RE, Riemer F, Schmainda KM, Warnert EAH, Wiegers EC, Booth TC. High-Grade Glioma Treatment Response Monitoring Biomarkers: A Position Statement on the Evidence Supporting the Use of Advanced MRI Techniques in the Clinic, and the Latest Bench-to-Bedside Developments. Part 1: Perfusion and Diffusion Techniques. Front Oncol 2022; 12:810263. [PMID: 35359414 PMCID: PMC8961422 DOI: 10.3389/fonc.2022.810263] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023] Open
Abstract
Objective Summarize evidence for use of advanced MRI techniques as monitoring biomarkers in the clinic, and highlight the latest bench-to-bedside developments. Methods Experts in advanced MRI techniques applied to high-grade glioma treatment response assessment convened through a European framework. Current evidence regarding the potential for monitoring biomarkers in adult high-grade glioma is reviewed, and individual modalities of perfusion, permeability, and microstructure imaging are discussed (in Part 1 of two). In Part 2, we discuss modalities related to metabolism and/or chemical composition, appraise the clinic readiness of the individual modalities, and consider post-processing methodologies involving the combination of MRI approaches (multiparametric imaging) or machine learning (radiomics). Results High-grade glioma vasculature exhibits increased perfusion, blood volume, and permeability compared with normal brain tissue. Measures of cerebral blood volume derived from dynamic susceptibility contrast-enhanced MRI have consistently provided information about brain tumor growth and response to treatment; it is the most clinically validated advanced technique. Clinical studies have proven the potential of dynamic contrast-enhanced MRI for distinguishing post-treatment related effects from recurrence, but the optimal acquisition protocol, mode of analysis, parameter of highest diagnostic value, and optimal cut-off points remain to be established. Arterial spin labeling techniques do not require the injection of a contrast agent, and repeated measurements of cerebral blood flow can be performed. The absence of potential gadolinium deposition effects allows widespread use in pediatric patients and those with impaired renal function. More data are necessary to establish clinical validity as monitoring biomarkers. Diffusion-weighted imaging, apparent diffusion coefficient analysis, diffusion tensor or kurtosis imaging, intravoxel incoherent motion, and other microstructural modeling approaches also allow treatment response assessment; more robust data are required to validate these alone or when applied to post-processing methodologies. Conclusion Considerable progress has been made in the development of these monitoring biomarkers. Many techniques are in their infancy, whereas others have generated a larger body of evidence for clinical application.
Collapse
Affiliation(s)
- Otto M. Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Patricia Figueiredo
- Department of Bioengineering and Institute for Systems and Robotics-Lisboa, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Gilbert Hangel
- Department of Neurosurgery, Medical University, Vienna, Austria
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University, Vienna, Austria
| | - Vera C. Keil
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Ruben E. Nechifor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Department of Clinical Psychology and Psychotherapy, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Kathleen M. Schmainda
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Evita C. Wiegers
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thomas C. Booth
-
School of Biomedical Engineering and Imaging Sciences, St. Thomas’ Hospital, King’s College London, London, United Kingdom
- Department of Neuroradiology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
13
|
McGee KP, Hwang K, Sullivan DC, Kurhanewicz J, Hu Y, Wang J, Li W, Debbins J, Paulson E, Olsen JR, Hua C, Warner L, Ma D, Moros E, Tyagi N, Chung C. Magnetic resonance biomarkers in radiation oncology: The report of AAPM Task Group 294. Med Phys 2021; 48:e697-e732. [PMID: 33864283 PMCID: PMC8361924 DOI: 10.1002/mp.14884] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022] Open
Abstract
A magnetic resonance (MR) biologic marker (biomarker) is a measurable quantitative characteristic that is an indicator of normal biological and pathogenetic processes or a response to therapeutic intervention derived from the MR imaging process. There is significant potential for MR biomarkers to facilitate personalized approaches to cancer care through more precise disease targeting by quantifying normal versus pathologic tissue function as well as toxicity to both radiation and chemotherapy. Both of which have the potential to increase the therapeutic ratio and provide earlier, more accurate monitoring of treatment response. The ongoing integration of MR into routine clinical radiation therapy (RT) planning and the development of MR guided radiation therapy systems is providing new opportunities for MR biomarkers to personalize and improve clinical outcomes. Their appropriate use, however, must be based on knowledge of the physical origin of the biomarker signal, the relationship to the underlying biological processes, and their strengths and limitations. The purpose of this report is to provide an educational resource describing MR biomarkers, the techniques used to quantify them, their strengths and weakness within the context of their application to radiation oncology so as to ensure their appropriate use and application within this field.
Collapse
Affiliation(s)
| | - Ken‐Pin Hwang
- Department of Imaging PhysicsDivision of Diagnostic ImagingMD Anderson Cancer CenterUniversity of TexasHoustonTexasUSA
| | | | - John Kurhanewicz
- Department of RadiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Yanle Hu
- Department of Radiation OncologyMayo ClinicScottsdaleArizonaUSA
| | - Jihong Wang
- Department of Radiation OncologyMD Anderson Cancer CenterUniversity of TexasHoustonTexasUSA
| | - Wen Li
- Department of Radiation OncologyUniversity of ArizonaTucsonArizonaUSA
| | - Josef Debbins
- Department of RadiologyBarrow Neurologic InstitutePhoenixArizonaUSA
| | - Eric Paulson
- Department of Radiation OncologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Jeffrey R. Olsen
- Department of Radiation OncologyUniversity of Colorado Denver ‐ Anschutz Medical CampusDenverColoradoUSA
| | - Chia‐ho Hua
- Department of Radiation OncologySt. Jude Children’s Research HospitalMemphisTennesseeUSA
| | | | - Daniel Ma
- Department of Radiation OncologyMayo ClinicRochesterMinnesotaUSA
| | - Eduardo Moros
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| | - Neelam Tyagi
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Caroline Chung
- Department of Radiation OncologyMD Anderson Cancer CenterUniversity of TexasHoustonTexasUSA
| |
Collapse
|
14
|
Wang R, Lin Z, Yang X, Zhao K, Wang S, Sui X, Su T, Wang X. Noninvasive Evaluation of Renal Hypoxia by Multiparametric Functional MRI in Early Diabetic Kidney Disease. J Magn Reson Imaging 2021; 55:518-527. [PMID: 34184356 DOI: 10.1002/jmri.27814] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Renal hypoxia, which caused by a mismatch between oxygen delivery and oxygen demand, may be the primary pathophysiological pathway driving diabetic kidney disease (DKD). Blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) could detect hypoxia, but can be limited in distinguishing increased oxygen consumption or decreased blood supply. PURPOSE To explore multiparametric functional MRI in evaluating mechanism of the hypoxia changes in early stage of DKD. STUDY TYPE Prospective. ANIMAL MODEL Thirty-five New Zealand White rabbits were divided into control group (n = 5) and alloxan-induced diabetes mellitus (DM) groups (DM3 group: n = 15, DM7 group: n = 15). FIELD STRENGTH/SEQUENCE 3 T MRI/BOLD, arterial spin labeling (ASL), and asymmetric spin-echo (ASE). ASSESSMENT The renal oxygenation level (R2*), renal blood flow (RBF), and oxygen extraction fraction (OEF) were evaluated by BOLD, ASL, and ASE MRI, respectively. The regions of interest were manually drawn including cortex, outer stripes of outer medulla (OS), and inner stripes of outer medulla (IS). STATISTICAL TESTS Analysis of variance, independent-sample t-test, and paired-sample t-test were applied for comparisons among groups, between groups, and within the same group. P < 0.05 was considered statistically significant. RESULTS All renal regions of DM3 group at Day 3 after DM induction showed significantly higher R2* and OEF values compared to baseline. The RBF values showed no statistically significant difference (P = 0.62, 0.76, 0.09 in cortex, OS, and IS, respectively). For DM7 group at Day 7, R2*, OEF, and RBF values showed no statistically significant difference compared to baseline (P = 0.06, 0.05, 0.06 of R2*; 0.70, 0.64, 0.68 of OEF; and 0.33, 0.58, 0.48 of RBF in cortex, OS, and IS, respectively). DATA CONCLUSION BOLD MRI could detect renal hypoxia in early stage of DKD rabbit model, which was mainly revealed by increased oxygen consumption, but not affected by renal blood flow change. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 1.
Collapse
Affiliation(s)
- Rui Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Zhiyong Lin
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Xuedong Yang
- Department of Radiology, China Academy of Chinese Medical Sciences Guanganmen Hospital, Beijing, China
| | - Kai Zhao
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Suxia Wang
- Renal Pathology Center, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
| | - Xueqing Sui
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Su
- Department of Nephrology, Peking University First Hospital, Beijing, China
| | - Xiaoying Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
| |
Collapse
|
15
|
Klinkmueller P, Kronenbuerger M, Miao X, Bang J, Ultz KE, Paez A, Zhang X, Duan W, Margolis RL, van Zijl PCM, Ross CA, Hua J. Impaired response of cerebral oxygen metabolism to visual stimulation in Huntington's disease. J Cereb Blood Flow Metab 2021; 41:1119-1130. [PMID: 32807001 PMCID: PMC8054727 DOI: 10.1177/0271678x20949286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 01/29/2023]
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by a CAG triplet repeat expansion in the Huntingtin gene. Metabolic and microvascular abnormalities in the brain may contribute to early physiological changes that subserve the functional impairments in HD. This study is intended to investigate potential abnormality in dynamic changes in cerebral blood volume (CBV) and cerebral blood flow (CBF), and cerebral metabolic rate of oxygen (CMRO2) in the brain in response to functional stimulation in premanifest and early manifest HD patients. A recently developed 3-D-TRiple-acquisition-after-Inversion-Preparation magnetic resonance imaging (MRI) approach was used to measure dynamic responses in CBV, CBF, and CMRO2 during visual stimulation in one single MRI scan. Experiments were conducted in 23 HD patients and 16 healthy controls. Decreased occipital cortex CMRO2 responses were observed in premanifest and early manifest HD patients compared to controls (P < 0.001), correlating with the CAG-Age Product scores in these patients (R2 = 0.4, P = 0.001). The results suggest the potential value of this reduced CMRO2 response during visual stimulation as a biomarker for HD and may illuminate the role of metabolic alterations in the pathophysiology of HD.
Collapse
Affiliation(s)
- Peter Klinkmueller
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Neurosection, Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin Kronenbuerger
- Division of Movement Disorders, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, University of Greifswald, Greifswald, Germany
| | - Xinyuan Miao
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Neurosection, Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jee Bang
- Division of Movement Disorders, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kia E Ultz
- Division of Movement Disorders, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrian Paez
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Neurosection, Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaoyu Zhang
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Neurosection, Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter CM van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Neurosection, Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Hua
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Neurosection, Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Kashyap S, Ivanov D, Havlicek M, Huber L, Poser BA, Uludağ K. Sub-millimetre resolution laminar fMRI using Arterial Spin Labelling in humans at 7 T. PLoS One 2021; 16:e0250504. [PMID: 33901230 PMCID: PMC8075193 DOI: 10.1371/journal.pone.0250504] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/07/2021] [Indexed: 12/02/2022] Open
Abstract
Laminar fMRI at ultra-high magnetic field strength is typically carried out using the Blood Oxygenation Level-Dependent (BOLD) contrast. Despite its unrivalled sensitivity to detecting activation, the BOLD contrast is limited in its spatial specificity due to signals stemming from intra-cortical ascending and pial veins. Alternatively, regional changes in perfusion (i.e., cerebral blood flow through tissue) are colocalised to neuronal activation, which can be non-invasively measured using Arterial Spin Labelling (ASL) MRI. In addition, ASL provides a quantitative marker of neuronal activation in terms of perfusion signal, which is simultaneously acquired along with the BOLD signal. However, ASL for laminar imaging is challenging due to the lower SNR of the perfusion signal and higher RF power deposition i.e., specific absorption rate (SAR) of ASL sequences. In the present study, we present for the first time in humans, isotropic sub-millimetre spatial resolution functional perfusion images using Flow-sensitive Alternating Inversion Recovery (FAIR) ASL with a 3D-EPI readout at 7 T. We show that robust statistical activation maps can be obtained with perfusion-weighting in a single session. We observed the characteristic BOLD amplitude increase towards the superficial laminae, and, in apparent discrepancy, the relative perfusion profile shows a decrease of the amplitude and the absolute perfusion profile a much smaller increase towards the cortical surface. Considering the draining vein effect on the BOLD signal using model-based spatial “convolution”, we show that the empirically measured perfusion and BOLD profiles are, in fact, consistent with each other. This study demonstrates that laminar perfusion fMRI in humans is feasible at 7 T and that caution must be exercised when interpreting BOLD signal laminar profiles as direct representation of the cortical distribution of neuronal activity.
Collapse
Affiliation(s)
- Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (M-BIC), Maastricht University, Maastricht, The Netherlands
- * E-mail: (SK); (DI)
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (M-BIC), Maastricht University, Maastricht, The Netherlands
- * E-mail: (SK); (DI)
| | - Martin Havlicek
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Laurentius Huber
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (M-BIC), Maastricht University, Maastricht, The Netherlands
| | - Benedikt A. Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (M-BIC), Maastricht University, Maastricht, The Netherlands
| | - Kâmil Uludağ
- Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon, South Korea
- Department of Biomedical Engineering, N Center, Sungkyunkwan University, Suwon, South Korea
- Techna Institute & Koerner Scientist in MR Imaging, University Health Network, Toronto, Canada
| |
Collapse
|
17
|
Eckerbom P, Hansell P, Cox E, Buchanan C, Weis J, Palm F, Francis S, Liss P. Circadian variation in renal blood flow and kidney function in healthy volunteers monitored with noninvasive magnetic resonance imaging. Am J Physiol Renal Physiol 2020; 319:F966-F978. [PMID: 33073586 DOI: 10.1152/ajprenal.00311.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Circadian regulation of kidney function is involved in maintaining whole body homeostasis, and dysfunctional circadian rhythm can potentially be involved in disease development. Magnetic resonance imaging (MRI) provides reliable and reproducible repetitive estimates of kidney function noninvasively without the risk of adverse events associated with contrast agents and ionizing radiation. The purpose of this study was to estimate circadian variations in kidney function in healthy human subjects with MRI and to relate the findings to urinary excretions of electrolytes and markers of kidney function. Phase-contrast imaging, arterial spin labeling, and blood oxygen level-dependent transverse relaxation rate (R2*) mapping were used to assess total renal blood flow and regional perfusion as well as intrarenal oxygenation in eight female and eight male healthy volunteers every fourth hour during a 24-h period. Parallel with MRI scans, standard urinary and plasma parameters were quantified. Significant circadian variations of total renal blood flow were found over 24 h, with increasing flow from noon to midnight and decreasing flow during the night. In contrast, no circadian variation in intrarenal oxygenation was detected. Urinary excretions of electrolytes, osmotically active particles, creatinine, and urea all displayed circadian variations, peaking during the afternoon and evening hours. In conclusion, total renal blood flow and kidney function, as estimated from excretion of electrolytes and waste products, display profound circadian variations, whereas intrarenal oxygenation displays significantly less circadian variation.
Collapse
Affiliation(s)
- Per Eckerbom
- Section of Radiology, Department of Surgical Sciences, University Hospital, Uppsala, Sweden
| | - Peter Hansell
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Eleanor Cox
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - Charlotte Buchanan
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - Jan Weis
- Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Susan Francis
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - Per Liss
- Section of Radiology, Department of Surgical Sciences, University Hospital, Uppsala, Sweden
| |
Collapse
|
18
|
Munsch F, Taso M, Zhao L, Lebel RM, Guidon A, Detre JA, Alsop DC. Rotated spiral RARE for high spatial and temporal resolution volumetric arterial spin labeling acquisition. Neuroimage 2020; 223:117371. [PMID: 32931943 PMCID: PMC9470008 DOI: 10.1016/j.neuroimage.2020.117371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/29/2022] Open
Abstract
Background: Arterial Spin Labeling (ASL) MRI can provide quantitative images that are sensitive to both time averaged blood flow and its temporal fluctuations. 3D image acquisitions for ASL are desirable because they are more readily compatible with background suppression to reduce noise, can reduce signal loss and distortion, and provide uniform flow sensitivity across the brain. However, single-shot 3D acquisition for maximal temporal resolution typically involves degradation of image quality through blurring or noise amplification by parallel imaging. Here, we report a new approach to accelerate a common stack of spirals 3D image acquisition by pseudo golden-angle rotation and compressed sensing reconstruction without any degradation of time averaged blood flow images. Methods: 28 healthy volunteers were imaged at 3T with background-suppressed unbalanced pseudo-continuous ASL combined with a pseudo golden-angle Stack-of-Spirals 3D RARE readout. A fully-sampled perfusion-weighted volume was reconstructed by 3D non-uniform Fast Fourier Transform (nuFFT) followed by sum-of-squares combination of the 32 individual channels. Coil sensitivities were estimated followed by reconstruction of the 39 single-shot volumes using an L1-wavelet Compressed-Sensing reconstruction. Finally, brain connectivity analyses were performed in regions where BOLD signal suffers from low signal-to-noise ratio and susceptibility artifacts. Results: Image quality, assessed with a non-reference 3D blurring metric, of full time averaged blood flow was comparable to a conventional interleaved acquisition. The temporal resolution provided by the acceleration enabled identification and quantification of resting-state networks even in inferior regions such as the amygdala and inferior frontal lobes, where susceptibility artifacts can degrade conventional resting-state fMRI acquisitions. Conclusion: This approach can provide measures of blood flow modulations and resting-state networks for free within any research or clinical protocol employing ASL for resting blood flow.
Collapse
Affiliation(s)
- Fanny Munsch
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Li Zhao
- Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - R Marc Lebel
- Global MR Applications and Workflow, GE Healthcare, Calgary, AB, Canada
| | - Arnaud Guidon
- Global MR Applications and Workflow, GE Healthcare, Boston, MA, USA
| | - John A Detre
- Departments of Neurology and Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David C Alsop
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
19
|
Nery F, Buchanan CE, Harteveld AA, Odudu A, Bane O, Cox EF, Derlin K, Gach HM, Golay X, Gutberlet M, Laustsen C, Ljimani A, Madhuranthakam AJ, Pedrosa I, Prasad PV, Robson PM, Sharma K, Sourbron S, Taso M, Thomas DL, Wang DJJ, Zhang JL, Alsop DC, Fain SB, Francis ST, Fernández-Seara MA. Consensus-based technical recommendations for clinical translation of renal ASL MRI. MAGMA (NEW YORK, N.Y.) 2019. [PMID: 31833014 DOI: 10.1007/s10334‐019‐00800‐z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES This study aimed at developing technical recommendations for the acquisition, processing and analysis of renal ASL data in the human kidney at 1.5 T and 3 T field strengths that can promote standardization of renal perfusion measurements and facilitate the comparability of results across scanners and in multi-centre clinical studies. METHODS An international panel of 23 renal ASL experts followed a modified Delphi process, including on-line surveys and two in-person meetings, to formulate a series of consensus statements regarding patient preparation, hardware, acquisition protocol, analysis steps and data reporting. RESULTS Fifty-nine statements achieved consensus, while agreement could not be reached on two statements related to patient preparation. As a default protocol, the panel recommends pseudo-continuous (PCASL) or flow-sensitive alternating inversion recovery (FAIR) labelling with a single-slice spin-echo EPI readout with background suppression and a simple but robust quantification model. DISCUSSION This approach is considered robust and reproducible and can provide renal perfusion images of adequate quality and SNR for most applications. If extended kidney coverage is desirable, a 2D multislice readout is recommended. These recommendations are based on current available evidence and expert opinion. Nonetheless they are expected to be updated as more data become available, since the renal ASL literature is rapidly expanding.
Collapse
Affiliation(s)
- Fabio Nery
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Charlotte E Buchanan
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Anita A Harteveld
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Aghogho Odudu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Octavia Bane
- Translational and Molecular Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eleanor F Cox
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Katja Derlin
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - H Michael Gach
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marcel Gutberlet
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ananth J Madhuranthakam
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Pedrosa
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Pottumarthi V Prasad
- Department of Radiology, Center for Advanced Imaging, NorthShore University Health System, Evanston, IL, USA
| | - Philip M Robson
- Translational and Molecular Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kanishka Sharma
- Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Steven Sourbron
- Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Danny J J Wang
- Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Jeff L Zhang
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - David C Alsop
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sean B Fain
- Departments of Medical Physics, Radiology, and Biomedical Engineering, University of Wisconsin, Madison, Madison, USA
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
20
|
Nery F, Buchanan CE, Harteveld AA, Odudu A, Bane O, Cox EF, Derlin K, Gach HM, Golay X, Gutberlet M, Laustsen C, Ljimani A, Madhuranthakam AJ, Pedrosa I, Prasad PV, Robson PM, Sharma K, Sourbron S, Taso M, Thomas DL, Wang DJJ, Zhang JL, Alsop DC, Fain SB, Francis ST, Fernández-Seara MA. Consensus-based technical recommendations for clinical translation of renal ASL MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:141-161. [PMID: 31833014 PMCID: PMC7021752 DOI: 10.1007/s10334-019-00800-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
Objectives This study aimed at developing technical recommendations for the acquisition, processing and analysis of renal ASL data in the human kidney at 1.5 T and 3 T field strengths that can promote standardization of renal perfusion measurements and facilitate the comparability of results across scanners and in multi-centre clinical studies. Methods An international panel of 23 renal ASL experts followed a modified Delphi process, including on-line surveys and two in-person meetings, to formulate a series of consensus statements regarding patient preparation, hardware, acquisition protocol, analysis steps and data reporting. Results Fifty-nine statements achieved consensus, while agreement could not be reached on two statements related to patient preparation. As a default protocol, the panel recommends pseudo-continuous (PCASL) or flow-sensitive alternating inversion recovery (FAIR) labelling with a single-slice spin-echo EPI readout with background suppression and a simple but robust quantification model. Discussion This approach is considered robust and reproducible and can provide renal perfusion images of adequate quality and SNR for most applications. If extended kidney coverage is desirable, a 2D multislice readout is recommended. These recommendations are based on current available evidence and expert opinion. Nonetheless they are expected to be updated as more data become available, since the renal ASL literature is rapidly expanding. Electronic supplementary material The online version of this article (10.1007/s10334-019-00800-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabio Nery
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Charlotte E Buchanan
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Anita A Harteveld
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Aghogho Odudu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Octavia Bane
- Translational and Molecular Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eleanor F Cox
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Katja Derlin
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - H Michael Gach
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marcel Gutberlet
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ananth J Madhuranthakam
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Pedrosa
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Pottumarthi V Prasad
- Department of Radiology, Center for Advanced Imaging, NorthShore University Health System, Evanston, IL, USA
| | - Philip M Robson
- Translational and Molecular Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kanishka Sharma
- Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Steven Sourbron
- Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Danny J J Wang
- Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Jeff L Zhang
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - David C Alsop
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sean B Fain
- Departments of Medical Physics, Radiology, and Biomedical Engineering, University of Wisconsin, Madison, Madison, USA
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
21
|
Do HP, Guo Y, Yoon AJ, Nayak KS. Accuracy, uncertainty, and adaptability of automatic myocardial ASL segmentation using deep CNN. Magn Reson Med 2019; 83:1863-1874. [PMID: 31729078 DOI: 10.1002/mrm.28043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/25/2023]
Abstract
PURPOSE To apply deep convolution neural network to the segmentation task in myocardial arterial spin labeled perfusion imaging and to develop methods that measure uncertainty and that adapt the convolution neural network model to a specific false-positive versus false-negative tradeoff. METHODS The Monte Carlo dropout U-Net was trained on data from 22 subjects and tested on data from 6 heart transplant recipients. Manual segmentation and regional myocardial blood flow were available for comparison. We consider 2 global uncertainty measures, named "Dice uncertainty" and "Monte Carlo dropout uncertainty," which were calculated with and without the use of manual segmentation, respectively. Tversky loss function with a hyperparameter β was used to adapt the model to a specific false-positive versus false-negative tradeoff. RESULTS The Monte Carlo dropout U-Net achieved a Dice coefficient of 0.91 ± 0.04 on the test set. Myocardial blood flow measured using automatic segmentations was highly correlated to that measured using the manual segmentation (R2 = 0.96). Dice uncertainty and Monte Carlo dropout uncertainty were in good agreement (R2 = 0.64). As β increased, the false-positive rate systematically decreased and false-negative rate systematically increased. CONCLUSION We demonstrate the feasibility of deep convolution neural network for automatic segmentation of myocardial arterial spin labeling, with good accuracy. We also introduce 2 simple methods for assessing model uncertainty. Finally, we demonstrate the ability to adapt the convolution neural network model to a specific false-positive versus false-negative tradeoff. These findings are directly relevant to automatic segmentation in quantitative cardiac MRI and are broadly applicable to automatic segmentation problems in diagnostic imaging.
Collapse
Affiliation(s)
- Hung P Do
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Yi Guo
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Andrew J Yoon
- Long Beach Memorial Medical Center, University of California Irvine, Irvine, California
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California
| |
Collapse
|
22
|
Cutting to the Pathophysiology Chase: Translating Cutting-Edge Neuroscience to Rehabilitation Practice in Sports-Related Concussion Management. J Orthop Sports Phys Ther 2019; 49:811-818. [PMID: 31154951 DOI: 10.2519/jospt.2019.8884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mild traumatic brain injury, or concussion, is a common sports injury. Concussion involves physical injury to brain tissue and vascular and axonal damage that manifests as transient and often nonspecific clinical symptoms. Concussion diagnosis is challenging, and the relationship between brain injury and clinical symptoms is unclear. The purpose of this commentary was to translate cutting-edge neuroscience to rehabilitation practice. We (1) highlight potential biomarkers that may improve our understanding of concussion and its recovery, (2) explain why researchers must address the paucity of concussion research in female athletes, and (3) present female-specific factors that should be accounted for in future studies. Integrating objective, quantitative measures of concussion pathophysiology with concussion history, genetics, and genomics will help caregivers identify concussed athletes, tailor recovery protocols, and protect athletes from potential long-term effects of cumulative head impact. J Orthop Sports Phys Ther 2019;49(11):811-818. Epub 1 Jun 2019. doi:10.2519/jospt.2019.8884.
Collapse
|
23
|
Abstract
Advanced neuroimaging techniques are increasingly being implemented in clinical practice as complementary tools to conventional imaging because they can provide crucial functional information about the pathophysiology of a variety of disorders. Therefore, it is important to understand the basic principles underlying them and their role in diagnosis and management. In this review, we will primarily focus on the basic principles and clinical applications of perfusion imaging, diffusion imaging, magnetic resonance spectroscopy, functional MRI, and dual-energy computerized tomography. Our goal is to provide the reader with a basic understanding of these imaging techniques and when they should be used in clinical practice.
Collapse
|
24
|
Non-invasive assessment of placental perfusion in vivo using arterial spin labeling (ASL) MRI: A preclinical study in rats. Placenta 2019; 77:39-45. [PMID: 30827354 DOI: 10.1016/j.placenta.2019.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 01/13/2019] [Accepted: 01/21/2019] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Non-invasive assessment of placental perfusion is of great interest to characterize placental function in clinical practice. This article proposes a strictly non-invasive MRI technique using ASL to quantify placental blood flow in vivo. The aim of this study was to develop a fMRI tool to quantify placental blood flow (PBF) in rat, by using arterial spin labeling (ASL) MRI at 4.7 T. MATERIALS AND METHODS MRI was performed with a dedicated magnet for small animals, in pregnant rats on day 20 of the 22-day gestation period. A Look-Locker flow-sensitive alternating inversion recovery gradient echo sequence was developed as ASL technique (TE: 1.55 ms; TR: 3.5 ms, TI: 56 ms, deltaTI: 56 ms, FA: 20°, Matrix: 128 × 128, 8 segments, 4 Nex). Labeling was performed with global and slice-selective inversions, and T1 map was obtained for each mode of inversion. PBF was then derived from a compartmental model of the variation of T1 between global and slice-selective inversions. RESULTS The full protocol was completed and ASL image post-processing was successful in 18 rats. Forty-seven placentas were analyzed, with a mean PBF of 147 ± 70 ml/min/100 g of placenta, consistent with published values of placental perfusion using invasive techniques. CONCLUSION ASL MRI is feasible for the quantification of PBF in rats at 4.7 T. This technique, which requires no administration of contrast media, could have implications for non-invasive longitudinal and in vivo animal studies and may be useful for the management of human pregnancies.
Collapse
|
25
|
Eckerbom P, Hansell P, Cox E, Buchanan C, Weis J, Palm F, Francis S, Liss P. Multiparametric assessment of renal physiology in healthy volunteers using noninvasive magnetic resonance imaging. Am J Physiol Renal Physiol 2019; 316:F693-F702. [PMID: 30648907 DOI: 10.1152/ajprenal.00486.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Noninvasive methods of magnetic resonance imaging (MRI) can quantify parameters of kidney function. The main purpose of this study was to determine baseline values of such parameters in healthy volunteers. In 28 healthy volunteers (15 women and 13 men), arterial spin labeling to estimate regional renal perfusion, blood oxygen level-dependent transverse relaxation rate (R2*) to estimate oxygenation, and apparent diffusion coefficient (ADC), true diffusion (D), and longitudinal relaxation time (T1) to estimate tissue properties were determined bilaterally in the cortex and outer and inner medulla. Additionally, phase-contrast MRI was applied in the renal arteries to quantify total renal blood flow. The results demonstrated profound gradients of perfusion, ADC, and D with highest values in the kidney cortex and a decrease towards the inner medulla. R2* and T1 were lowest in kidney cortex and increased towards the inner medulla. Total renal blood flow correlated with body surface area, body mass index, and renal volume. Similar patterns in all investigated parameters were observed in women and men. In conclusion, noninvasive MRI provides useful tools to evaluate intrarenal differences in blood flow, perfusion, diffusion, oxygenation, and structural properties of the kidney tissue. As such, this experimental approach has the potential to advance our present understanding regarding normal physiology and the pathological processes associated with acute and chronic kidney disease.
Collapse
Affiliation(s)
- Per Eckerbom
- Section of Radiology, Department of Surgical Sciences, University Hospital , Uppsala , Sweden
| | - Peter Hansell
- Section of Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| | - Eleanor Cox
- Sir Peter Mansfield Imaging Centre, University of Nottingham , Nottingham , United Kingdom
| | - Charlotte Buchanan
- Sir Peter Mansfield Imaging Centre, University of Nottingham , Nottingham , United Kingdom
| | - Jan Weis
- Department of Medical Physics, University Hospital , Uppsala , Sweden
| | - Fredrik Palm
- Section of Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| | - Susan Francis
- Sir Peter Mansfield Imaging Centre, University of Nottingham , Nottingham , United Kingdom
| | - Per Liss
- Section of Radiology, Department of Surgical Sciences, University Hospital , Uppsala , Sweden
| |
Collapse
|
26
|
Nery F, De Vita E, Clark CA, Gordon I, Thomas DL. Robust kidney perfusion mapping in pediatric chronic kidney disease using single-shot 3D-GRASE ASL with optimized retrospective motion correction. Magn Reson Med 2018; 81:2972-2984. [PMID: 30536817 DOI: 10.1002/mrm.27614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE To develop a robust renal arterial spin labeling (ASL) acquisition and processing strategy for mapping renal blood flow (RBF) in a pediatric cohort with severe kidney disease. METHODS A single-shot background-suppressed 3D gradient and spin-echo (GRASE) flow-sensitive alternating inversion recovery (FAIR) ASL acquisition method was used to perform 2 studies. First, an evaluation of the feasibility of single-shot 3D-GRASE and retrospective noise reduction methods was performed in healthy volunteers. Second, a pediatric cohort with severe chronic kidney disease underwent single-shot 3D-GRASE FAIR ASL and RBF was quantified following several retrospective motion correction pipelines, including image registration and threshold-free weighted averaging. The effect of motion correction on the fit errors of saturation recovery (SR) images (required for RBF quantification) and on the perfusion-weighted image (PWI) temporal signal-to-noise ratio (tSNR) was evaluated, as well as the intra- and inter-session repeatability of renal longitudinal relaxation time (T1 ) and RBF. RESULTS The mean cortical and/or functional renal parenchyma RBF in healthy volunteers and CKD patients was 295 ± 97 and 95 ± 47 mL/100 g/min, respectively. Motion-correction reduced image artefacts in both T1 and RBF maps, significantly reduced SR fit errors, significantly increased the PWI tSNR and improved the improved the repeatability of T1 and RBF in the pediatric patient cohort. CONCLUSION Single-shot 3D-GRASE ASL combined with retrospective motion correction enabled repeatable non-invasive RBF mapping in the first pediatric cohort with severe kidney disease undergoing ASL scans.
Collapse
Affiliation(s)
- Fabio Nery
- Developmental Imaging and Biophysics Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Enrico De Vita
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, United Kingdom
| | - Chris A Clark
- Developmental Imaging and Biophysics Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Isky Gordon
- Developmental Imaging and Biophysics Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, University College London Queen Square Institute of Neurology, Queen Square, London, United Kingdom.,Leonard Wolfson Experimental Neurology Centre, University College London Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| |
Collapse
|
27
|
Knutsson L, Xu J, Ahlgren A, van Zijl P. CEST, ASL, and magnetization transfer contrast: How similar pulse sequences detect different phenomena. Magn Reson Med 2018; 80:1320-1340. [PMID: 29845640 PMCID: PMC6097930 DOI: 10.1002/mrm.27341] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/28/2022]
Abstract
Chemical exchange saturation transfer (CEST), arterial spin labeling (ASL), and magnetization transfer contrast (MTC) methods generate different contrasts for MRI. However, they share many similarities in terms of pulse sequences and mechanistic principles. They all use RF pulse preparation schemes to label the longitudinal magnetization of certain proton pools and follow the delivery and transfer of this magnetic label to a water proton pool in a tissue region of interest, where it accumulates and can be detected using any imaging sequence. Due to the versatility of MRI, differences in spectral, spatial or motional selectivity of these schemes can be exploited to achieve pool specificity, such as for arterial water protons in ASL, protons on solute molecules in CEST, and protons on semi-solid cell structures in MTC. Timing of these sequences can be used to optimize for the rate of a particular delivery and/or exchange transfer process, for instance, between different tissue compartments (ASL) or between tissue molecules (CEST/MTC). In this review, magnetic labeling strategies for ASL and the corresponding CEST and MTC pulse sequences are compared, including continuous labeling, single-pulse labeling, and multi-pulse labeling. Insight into the similarities and differences among these techniques is important not only to comprehend the mechanisms and confounds of the contrasts they generate, but also to stimulate the development of new MRI techniques to improve these contrasts or to reduce their interference. This, in turn, should benefit many possible applications in the fields of physiological and molecular imaging and spectroscopy.
Collapse
Affiliation(s)
- L Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - J Xu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - A Ahlgren
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - P.C.M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
28
|
Do HP, Ramanan V, Qi X, Barry J, Wright GA, Ghugre NR, Nayak KS. Non-contrast assessment of microvascular integrity using arterial spin labeled cardiovascular magnetic resonance in a porcine model of acute myocardial infarction. J Cardiovasc Magn Reson 2018; 20:45. [PMID: 29961424 PMCID: PMC6027570 DOI: 10.1186/s12968-018-0468-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 06/04/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Following acute myocardial infarction (AMI), microvascular integrity and function may be compromised as a result of microvascular obstruction (MVO) and vasodilator dysfunction. It has been observed that both infarcted and remote myocardial territories may exhibit impaired myocardial blood flow (MBF) patterns associated with an abnormal vasodilator response. Arterial spin labeled (ASL) CMR is a novel non-contrast technique that can quantitatively measure MBF. This study investigates the feasibility of ASL-CMR to assess MVO and vasodilator response in swine. METHODS Thirty-one swine were included in this study. Resting ASL-CMR was performed on 24 healthy swine (baseline group). A subset of 13 swine from the baseline group underwent stress ASL-CMR to assess vasodilator response. Fifteen swine were subjected to a 90-min left anterior descending (LAD) coronary artery occlusion followed by reperfusion. Resting ASL-CMR was performed post-AMI at 1-2 days (N = 9, of which 6 were from the baseline group), 1-2 weeks (N = 8, of which 4 were from the day 1-2 group), and 4 weeks (N = 4, of which 2 were from the week 1-2 group). Resting first-pass CMR and late gadolinium enhancement (LGE) were performed post-AMI for reference. RESULTS At rest, regional MBF and physiological noise measured from ASL-CMR were 1.08 ± 0.62 and 0.15 ± 0.10 ml/g/min, respectively. Regional MBF increased to 1.47 ± 0.62 ml/g/min with dipyridamole vasodilation (P < 0.001). Significant reduction in MBF was found in the infarcted region 1-2 days, 1-2 weeks, and 4 weeks post-AMI compared to baseline (P < 0.03). This was consistent with perfusion deficit seen on first-pass CMR and with MVO seen on LGE. There were no significant differences between measured MBF in the remote regions pre and post-AMI (P > 0.60). CONCLUSIONS ASL-CMR can assess vasodilator response in healthy swine and detect significant reduction in regional MBF at rest following AMI. ASL-CMR is an alternative to gadolinium-based techniques for assessment of MVO and microvascular integrity within infarcted, as well as salvageable and remote myocardium. This has the potential to provide early indications of adverse remodeling processes post-ischemia.
Collapse
Affiliation(s)
- Hung P. Do
- Department of Physics and Astronomy, University of Southern California, 3740 McClintock Ave, EEB 400, Los Angeles, California 90089-2564 USA
| | - Venkat Ramanan
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON Canada
| | - Xiuling Qi
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON Canada
| | - Jennifer Barry
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON Canada
| | - Graham A. Wright
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Schulich Heart Research Program, Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | - Nilesh R. Ghugre
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Schulich Heart Research Program, Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | - Krishna S. Nayak
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
29
|
Knutsen RH, Beeman SC, Broekelmann TJ, Liu D, Tsang KM, Kovacs A, Ye L, Danback JR, Watson A, Wardlaw A, Wagenseil JE, Garbow JR, Shoykhet M, Kozel BA. Minoxidil improves vascular compliance, restores cerebral blood flow, and alters extracellular matrix gene expression in a model of chronic vascular stiffness. Am J Physiol Heart Circ Physiol 2018; 315:H18-H32. [PMID: 29498532 PMCID: PMC6087770 DOI: 10.1152/ajpheart.00683.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 01/27/2023]
Abstract
Increased vascular stiffness correlates with a higher risk of cardiovascular complications in aging adults. Elastin (ELN) insufficiency, as observed in patients with Williams-Beuren syndrome or with familial supravalvular aortic stenosis, also increases vascular stiffness and leads to arterial narrowing. We used Eln+/- mice to test the hypothesis that pathologically increased vascular stiffness with concomitant arterial narrowing leads to decreased blood flow to end organs such as the brain. We also hypothesized that drugs that remodel arteries and increase lumen diameter would improve flow. To test these hypotheses, we compared carotid blood flow using ultrasound and cerebral blood flow using MRI-based arterial spin labeling in wild-type (WT) and Eln+/- mice. We then studied how minoxidil, an ATP-sensitive K+ channel opener and vasodilator, affects vessel mechanics, blood flow, and gene expression. Both carotid and cerebral blood flows were lower in Eln+/- mice than in WT mice. Treatment of Eln+/- mice with minoxidil lowered blood pressure and reduced functional arterial stiffness to WT levels. Minoxidil also improved arterial diameter and restored carotid and cerebral blood flows in Eln+/- mice. The beneficial effects persisted for weeks after drug removal. RNA-Seq analysis revealed differential expression of 127 extracellular matrix-related genes among the treatment groups. These results indicate that ELN insufficiency impairs end-organ perfusion, which may contribute to the increased cardiovascular risk. Minoxidil, despite lowering blood pressure, improves end-organ perfusion. Changes in matrix gene expression and persistence of treatment effects after drug withdrawal suggest arterial remodeling. Such remodeling may benefit patients with genetic or age-dependent ELN insufficiency. NEW & NOTEWORTHY Our work with a model of chronic vascular stiffness, the elastin ( Eln)+/- mouse, shows reduced brain perfusion as measured by carotid ultrasound and MRI arterial spin labeling. Vessel caliber, functional stiffness, and blood flow improved with minoxidil. The ATP-sensitive K+ channel opener increased Eln gene expression and altered 126 other matrix-associated genes.
Collapse
Affiliation(s)
- Russell H Knutsen
- National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
- Department of Cell Biology and Physiology, Washington University School of Medicine , St. Louis, Missouri
| | - Scott C Beeman
- Department of Radiology, Washington University School of Medicine , St. Louis, Missouri
| | - Thomas J Broekelmann
- Department of Cell Biology and Physiology, Washington University School of Medicine , St. Louis, Missouri
| | - Delong Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Kit Man Tsang
- National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Attila Kovacs
- Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri
| | - Li Ye
- Department of Pediatrics, Washington University School of Medicine , St. Louis, Missouri
| | - Joshua R Danback
- Department of Pediatrics, Washington University School of Medicine , St. Louis, Missouri
| | - Anderson Watson
- National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Amanda Wardlaw
- National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Jessica E Wagenseil
- Department of Biomedical Engineering, Washington University in St. Louis , St. Louis, Missouri; Department of Pediatrics, Children's National Medical Center, Washington, D.C
| | - Joel R Garbow
- Department of Radiology, Washington University School of Medicine , St. Louis, Missouri
| | - Michael Shoykhet
- Department of Pediatrics, Washington University School of Medicine , St. Louis, Missouri
- Department of Biomedical Engineering, Washington University in St. Louis , St. Louis, Missouri; Department of Pediatrics, Children's National Medical Center, Washington, D.C
| | - Beth A Kozel
- National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
- Department of Pediatrics, Washington University School of Medicine , St. Louis, Missouri
| |
Collapse
|
30
|
Jezzard P, Chappell MA, Okell TW. Arterial spin labeling for the measurement of cerebral perfusion and angiography. J Cereb Blood Flow Metab 2018; 38:603-626. [PMID: 29168667 PMCID: PMC5888859 DOI: 10.1177/0271678x17743240] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Arterial spin labeling (ASL) is an MRI technique that was first proposed a quarter of a century ago. It offers the prospect of non-invasive quantitative measurement of cerebral perfusion, making it potentially very useful for research and clinical studies, particularly where multiple longitudinal measurements are required. However, it has suffered from a number of challenges, including a relatively low signal-to-noise ratio, and a confusing number of sequence variants, thus hindering its clinical uptake. Recently, however, there has been a consensus adoption of an accepted acquisition and analysis framework for ASL, and thus a better penetration onto clinical MRI scanners. Here, we review the basic concepts in ASL and describe the current state-of-the-art acquisition and analysis approaches, and the versatility of the method to perform both quantitative cerebral perfusion measurement, along with quantitative cerebral angiographic measurement.
Collapse
Affiliation(s)
- Peter Jezzard
- 1 Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Thomas W Okell
- 1 Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Zun Z, Limperopoulos C. Placental perfusion imaging using velocity-selective arterial spin labeling. Magn Reson Med 2018; 80:1036-1047. [PMID: 29436733 DOI: 10.1002/mrm.27100] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Zungho Zun
- Division of Diagnostic Imaging and Radiology, Children's National Medical Center, Washington, DC.,Division of Fetal and Transitional Medicine, Children's National Medical Center, Washington, DC.,Department of Pediatrics, School of Medicine and Health Sciences, George Washington University, Washington, DC.,Department of Radiology, School of Medicine and Health Sciences, George Washington University, Washington, DC
| | - Catherine Limperopoulos
- Division of Diagnostic Imaging and Radiology, Children's National Medical Center, Washington, DC.,Division of Fetal and Transitional Medicine, Children's National Medical Center, Washington, DC.,Department of Pediatrics, School of Medicine and Health Sciences, George Washington University, Washington, DC.,Department of Radiology, School of Medicine and Health Sciences, George Washington University, Washington, DC
| |
Collapse
|
32
|
He X, Wengler K, Schweitzer ME. Diffusion sensitivity of 3D-GRASE in arterial spin labeling perfusion. Magn Reson Med 2018; 80:736-747. [DOI: 10.1002/mrm.27058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/02/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Xiang He
- Department of Radiology; Stony Brook University; Stony Brook New York USA
| | - Kenneth Wengler
- Department of Biomedical Engineering; Stony Brook University; Stony Brook New York USA
| | - Mark E. Schweitzer
- Department of Radiology; Stony Brook University; Stony Brook New York USA
| |
Collapse
|
33
|
Non-Invasive Placental Perfusion Imaging in Pregnancies Complicated by Fetal Heart Disease Using Velocity-Selective Arterial Spin Labeled MRI. Sci Rep 2017; 7:16126. [PMID: 29170468 PMCID: PMC5700998 DOI: 10.1038/s41598-017-16461-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/13/2017] [Indexed: 11/27/2022] Open
Abstract
The placenta is a vital organ for fetal growth and development during pregnancy. Congenital heart disease (CHD) is a leading cause of morbidity and mortality in newborns. Despite the parallel development of the placenta and fetal heart early in pregnancy, very few studies suggested an association between placental dysfunction and fetal CHD. In this study, we report placental perfusion of healthy pregnancies and pregnancies complicated by fetal CHD measured using advanced fetal MRI techniques. We studied forty-eight pregnant women (31 healthy volunteers and 17 with fetal CHD) that underwent fetal MRI during their second or third trimester of pregnancy. Placental perfusion imaging was performed using velocity-selective arterial spin labeling (VSASL) and 3D image acquisition with whole-placenta coverage. In pregnancies with fetal CHD, global placental perfusion significantly decreased and regional variation of placental perfusion significantly increased with advancing gestational age; however, no such correlation was found in healthy pregnancies. Also, global placental perfusion was significantly higher in fetal CHD versus controls, in the lateral side-lying patient position versus supine, and in the posterior placental position versus anterior placental position. This study reports for the first time non-invasive whole-placenta perfusion imaging in utero. These data suggest that placental VSASL may serve as a potential biomarker of placental dysfunction in fetuses diagnosed with CHD.
Collapse
|
34
|
Cohen O, Polimeni JR. Optimized inversion-time schedules for quantitative T 1 measurements based on high-resolution multi-inversion EPI. Magn Reson Med 2017; 79:2101-2112. [PMID: 28845547 DOI: 10.1002/mrm.26889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 01/07/2023]
Abstract
PURPOSE Demonstrate an optimized multi-inversion echo-planar imaging technique to accelerate quantitative T1 mapping by judicious selection of inversion times for each slice. METHODS Slice ordering is optimized to maximize discrimination between tissues with different T1 values. The optimized slice orderings are tested in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom and compared with an unoptimized 21-measurement acquisition. The utility of the method is demonstrated in a healthy subject in vivo at 3 T and validated with a gold-standard inversion-recovery sequence. The in vivo precision of our technique was tested by repeated scans of the same subject within a scan session and across scan sessions, occurring 28 days apart. RESULTS Phantom measurements yielded good agreement (R2 = 0.99) between the T1 estimates from the proposed optimized protocol, reference values from the National Institute of Standards and Technology phantom and gold-standard inversion-recovery values, as well as a negligible estimation bias that was slightly lower than that from the unoptimized 21-measurement protocol (0.74 versus 19 ms). The range of values for the scan-rescan coefficient of variation was 0.86 to 0.93 (within session) and 0.83 to 0.92 (across sessions) across all scan durations tested. CONCLUSIONS Optimized slice orderings allow faster quantitative T1 mapping. The optimized sequence yielded accurate and precise T1 maps. Magn Reson Med 79:2101-2112, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Ouri Cohen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
35
|
Wiesmann M, Roelofs M, van der Lugt R, Heerschap A, Kiliaan AJ, Claassen JAHR. Angiotensin II, hypertension and angiotensin II receptor antagonism: Roles in the behavioural and brain pathology of a mouse model of Alzheimer's disease. J Cereb Blood Flow Metab 2017; 37:2396-2413. [PMID: 27596834 PMCID: PMC5531339 DOI: 10.1177/0271678x16667364] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/26/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022]
Abstract
Elevated angiotensin II causes hypertension and contributes to Alzheimer's disease by affecting cerebral blood flow. Angiotensin II receptor blockers may provide candidates to reduce (vascular) risk factors for Alzheimer's disease. We studied effects of two months of angiotensin II-induced hypertension on systolic blood pressure, and treatment with the angiotensin II receptor blockers, eprosartan mesylate, after one month of induced hypertension in wild-type C57bl/6j and AβPPswe/PS1ΔE9 (AβPP/PS1/Alzheimer's disease) mice. AβPP/PS1 showed higher systolic blood pressure than wild-type. Subsequent eprosartan mesylate treatment restored this elevated systolic blood pressure in all mice. Functional connectivity was decreased in angiotensin II-infused Alzheimer's disease and wild-type mice, and only 12 months of Alzheimer's disease mice showed impaired cerebral blood flow. Only angiotensin II-infused Alzheimer's disease mice exhibited decreased spatial learning in the Morris water maze. Altogether, angiotensin II-induced hypertension not only exacerbated Alzheimer's disease-like pathological changes such as impairment of cerebral blood flow, functional connectivity, and cognition only in Alzheimer's disease model mice, but it also induced decreased functional connectivity in wild-type mice. However, we could not detect hypertension-induced overexpression of Aβ nor increased neuroinflammation. Our findings suggest a link between midlife hypertension, decreased cerebral hemodynamics and connectivity in an Alzheimer's disease mouse model. Eprosartan mesylate treatment restored and beneficially affected cerebral blood flow and connectivity. This model could be used to investigate prevention/treatment strategies in early Alzheimer's disease.
Collapse
Affiliation(s)
- Maximilian Wiesmann
- Department of Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition & Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Geriatric Medicine, Radboud Alzheimer Center, Donders Institute for Brain, Cognition & Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Monica Roelofs
- Department of Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition & Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Robert van der Lugt
- Department of Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition & Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology & Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Amanda J Kiliaan
- Department of Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition & Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Jurgen AHR Claassen
- Department of Geriatric Medicine, Radboud Alzheimer Center, Donders Institute for Brain, Cognition & Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Poplawsky AJ, Fukuda M, Kim SG. Foundations of layer-specific fMRI and investigations of neurophysiological activity in the laminarized neocortex and olfactory bulb of animal models. Neuroimage 2017; 199:718-729. [PMID: 28502845 DOI: 10.1016/j.neuroimage.2017.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/02/2017] [Accepted: 05/11/2017] [Indexed: 12/25/2022] Open
Abstract
Laminar organization of neuronal circuits is a recurring feature of how the brain processes information. For instance, different layers compartmentalize different cell types, synaptic activities, and have unique intrinsic and extrinsic connections that serve as units for specialized signal processing. Functional MRI is an invaluable tool to investigate laminar processing in the in vivo human brain, but it measures neuronal activity indirectly by way of the hemodynamic response. Therefore, the accuracy of high-resolution laminar fMRI depends on how precisely it can measure localized microvascular changes nearest to the site of evoked activity. To determine the specificity of fMRI responses to the true neurophysiological responses across layers, the flexibility to invasive procedures in animal models has been necessary. In this review, we will examine different fMRI contrasts and their appropriate uses for layer-specific fMRI, and how localized laminar processing was examined in the neocortex and olfactory bulb. Through collective efforts, it was determined that microvessels, including capillaries, are regulated within single layers and that several endogenous and contrast-enhanced fMRI contrast mechanisms can separate these neural-specific vascular changes from the nonspecific, especially cerebral blood volume-weighted fMRI with intravenous contrast agent injection. We will also propose some open questions that are relevant for the successful implementation of layer-specific fMRI and its potential future directions to study laminar processing when combined with optogenetics.
Collapse
Affiliation(s)
- Alexander John Poplawsky
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Mitsuhiro Fukuda
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute of Basic Science, Suwon 440-746, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
37
|
Wiesmann M, Zerbi V, Jansen D, Lütjohann D, Veltien A, Heerschap A, Kiliaan AJ. Hypertension, cerebrovascular impairment, and cognitive decline in aged AβPP/PS1 mice. Theranostics 2017; 7:1277-1289. [PMID: 28435465 PMCID: PMC5399593 DOI: 10.7150/thno.18509] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 01/18/2017] [Indexed: 11/05/2022] Open
Abstract
Cardiovascular risk factors, especially hypertension, are also major risk factors for Alzheimer's disease (AD). To elucidate the underlying vascular origin of neurodegenerative processes in AD, we investigated the relation between systolic blood pressure (SBP) cerebral blood flow (CBF) and vasoreactivity with brain structure and function in a 16-18 months old double transgenic AβPPswe/PS1dE9 (AβPP/PS1) mouse model for AD. These aging AβPP/PS1 mice showed an increased SBP linked to a declined regional CBF. Furthermore, using advanced MRI techniques, decline of functional and structural connectivity was revealed in the AD-like mice coupled to impaired cognition, increased locomotor activity, and anxiety-related behavior. Post mortem analyses demonstrated also increased neuroinflammation, and both decreased synaptogenesis and neurogenesis in the AβPP/PS1 mice. Additionally, deviant levels of fatty acids and sterols were present in the brain tissue of the AβPP/PS1 mice indicating maladapted brain fatty acid metabolism. Our findings suggest a link between increased SBP, decreased cerebral hemodynamics and connectivity in an AD mouse model during aging, leading to behavioral and cognitive impairments. As these results mirror the complex clinical symptomatology in the prodromal phase of AD, we suggest that this AD-like murine model could be used to investigate prevention and treatment strategies for early AD patients. Moreover, this study helps to develop more efficient therapies and diagnostics for this very early stage of AD.
Collapse
|
38
|
Struys T, Govaerts K, Oosterlinck W, Casteels C, Bronckaers A, Koole M, Van Laere K, Herijgers P, Lambrichts I, Himmelreich U, Dresselaers T. In vivo evidence for long-term vascular remodeling resulting from chronic cerebral hypoperfusion in mice. J Cereb Blood Flow Metab 2017; 37:726-739. [PMID: 26994041 PMCID: PMC5381461 DOI: 10.1177/0271678x16638349] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have characterized both acute and long-term vascular and metabolic effects of unilateral common carotid artery occlusion in mice by in vivo magnetic resonance imaging and positron emission tomography. This common carotid artery occlusion model induces chronic cerebral hypoperfusion and is therefore relevant to both preclinical stroke studies, where it serves as a control condition for a commonly used mouse model of ischemic stroke, and neurodegeneration, as chronic hypoperfusion is causative to cognitive decline. By using perfusion magnetic resonance imaging, we demonstrate that under isoflurane anesthesia, cerebral perfusion levels recover gradually over one month. This recovery is paralleled by an increase in lumen diameter and altered tortuosity of the contralateral internal carotid artery at one year post-ligation as derived from magnetic resonance angiography data. Under urethane/α-chloralose anesthesia, no acute perfusion differences are observed, but the vascular response capacity to hypercapnia is found to be compromised. These hemispheric perfusion alterations are confirmed by water [15O]-H2O positron emission tomography. Glucose metabolism ([18F]-FDG positron emission tomography) or white matter organization (diffusion-weighted magnetic resonance imaging) did not show any significant alterations. In conclusion, permanent unilateral common carotid artery occlusion results in acute and long-term vascular remodeling, which may have immediate consequences for animal models of stroke but also vascular dementia.
Collapse
Affiliation(s)
- Tom Struys
- 1 Biomedical Research Institute - Morphology Research Group, Hasselt University, Hasselt, Belgium
| | - Kristof Govaerts
- 2 Biomedical MRI Unit - MoSAIC, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Wouter Oosterlinck
- 3 Research Unit of Experimental Cardiac Surgery, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Cindy Casteels
- 4 Nuclear Medicine - MoSAIC, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Annelies Bronckaers
- 1 Biomedical Research Institute - Morphology Research Group, Hasselt University, Hasselt, Belgium
| | - Michel Koole
- 4 Nuclear Medicine - MoSAIC, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- 4 Nuclear Medicine - MoSAIC, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Paul Herijgers
- 3 Research Unit of Experimental Cardiac Surgery, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Ivo Lambrichts
- 1 Biomedical Research Institute - Morphology Research Group, Hasselt University, Hasselt, Belgium
| | - Uwe Himmelreich
- 2 Biomedical MRI Unit - MoSAIC, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Tom Dresselaers
- 2 Biomedical MRI Unit - MoSAIC, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium.,5 Radiology, University Hospitals, Leuven, Belgium
| |
Collapse
|
39
|
A three-dimensional single-scan approach for the measurement of changes in cerebral blood volume, blood flow, and blood oxygenation-weighted signals during functional stimulation. Neuroimage 2017; 147:976-984. [DOI: 10.1016/j.neuroimage.2016.12.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/10/2016] [Accepted: 12/28/2016] [Indexed: 11/23/2022] Open
|
40
|
Wiesmann M, Zinnhardt B, Reinhardt D, Eligehausen S, Wachsmuth L, Hermann S, Dederen PJ, Hellwich M, Kuhlmann MT, Broersen LM, Heerschap A, Jacobs AH, Kiliaan AJ. A specific dietary intervention to restore brain structure and function after ischemic stroke. Theranostics 2017; 7:493-512. [PMID: 28255345 PMCID: PMC5327363 DOI: 10.7150/thno.17559] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/06/2016] [Indexed: 01/21/2023] Open
Abstract
Occlusion of the middle cerebral artery (MCAo) is among the most common causes of ischemic stroke in humans. Cerebral ischemia leads to brain lesions existing of an irreversibly injured core and an ischemic boundary zone, the penumbra, containing damaged but potentially salvageable tissue. Using a transient occlusion (30 min) of the middle cerebral artery (tMCAo) mouse model in this cross-institutional study we investigated the neurorestorative efficacy of a dietary approach (Fortasyn) comprising docosahexaenoic acid, eicosapentaenoic acid, uridine, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium as therapeutic approach to counteract neuroinflammation and impairments of cerebral (structural+functional) connectivity, cerebral blood flow (CBF), and motor function. Male adult C57BL/6j mice were subjected to right tMCAo using the intraluminal filament model. Following tMCAo, animals were either maintained on Control diet or switched to the multicomponent Fortasyn diet. At several time points after tMCAo, behavioral tests, and MRI and PET scanning were conducted to identify the impact of the multicomponent diet on the elicited neuroinflammatory response, loss of cerebral connectivity, and the resulting impairment of motor function after experimental stroke. Mice on the multicomponent diet showed decreased neuroinflammation, improved functional and structural connectivity, beneficial effect on CBF, and also improved motor function after tMCAo. Our present data show that this specific dietary intervention may have beneficial effects on structural and functional recovery and therefore therapeutic potential after ischemic stroke.
Collapse
Affiliation(s)
- Maximilian Wiesmann
- Department of Anatomy, Radboud university medical center, Donders Institute for Brain, Cognition & Behaviour, Nijmegen, The Netherlands
- Department of Geriatric Medicine, Radboud university medical center, Donders Institute for Brain, Cognition & Behaviour, Nijmegen, The Netherlands
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany
| | - Dirk Reinhardt
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany
| | - Sarah Eligehausen
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology of the University Hospital, Westfälische Wilhelms University Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany
| | - Pieter J Dederen
- Department of Anatomy, Radboud university medical center, Donders Institute for Brain, Cognition & Behaviour, Nijmegen, The Netherlands
| | - Marloes Hellwich
- Department of Anatomy, Radboud university medical center, Donders Institute for Brain, Cognition & Behaviour, Nijmegen, The Netherlands
| | - Michael T Kuhlmann
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany
| | - Laus M Broersen
- Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - Arend Heerschap
- Department of Radiology & Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany
- Department of Geriatrics, Johanniter Hospital, Evangelische Kliniken, Bonn, Germany
| | - Amanda J Kiliaan
- Department of Anatomy, Radboud university medical center, Donders Institute for Brain, Cognition & Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
41
|
A comparison study between the saturation-recovery-T 1 and CASL MRI methods for quantitative CBF imaging. Magn Reson Imaging 2016; 37:179-186. [PMID: 27919784 DOI: 10.1016/j.mri.2016.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 11/22/2022]
Abstract
The saturation-recovery (SR)-T1 MRI method for quantitatively imaging cerebral blood flow (CBF) change (ΔCBF) concurrently with the blood oxygenation level dependence (BOLD) alteration has been recently developed and validated by simultaneous measurement of relative CBF change using laser Doppler flowmetry (LDF) in rats at 9.4T. In this study, ΔCBF induced by mildly transient hypercapnia and measured by the SR-T1 MRI method was rigorously compared with an established perfusion MRI method-continuous arterial spin labeling (CASL) approach in normal and preclinical middle cerebral artery occlusion (MCAo) rat models. The results show an excellent agreement between ΔCBF values measured with these two imaging methods. Moreover, the intrinsic longitudinal relaxation rate (R1int) was experimentally determined in vivo in normal rat brains at 9.4T by comparing two independent measures of the apparent longitudinal relaxation rate (R1app) and CBF measured by the CSAL approach across a wide range of perfusion. In turn, the R1int constant can be employed to calculate the CBF value based on the R1app measurement in healthy brain. This comparison study validates the fundamental relationship for linking brain tissue water R1app and cerebral perfusion, demonstrates the feasibility of imaging and quantifying both CBF and its change using the SR-T1 MRI method in vivo.
Collapse
|
42
|
Conlin CC, Oesingmann N, Bolster B, Huang Y, Lee VS, Zhang JL. Renal plasma flow (RPF) measured with multiple-inversion-time arterial spin labeling (ASL) and tracer kinetic analysis: Validation against a dynamic contrast-enhancement method. Magn Reson Imaging 2016; 37:51-55. [PMID: 27864008 DOI: 10.1016/j.mri.2016.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/14/2016] [Indexed: 11/30/2022]
Abstract
PURPOSE To propose and validate a method for accurately quantifying renal plasma flow (RPF) with arterial spin labeling (ASL). MATERIALS AND METHODS The proposed method employs a tracer-kinetic approach and derives perfusion from the slope of the ASL difference signal sampled at multiple inversion-times (TIs). To validate the method's accuracy, we performed a HIPAA-compliant and IRB-approved study with 15 subjects (9 male, 6 female; age range 24-73) to compare RPF estimates obtained from ASL to those from a more established dynamic contrast-enhanced (DCE) MRI method. We also investigated the impact of TI-sampling density on the accuracy of estimated RPF. RESULTS Good agreement was found between ASL- and DCE-measured RPF, with a mean difference of 9±30ml/min and a correlation coefficient R=0.92 when ASL signals were acquired at 16 TIs and a mean difference of 9±57ml/min and R=0.81 when ASL signals were acquired at 5 TIs. RPF estimated from ASL signals acquired at only 2 TIs (400 and 1200ms) showed a low correlation with DCE-measured values (R=0.30). CONCLUSION The proposed ASL method is capable of measuring RPF with an accuracy that is comparable to DCE MRI. At least 5 TIs are recommended for the ASL acquisition to ensure reliability of RPF measurements.
Collapse
Affiliation(s)
- Christopher C Conlin
- Department of Radiology and Imaging Sciences, University of Utah, 729 Arapeen Drive, Salt Lake City, UT 84108, USA; Department of Bioengineering, University of Utah, 36 S Wasatch Drive, Rm 3100, Salt Lake City, UT 84112, USA.
| | - Niels Oesingmann
- Siemens Medical Solutions, Inc., 660 First Avenue, 4th Floor, New York, NY 10016, USA.
| | - Bradley Bolster
- Siemens Medical Solutions, Inc., 729 Arapeen Drive, Salt Lake City, UT 84108, USA.
| | - Yufeng Huang
- Division of Nephrology, Department of Internal Medicine, University of Utah, 30 N 1900 E, Rm 4R312, Salt Lake City, UT 84132, USA.
| | - Vivian S Lee
- Department of Radiology and Imaging Sciences, University of Utah, 729 Arapeen Drive, Salt Lake City, UT 84108, USA.
| | - Jeff L Zhang
- Department of Radiology and Imaging Sciences, University of Utah, 729 Arapeen Drive, Salt Lake City, UT 84108, USA; Department of Bioengineering, University of Utah, 36 S Wasatch Drive, Rm 3100, Salt Lake City, UT 84112, USA.
| |
Collapse
|
43
|
Han PK, Choi SH, Park SH. Investigation of control scans in pseudo-continuous arterial spin labeling (pCASL): Strategies for improving sensitivity and reliability of pCASL. Magn Reson Med 2016; 78:917-929. [DOI: 10.1002/mrm.26474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Paul Kyu Han
- Magnetic Resonance Imaging Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology; Daejeon South Korea
| | - Seung Hong Choi
- Department of Radiology; Seoul National University College of Medicine; Seoul South Korea
| | - Sung-Hong Park
- Magnetic Resonance Imaging Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology; Daejeon South Korea
| |
Collapse
|
44
|
Wanibuchi M, Komatsu K, Akiyama Y, Mikami T, Iihoshi S, Miyata K, Mikuni N. Quantitative Assessment of Flow Reduction After Feeder Embolization in Meningioma by Using Pseudocontinuous Arterial Spin Labeling. World Neurosurg 2016; 93:237-45. [DOI: 10.1016/j.wneu.2016.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
|
45
|
Panagia M, Chen YCI, Chen HH, Ernande L, Chen C, Chao W, Kwong K, Scherrer-Crosbie M, Sosnovik DE. Functional and anatomical characterization of brown adipose tissue in heart failure with blood oxygen level dependent magnetic resonance. NMR IN BIOMEDICINE 2016; 29:978-984. [PMID: 27226402 PMCID: PMC4912044 DOI: 10.1002/nbm.3557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
Recent studies have suggested that brown adipose tissue (BAT) plays an important role in obesity, insulin resistance and heart failure. The characterization of BAT in vivo, however, has been challenging. No technique to comprehensively image BAT anatomy and function has been described. Moreover, the impact on BAT of the neuroendocrine activation seen in heart failure has only recently begun to be evaluated in vivo. The aim of this study was to use MRI to characterize the impact of heart failure on the morphology and function of BAT. Mice subjected to permanent ligation of the left coronary artery were imaged with MRI 6 weeks later. T2 weighted MRI of BAT volume and blood oxygen level dependent MRI of BAT function were performed. T2 * maps of BAT were obtained at multiple time points before and after administration of the β3 adrenergic agonist CL 316 243 (CL). Blood flow to BAT was studied after CL injection using the flow alternating inversion recovery (FAIR) approach. Excised BAT tissue was analyzed for lipid droplet content and for uncoupling protein 1 (UCP1) mRNA expression. BAT volume was significantly lower in heart failure (51 ± 1 mm(3) versus 65 ± 3 mm(3) ; p < 0.05), and characterized by a reduction in lipid globules and a fourfold increase in UCP1 mRNA (p < 0.05). CL injection increased BAT T2 * in healthy animals but not in mice with heart failure (24 ± 4% versus 6 ± 2%; p < 0.01), consistent with an increase in flow in control BAT. This was confirmed by a significant difference in the FAIR response in BAT in control and heart failure mice. Heart failure results in the chronic activation of BAT, decreased BAT lipid stores and decreased BAT volume, and it is associated with a marked decrease in ability to respond to acute physiological stimuli. This may have important implications for substrate utilization and overall metabolic homeostasis in heart failure. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Marcello Panagia
- Cardiology Section, Boston Medical Center, Boston, MA
- Cardiology Division, Massachusetts General Hospital, Boston, MA
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA
| | - Yin-Ching Iris Chen
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA
| | - Howard H Chen
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA
| | - Laura Ernande
- Cardiology Division, Massachusetts General Hospital, Boston, MA
- DHU Ageing-Thorax-Vessel-Blood, Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Chan Chen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School
| | - Wei Chao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School
| | - Kenneth Kwong
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA
| | | | - David E. Sosnovik
- Cardiology Division, Massachusetts General Hospital, Boston, MA
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA
| |
Collapse
|
46
|
Tsujikawa T, Kimura H, Matsuda T, Fujiwara Y, Isozaki M, Kikuta KI, Okazawa H. Arterial Transit Time Mapping Obtained by Pulsed Continuous 3D ASL Imaging with Multiple Post-Label Delay Acquisitions: Comparative Study with PET-CBF in Patients with Chronic Occlusive Cerebrovascular Disease. PLoS One 2016; 11:e0156005. [PMID: 27275779 PMCID: PMC4898726 DOI: 10.1371/journal.pone.0156005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 05/06/2016] [Indexed: 11/18/2022] Open
Abstract
Arterial transit time (ATT) is most crucial for measuring absolute cerebral blood flow (CBF) by arterial spin labeling (ASL), a noninvasive magnetic resonance (MR) perfusion assessment technique, in patients with chronic occlusive cerebrovascular disease. We validated ASL-CBF and ASL-ATT maps calculated by pulsed continuous ASL (pCASL) with multiple post-label delay acquisitions in patients with occlusive cerebrovascular disease. Fifteen patients underwent MR scans, including pCASL, and positron emission tomography (PET) scans with 15O-water to obtain PET-CBF. MR acquisitions with different post-label delays (1.0, 1.5, 2.0, 2.5 and 3.0 sec) were also obtained for ATT correction. The theoretical framework of 2-compartmental model (2CM) was also used for the delay compensation. ASL-CBF and ASL-ATT were calculated based on the proposed 2CM, and the effect on the CBF values and the ATT correction characteristics were discussed. Linear regression analyses were performed both on pixel-by-pixel and region-of-interest bases in the middle cerebral artery (MCA) territory. There were significant correlations between ASL-CBF and PET-CBF both for voxel values (r = 0.74 ± 0.08, slope: 0.87 ± 0.22, intercept: 6.1 ± 4.9) and for the MCA territorial comparison in both affected (R2 = 0.67, y = 0.83x + 6.3) and contralateral sides (R2 = 0.66, y = 0.74x + 6.3). ASL-ATTs in the affected side were significantly longer than those in the contralateral side (1.51 ± 0.41 sec and 1.12 ± 0.30 sec, respectively, p <0.0005). CBF measurement using pCASL with delay compensation was feasible and fairly accurate even in altered hemodynamic states.
Collapse
Affiliation(s)
- Tetsuya Tsujikawa
- Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui, Japan
| | - Hirohiko Kimura
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
- * E-mail:
| | | | - Yasuhiro Fujiwara
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
- Department of Medical Imaging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Makoto Isozaki
- Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Ken-ichiro Kikuta
- Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui, Japan
| |
Collapse
|
47
|
Stafford RB, Woo MK, Oh SH, Dolui S, Zhao T, Kim YB, Detre JA, Cho ZH, Lee J. An Actively Decoupled Dual Transceiver Coil System for Continuous ASL at 7 T. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 2016; 26:106-115. [PMID: 27695192 PMCID: PMC5042328 DOI: 10.1002/ima.22165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
7 T arterial spin labeling (ASL) faces major challenges including the increased specific absorption rate (SAR) and increased B0 and B1 inhomogeneity. This work describes the design and implementation of a dual-coil system that allows for continuous ASL (CASL) at 7 T. This system consisted of an actively detunable eight-channel transceiver head coil, and a three-channel transceiver labeling coil. Four experiments were performed in 5 healthy subjects: (i) to demonstrate that active detuning during ASL labeling reduces magnetization transfer; (ii) to measure the B1 profile at the labeling plane; (iii) to quantify B0 off-resonance at the labeling plane; and (iv) to collect in vivo CASL data. The magnetization transfer ratio in the head coil was reduced to 0.0 ± 0.2% by active detuning during labeling. The measured B1 profiles in all 5 subjects were sufficient to satisfy the flow-driven adiabatic inversion necessary for CASL, however the actual labeling efficiency was significantly impacted by B0 off-resonance at the labeling plane. The measured CASL percent signal change in gray matter (0.94% ± 0.10%) corresponds with the low labeling efficiency predicted by the B0 off-resonance. This work demonstrates progress in the technical implementation of 7 T CASL, and reinforces the need for improved B0 homogeneity at the labeling plane.
Collapse
Affiliation(s)
- Randall B Stafford
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, PA, USA; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Myung-Kyun Woo
- Neuroscience Research Institute, Gachon University, Incheon, Korea; Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea; Department of Electrical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Se-Hong Oh
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, PA, USA; Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sudipto Dolui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Tiejun Zhao
- Siemens Medical Solutions USA, Inc., Siemens Healthcare, New York, NY, USA
| | - Young-Bo Kim
- Neuroscience Research Institute, Gachon University, Incheon, Korea
| | - John A Detre
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zang-Hee Cho
- Neuroscience Research Institute, Gachon University, Incheon, Korea; Advanced Institutes of Convergence Technology, Seoul National University, Seoul, Korea
| | - Jongho Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Center for Functional Neuroimaging, University of Pennsylvania, Philadelphia, PA, USA; Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| |
Collapse
|
48
|
Do HP, Yoon AJ, Fong MW, Saremi F, Barr ML, Nayak KS. Double‐gated myocardial ASL perfusion imaging is robust to heart rate variation. Magn Reson Med 2016; 77:1975-1980. [DOI: 10.1002/mrm.26282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/27/2016] [Accepted: 05/01/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Hung Phi Do
- Department of Physics and AstronomyUniversity of Southern CaliforniaLos Angeles California USA
| | - Andrew J. Yoon
- Department of MedicineDivision of Cardiology, Keck School of Medicine of USC, University of Southern CaliforniaLos Angeles California USA
| | - Michael W. Fong
- Department of MedicineDivision of Cardiology, Keck School of Medicine of USC, University of Southern CaliforniaLos Angeles California USA
| | - Farhood Saremi
- Department of RadiologyKeck School of Medicine of USC, University of Southern CaliforniaLos Angeles California USA
| | - Mark L. Barr
- Department of Cardiothoracic SurgeryKeck School of Medicine of USC, University of Southern CaliforniaLos Angeles California USA
| | - Krishna S. Nayak
- Ming Hsieh Department of Electrical EngineeringUniversity of Southern CaliforniaLos Angeles California USA
| |
Collapse
|
49
|
Fan AP, Jahanian H, Holdsworth SJ, Zaharchuk G. Comparison of cerebral blood flow measurement with [15O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: A systematic review. J Cereb Blood Flow Metab 2016; 36:842-61. [PMID: 26945019 PMCID: PMC4853843 DOI: 10.1177/0271678x16636393] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/19/2016] [Accepted: 02/04/2016] [Indexed: 11/16/2022]
Abstract
Noninvasive imaging of cerebral blood flow provides critical information to understand normal brain physiology as well as to identify and manage patients with neurological disorders. To date, the reference standard for cerebral blood flow measurements is considered to be positron emission tomography using injection of the [(15)O]-water radiotracer. Although [(15)O]-water has been used to study brain perfusion under normal and pathological conditions, it is not widely used in clinical settings due to the need for an on-site cyclotron, the invasive nature of arterial blood sampling, and experimental complexity. As an alternative, arterial spin labeling is a promising magnetic resonance imaging technique that magnetically labels arterial blood as it flows into the brain to map cerebral blood flow. As arterial spin labeling becomes more widely adopted in research and clinical settings, efforts have sought to standardize the method and validate its cerebral blood flow values against positron emission tomography-based cerebral blood flow measurements. The purpose of this work is to critically review studies that performed both [(15)O]-water positron emission tomography and arterial spin labeling to measure brain perfusion, with the aim of better understanding the accuracy and reproducibility of arterial spin labeling relative to the positron emission tomography reference standard.
Collapse
Affiliation(s)
- Audrey P Fan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | | | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
50
|
Arnoldussen IA, Zerbi V, Wiesmann M, Noordman RH, Bolijn S, Mutsaers MP, Dederen PJ, Kleemann R, Kooistra T, van Tol EA, Gross G, Schoemaker MH, Heerschap A, Wielinga PY, Kiliaan AJ. Early intake of long-chain polyunsaturated fatty acids preserves brain structure and function in diet-induced obesity. J Nutr Biochem 2016; 30:177-88. [DOI: 10.1016/j.jnutbio.2015.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/13/2015] [Accepted: 12/16/2015] [Indexed: 12/28/2022]
|