1
|
Syms RRA, Wadsworth CA, Kardoulaki E, Titapun A, Boonphongsathien W, Sa-Ngiamwibool P, Zhang S, Taylor-Robinson SD, Chamadol N, Loilome W. Intraductal magnetic resonance imaging of cholangiocarcinoma - a practical possibility. Front Oncol 2024; 14:1306242. [PMID: 38651146 PMCID: PMC11033360 DOI: 10.3389/fonc.2024.1306242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Intraductal T2 mapping based on a catheter receiver is proposed as a method of visualizing the extent of intraductal and periductal cholangiocarcinoma (CCA). Compared to external receivers, internal receivers provide locally enhanced signal-to-noise ratios by virtue of their lower field-of-view for body noise, allowing smaller voxels and higher resolution. However, inherent radial sensitivity variation and segmentation for patient safety both distort image brightness. We discuss simulated T2 weighted images and T2 maps, and in vitro images obtained using a thin film catheter receiver of a freshly resected liver specimen containing a polypoid intraductal tumor from a patient with CCA. T2 mapping provides a simple method of compensating non-uniform signal reception patterns of catheter receivers, allowing the visualization of tumor extent without contrast enhancement and potentially quantitative tissue characterization. Potential advantages and disadvantages of in vivo intraductal imaging are considered.
Collapse
Affiliation(s)
- Richard R. A. Syms
- Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| | - Christopher A. Wadsworth
- Department of Surgery and Cancer at St Mary’s Hospital, Imperial College London, London, United Kingdom
| | - Evdokia Kardoulaki
- Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| | - Attapol Titapun
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Shuo Zhang
- Health Systems, Clinical Science, Philips Healthcare Germany, Hamburg, Germany
| | - Simon D. Taylor-Robinson
- Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
- Department of Surgery and Cancer at St Mary’s Hospital, Imperial College London, London, United Kingdom
| | - Nittaya Chamadol
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
2
|
Cheung CL, Wu M, Fang G, Ho JDL, Liang L, Tan KV, Lin FH, Chang HC, Kwok KW. Omnidirectional Monolithic Marker for Intra-Operative MR-Based Positional Sensing in Closed MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:439-448. [PMID: 37647176 DOI: 10.1109/tmi.2023.3309967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
We present a design of an inductively coupled radio frequency (ICRF) marker for magnetic resonance (MR)-based positional tracking, enabling the robust increase of tracking signal at all scanning orientations in quadrature-excited closed MR imaging (MRI). The marker employs three curved resonant circuits fully covering a cylindrical surface that encloses the signal source. Each resonant circuit is a planar spiral inductor with parallel plate capacitors fabricated monolithically on flexible printed circuit board (FPC) and bent to achieve the curved structure. Size of the constructed marker is Ø3-mm ×5 -mm with quality factor > 22, and its tracking performance was validated with 1.5 T MRI scanner. As result, the marker remains as a high positive contrast spot under 360° rotations in 3 axes. The marker can be accurately localized with a maximum error of 0.56 mm under a displacement of 56 mm from the isocenter, along with an inherent standard deviation of 0.1-mm. Accrediting to the high image contrast, the presented marker enables automatic and real-time tracking in 3D without dependency on its orientation with respect to the MRI scanner receive coil. In combination with its small form-factor, the presented marker would facilitate robust and wireless MR-based tracking for intervention and clinical diagnosis. This method targets applications that can involve rotational changes in all axes (X-Y-Z).
Collapse
|
3
|
Marhabaie S, Delcey M, El Hamrani D, Vaillant F, Ginefri JC, Ozenne V, Abell E, Poirier-Quinot M, Quesson B. Remotely detuned receiver coil for high-resolution interventional cardiac magnetic resonance imaging. Front Cardiovasc Med 2023; 10:1249572. [PMID: 38028485 PMCID: PMC10643167 DOI: 10.3389/fcvm.2023.1249572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Interventional cardiac MRI in the context of the treatment of cardiac arrhythmia requires submillimeter image resolution to precisely characterize the cardiac substrate and guide the catheter-based ablation procedure in real-time. Conventional MRI receiver coils positioned on the thorax provide insufficient signal-to-noise ratio (SNR) and spatial selectivity to satisfy these constraints. Methods A small circular MRI receiver coil was developed and evaluated under different experimental conditions, including high-resolution MRI anatomical and thermometric imaging at 1.5 T. From the perspective of developing a therapeutic MR-compatible catheter equipped with a receiver coil, we also propose alternative remote active detuning techniques of the receiver coil using one or two cables. Theoretical details are presented, as well as simulations and experimental validation. Results Anatomical images of the left ventricle at 170 µm in-plane resolution are provided on ex vivo beating heart from swine using a 2 cm circular receiver coil. Taking advantage of the increase of SNR at its vicinity (up to 35 fold compared to conventional receiver coils), real-time MR-temperature imaging can reach an uncertainty below 0.1°C at the submillimetric spatial resolution. Remote active detuning using two cables has similar decoupling efficiency to conventional on-site decoupling, at the cost of an acceptable decrease in the resulting SNR. Discussion This study shows the potential of small dimension surface coils for minimally invasive therapy of cardiac arrhythmia intraoperatively guided by MRI. The proposed remote decoupling approaches may simplify the construction process and reduce the cost of such single-use devices.
Collapse
Affiliation(s)
- Sina Marhabaie
- Laboratoire D'Imagerie Biomédicale Multimodale Paris Saclay, Université Paris-Saclay, CNRS, Inserm, Orsay, France
| | - Marylène Delcey
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France
- Siemens Healthineers, Saint-Denis, France
| | | | - Fanny Vaillant
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France
| | - Jean-Christophe Ginefri
- Laboratoire D'Imagerie Biomédicale Multimodale Paris Saclay, Université Paris-Saclay, CNRS, Inserm, Orsay, France
| | - Valéry Ozenne
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, IHU Liryc, Bordeaux, France
| | - Emma Abell
- Univ. Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France
| | - Marie Poirier-Quinot
- Laboratoire D'Imagerie Biomédicale Multimodale Paris Saclay, Université Paris-Saclay, CNRS, Inserm, Orsay, France
| | - Bruno Quesson
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, IHU Liryc, Bordeaux, France
| |
Collapse
|
4
|
Chamadol N, Syms R, Laopaiboon V, Promsorn J, Eurboonyanun K. New Imaging Techniques. Recent Results Cancer Res 2023; 219:109-145. [PMID: 37660333 DOI: 10.1007/978-3-031-35166-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The chapter discusses the advancement of new imaging techniques, the role of imaging in CCA diagnosis, anatomical and morphological classification, ultrasound screening of CCA, ultrasound findings of MF-CCA, PI-CCA, ID-CCA, the use of CT in CCA diagnosis, staging and treatment planning, CT volumetry and estimation of future liver remnant, post-treatment follow-up and surveillance, MRI imaging, Positron Emission Tomography (PET)/CT, limitations to contrast studies and resolution, internal receivers for CCA imaging, and in vitro imaging of CCA.
Collapse
Affiliation(s)
- Nittaya Chamadol
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Richard Syms
- Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Vallop Laopaiboon
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Julaluck Promsorn
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kulyada Eurboonyanun
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
5
|
Ullah S, Zada M, Basir A, Yoo H. Wireless, Battery-Free, and Fully Implantable Micro-Coil System for 7 T Brain MRI. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:430-441. [PMID: 35657838 DOI: 10.1109/tbcas.2022.3179839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An elegant solution for the concurrent transmission of data and power is essential for implantable wireless magnetic resonance imaging (MRI). This paper presents a self-tuned open interior microcoil (MC) antenna with three useful operating bands of 300 (7 T), 400, and 920 MHz, for blood vessel imaging, data telemetry, and efficient wireless transmission of power, respectively. The proposed open interior MC antenna contains two mirrorlike arms with diameters and lengths of 2.4 mm and 9.8 mm, respectively, to avoid blood flow blockage. To wirelessly show LED glow on a saline based phantom, the MC was fabricated on a flexible polyimide material and combined with a miniaturized rectifier and a micro-LED. Using a path gain, the power transfer efficiency (PTE) of the MC rotation was also analyzed. Additionally, the PTE was calculated for a range of distances between 25 and 60 mm, and a -27.1 dB PTE attained at a distance of of 30 mm. Based on the recommendations of the International Commission on Non-Ionizing Radiation Protection for human brain safety when exposed to radio-frequencies from external transmitter, a specific absorption rate analysis was analyzed. Measurements of the s-parameters were noted using a saline solution and blood vessel model to imitate a realistic human head. They were found to correlate reasonably with the simulated results.
Collapse
|
6
|
Khuntikeo N, Titapun A, Chamadol N, Boonphongsathien W, Sa-Ngiamwibool P, Taylor-Robinson SD, Wadsworth CA, Zhang S, Kardoulaki EM, Syms RRA. In Vitro Intraductal MRI and T2 Mapping of Cholangiocarcinoma Using Catheter Coils. Hepat Med 2020; 12:107-114. [PMID: 32801954 PMCID: PMC7397475 DOI: 10.2147/hmer.s266841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/09/2020] [Indexed: 01/03/2023] Open
Abstract
AIM Diagnostic imaging of early-stage cholangiocarcinoma is challenging. A previous in vitro study of fixed-tissue liver resection specimens investigated T2 mapping as a method of exploiting the locally increased signal-to-noise ratio (SNR) of duodenoscope coils for improved quantitative magnetic resonance imaging (MRI), despite their non-uniform sensitivity. This work applies similar methods to unfixed liver specimens using catheter-based receivers. METHODS Ex vivo intraductal MRI and T2 mapping were carried out at 3T on unfixed resection specimens obtained from cholangiocarcinoma patients immediately after surgery using a catheter coil based on a thin-film magneto-inductive waveguide, inserted directly into an intrahepatic duct. RESULTS Polypoid intraductal cholangiocarcinoma was imaged using fast spin-echo sequences. High-resolution T2 maps were extracted by fitting of data obtained at different echo times to mono-exponential models, and disease-induced changes were correlated with histopathology. An increase in T2 was found compared with fixed specimens and differences in T2 allowed the resolution of tumour tissue and malignant features such as polypoid morphology. CONCLUSION Despite their limited field of view, useful data can be obtained using catheter coils, and T2 mapping offers an effective method of exploiting their local SNR advantage without the need for image correction.
Collapse
Affiliation(s)
- Narong Khuntikeo
- Department. of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Attapol Titapun
- Department. of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nittaya Chamadol
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen40002, Thailand
| | | | - Prakasit Sa-Ngiamwibool
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen40002, Thailand
| | | | | | - Shuo Zhang
- Philips Healthcare Germany, Health Systems, Clinical Science, Hamburg, Germany
| | | | | |
Collapse
|
7
|
Khuntikeo N, Titapun A, Chamadol N, Boonphongsathien W, Sa-Ngiamwibool P, Taylor-Robinson SD, Wadsworth CA, Zhang S, Kardoulaki EM, Young IR, Syms RRA. Improving the Detection of Cholangiocarcinoma: In vitro MRI-Based Study Using Local Coils and T2 Mapping. Hepat Med 2020; 12:29-39. [PMID: 32280284 PMCID: PMC7127873 DOI: 10.2147/hmer.s232392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Aim Cholangiocarcinoma is endemic in southeast Asia, generally developing from liver fluke infestation. However, diagnostic imaging of early-stage disease is challenging. The aim of this work is to investigate relaxometry (specifically, T2 mapping) as a method of exploiting the higher signal-to-noise ratio (SNR) of internal coils for improved reception of magnetic resonance signals, despite their non-uniform sensitivity. Methods Ex vivo T2 mapping was carried out at 3T on fixed resection specimens from Thai cholangiocarcinoma patients using an mGRASE sequence and an endoscope coil based on a thin-film magneto-inductive waveguide and designed ultimately for internal use. Results Disease-induced changes including granulomatous inflammation, intraepithelial neoplasia and intraductal tumours were correlated with histopathology, and relaxation data were compared with mono- and bi-exponential models of T2 relaxation. An approximately 10-fold local advantage in SNR compared to a 16-element torso coil was demonstrated using the endoscope coil, and improved tissue differentiation was obtained without contrast agents. Conclusion The performance advantage above follows directly from the inverse relation between the component of the standard deviation of T2 due to thermal noise and the SNR, and offers an effective method of exploiting the SNR advantage of internal coils. No correction is required, avoiding the need for tracking, relaxing constraints on coil and slice orientation and providing rapid visualization.
Collapse
Affiliation(s)
- Narong Khuntikeo
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Attapol Titapun
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nittaya Chamadol
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Prakasit Sa-Ngiamwibool
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Simon D Taylor-Robinson
- Division of Surgery and Cancer, Imperial College London, Liver Unit, St. Mary's Hospital, London W2 1NY, UK
| | - Christopher A Wadsworth
- Division of Surgery and Cancer, Imperial College London, Liver Unit, St. Mary's Hospital, London W2 1NY, UK
| | - Shuo Zhang
- Philips Healthcare Germany, Health Systems, Clinical Science, Hamburg 22335, Germany
| | | | - Ian R Young
- EEE Department, Imperial College, London SW7 2AZ, UK
| | | |
Collapse
|
8
|
Timilsina R, Fan B, Qian C. Signal Sensitivity Enhancement of High-Spatial-Resolution MR Imaging with a Concatenated Cylindrical Parametric RF-Resonator. IEEE SENSORS JOURNAL 2019; 19:3431-3438. [PMID: 31798350 PMCID: PMC6890421 DOI: 10.1109/jsen.2019.2894298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phased array MRI coils can increase sensitivity of superficial tissues owing to their proximity to the detection region. Deep-lying tissues, on the other hand, do not benefit to the same degree. Here we investigate the use of a localized cylindrically symmetric quadruple frequency resonator concatenated with a double frequency resonator to increase the longitudinal field-of-view (FOV) without compromising the spatial-resolution and detection sensitivity. These concatenated array coils work on the principle of a parametric amplification to provide wireless amplification of the locally detected NMR signal prior to inductively coupling the coil to an external pick-up loop with connection to the system receiver. When both the detectors are activated together, the effective range of both overlay to create a larger FOV enabling better identification of detectable regions. Furthermore, the in-vivo test of the concatenated detector provides a worst-case 5-fold SNR gain in regions separated from the cylindrical surface larger than its own diameter. This proposed approach of concatenated detector realization can be individually activated and manipulated to enlarge the sensitivity-enhanced region without sacrificing their individual performance. Compared to double frequency detectors, quadruple frequency detectors offer more flexibility in the choice of detector dimension, enabling multi-element concatenation over an extended FOV.
Collapse
Affiliation(s)
- Roshan Timilsina
- Department of Radiology, Michigan State University, and with the Department of Physics, Oakland University
| | - Baolei Fan
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA, and with the Hubei University of Science and Technology, Xianning, China
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA, and with the Department of Physics, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|
9
|
Timilsina R, Qian C. A Novel Expandable Catheter Wireless Amplified NMR Detector for MR Sensitivity Accessing the Kidney in Rodent Model. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:444-453. [PMID: 30624224 PMCID: PMC6446567 DOI: 10.1109/tbcas.2018.2890657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper demonstrates the enlarged effective range for MRI sensitivity enhancement with a deformable catheter MRI coils integrated with a wirelessly powered amplifier. The expandable balloon wireless amplified nuclear magnetic resonance detector (WAND) is constructed on a copper-clad polyimide film to resonate at the first and second harmonics of the proton Larmor frequency at 7 Tesla. The WAND is then mounted on a balloon catheter system for easy delivery inside confined orifice. Upon reaching the region of interest, it is unfolded out of the sheath tube to increase its effective size. Magnetic resonance (MR) imaging experiments with and without the WAND are performed both in a water phantom and in a live rat to evaluate the WAND's sensitivity advantage. Expanded from a 3 mm diameter in its folded state, this deformable WAND can change its width by >100% in its inflated state to at least 6 mm, leading to a sensitive detection region extending to up to 20 mm in the transverse direction. When the deformable WAND is placed in an artery in the region of the kidney of a live rat, it could achieve at least a 10-fold SNR gain over images acquired by a standard external detector of 22 mm diameter, even though the region of interest is separated from the WAND's surface by a distance larger than the WAND's own width. The proposed expandable catheter WAND could significantly enlarge the effective range for MR sensitivity enhancement in-vivo, enabling versatile applications in interventional MRI.
Collapse
|
10
|
Zeng X, Xu S, Cao C, Wang J, Qian C. Wireless amplified NMR detector for improved visibility of image contrast in heterogeneous lesions. NMR IN BIOMEDICINE 2018; 31:e3963. [PMID: 30011104 PMCID: PMC6108921 DOI: 10.1002/nbm.3963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 05/23/2023]
Abstract
To demonstrate the capability of a wireless amplified NMR detector (WAND) to improve the visibility of lesion heterogeneity without the use of exogenous contrast agents, a cylindrically symmetric WAND was constructed to sensitively detect and simultaneously amplify MR signals emitted from adjacent tissues. Based on a two-leg high-pass birdcage coil design, this WAND could be activated by a pumping field aligned along the main field (B0 ), without perturbing MR signal reception. Compared with an equivalent pair of external detectors, the WAND could achieve more than 10-fold gain for immediately adjacent regions. Even for regions with 3.4 radius distance separation from the detector's cylindrical center, the WAND was at least 1.4 times more sensitive than an equivalent pair of surface arrays or at least twice as sensitive as a single-sided external surface detector. When the WAND was inserted into a rat's rectum to observe adjacent tumors implanted beneath the mucosa, it could enhance the detection sensitivity of lesion regions, and thus enlarge the observable signal difference between heterogeneous tissues and clearly identify lesion boundaries as continuous lines in the intensity gradient profile. Hyperintense regions observable by the WAND existed due to higher levels of blood supply, which was indicated by a similar pattern of signal enhancement after contrast agent administration. By better observing the endogenous signal contrast, the endoluminal WAND could characterize lesions without the use of exogenous contrast agents, and thus reduce contrast-induced toxicity.
Collapse
Affiliation(s)
- Xianchun Zeng
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, China
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Shengqiang Xu
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Changyong Cao
- Laboratory of Soft Machines and Electronics, School of Packaging, Departments of Mechanical, Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
- Correspondence: Jian Wang, 30 Gaotanyan Rd, Chongqing, China, 400038, Tel: +86 (23) 68754419; Fax: +86 (23) 65463026, , Chunqi Qian, 846 Service Rd, East Lansing, MI, 48824, Tel: +1 (517) 884-3292; Fax: +1 (517) 432-2849,
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI, USA
- Correspondence: Jian Wang, 30 Gaotanyan Rd, Chongqing, China, 400038, Tel: +86 (23) 68754419; Fax: +86 (23) 65463026, , Chunqi Qian, 846 Service Rd, East Lansing, MI, 48824, Tel: +1 (517) 884-3292; Fax: +1 (517) 432-2849,
| |
Collapse
|
11
|
A Novel Metamaterial-Inspired RF-coil for Preclinical Dual-Nuclei MRI. Sci Rep 2018; 8:9190. [PMID: 29907834 PMCID: PMC6003915 DOI: 10.1038/s41598-018-27327-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/24/2018] [Indexed: 11/12/2022] Open
Abstract
In this paper, we propose, design and test a new dual-nuclei RF-coil inspired by wire metamaterial structures. The coil operates as a result of resonant excitation of hybridized eigenmodes in multimode flat periodic structures comprising several coupled thin metal strips. It was shown that the field distribution of the coil (i.e. penetration depth) can be controlled independently at two different Larmor frequencies by selecting a proper eigenmode in each of two mutually orthogonal periodic structures. The proposed coil requires no lumped capacitors to be tuned and matched. In order to demonstrate the performance of the new design, an experimental preclinical coil for 19F/1H imaging of small animals at 7.05T was engineered and tested on a homogeneous liquid phantom and in-vivo. The results demonstrate that the coil was both well tuned and matched at two Larmor frequencies and allowed image acquisition at both nuclei. In an in-vivo experiment, it was shown that without retuning the setup it was subsequently possible to obtain anatomical 1H images of a mouse under anesthesia with 19F images of a tiny tube filled with a fluorine-containing liquid and attached to the body of the mouse.
Collapse
|
12
|
Alipour A, Gokyar S, Algin O, Atalar E, Demir HV. An inductively coupled ultra-thin, flexible, and passive RF resonator for MRI marking and guiding purposes: Clinical feasibility. Magn Reson Med 2017; 80:361-370. [PMID: 29148092 DOI: 10.1002/mrm.26996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 09/17/2017] [Accepted: 10/15/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE The purpose of this study is to develop a wireless, flexible, ultra-thin, and passive radiofrequency-based MRI resonant fiducial marker, and to validate its feasibility in a phantom model and several body regions. METHODS Standard microfabrication processing was used to fabricate the resonant marker. The proposed marker consists of two metal traces in the shape of a square with an edge length of 8 mm, with upper and lower traces connected to each other by a metalized via. A 3T MRI fiducial marking procedure was tested in phantom and ex vivo, and then the marker's performance was evaluated in an MRI experiment using humans. The radiofrequency safety was also tested using temperature sensors in the proximity of the resonator. RESULTS A flexible resonator with a thickness of 115 μm and a dimension of 8 × 8 mm was obtained. The experimental results in the phantom show that at low background flip angles (6-18°), the resonant marker enables precise and rapid visibility, with high marker-to-background contrast and signal-to-noise ratio improvement of greater than 10 in the vicinity of the marker. Temperature analysis showed a specific absorption ratio gain of 1.3. Clinical studies further showed a successful biopsy procedure using the fiducial marking functionality of our device. CONCLUSIONS The ultra-thin and flexible structure of this wireless flexible radiofrequency resonant marker offers effective and safe MR visualization with high feasibility for anatomic marking and guiding at various regions of the body. Magn Reson Med 80:361-370, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Akbar Alipour
- Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center (UMRAM) National Nanotechnology Research Center and Institute of Material Science and Nanotechnology (UNAM) Department of Physics, Bilkent University, Bilkent, Ankara, Turkey
| | - Sayim Gokyar
- Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center (UMRAM) National Nanotechnology Research Center and Institute of Material Science and Nanotechnology (UNAM) Department of Physics, Bilkent University, Bilkent, Ankara, Turkey
| | - Oktay Algin
- Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center (UMRAM) National Nanotechnology Research Center and Institute of Material Science and Nanotechnology (UNAM) Department of Physics, Bilkent University, Bilkent, Ankara, Turkey.,Department of Radiology, Ankara Ataturk Training and Research Hospital, Ankara, Turkey
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center (UMRAM) National Nanotechnology Research Center and Institute of Material Science and Nanotechnology (UNAM) Department of Physics, Bilkent University, Bilkent, Ankara, Turkey
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, National Magnetic Resonance Research Center (UMRAM) National Nanotechnology Research Center and Institute of Material Science and Nanotechnology (UNAM) Department of Physics, Bilkent University, Bilkent, Ankara, Turkey.,LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Mathematical and Physical Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
13
|
Wireless MRI Colonoscopy for Sensitive Imaging of Vascular Walls. Sci Rep 2017; 7:4228. [PMID: 28652614 PMCID: PMC5484665 DOI: 10.1038/s41598-017-03902-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/08/2017] [Indexed: 01/08/2023] Open
Abstract
A Wireless Amplified NMR Detector (WAND) with cylindrical symmetry has been fabricated and non-surgically inserted into a rodent lower digestive track to improve the imaging quality of deep-lying vessels inside the abdominal cavity. This symmetric detector has a compact design using two end-rings and two vertical legs to create two orthogonal resonance modes. Based on the principle of parametric amplification, the detector can harvest wireless pumping power with its end-rings and amplify Magnetic Resonance signals induced on its vertical legs. With good longitudinal and azimuthal homogeneity, the WAND can achieve up to 21-times sensitivity gain over a standard external detector for immediately adjacent regions, and at least 5-times sensitivity gain for regions separated by one diameter away from the detector's cylindrical surface. The WAND can approach the region of interest through the lower digestive track, similar as a colonoscopy detector. But unlike an optical camera, the amplified MR detector can "see" across intestinal boundaries and clearly identify the walls of bifurcated vessels that are susceptible to atherosclerotic lesions. In addition to vascular wall imaging, this detector may also be used as a swallowable capsule to enhance the detection sensitivity of deep-lying organs near the digestive track.
Collapse
|
14
|
Zeng X, Barbic M, Chen L, Qian C. Sensitive enhancement of vessel wall imaging with an endoesophageal Wireless Amplified NMR Detector (WAND). Magn Reson Med 2016; 78:2048-2054. [PMID: 27917520 DOI: 10.1002/mrm.26562] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 11/06/2022]
Abstract
PURPOSE To improve the imaging quality of vessel walls with an endoesophageal Wireless Amplified NMR Detector (WAND). METHODS A cylindrically shaped double-frequency resonator has been constructed with a single metal wire that is self-connected by a pair of nonlinear capacitors. The double-frequency resonator can convert wirelessly provided pumping power into amplified MR signals. This compact design makes the detector easily insertable into a rodent esophagus. RESULTS The detector has good longitudinal and axial symmetry. Compared to an external surface coil, the WAND can enhance detection sensitivity by at least 5 times, even when the distance separation between the region of interest and the detector's cylindrical surface is twice the detector's own radius. Such detection capability enables us to observe vessel walls near the aortic arch and carotid bifurcation with elevated sensitivity. CONCLUSION A cylindrical MRI detector integrated with a wireless-powered amplifier has been developed as an endoesophageal detector to enhance detection sensitivity of vessel walls. This detector can greatly improve the imaging quality for vessel regions that are susceptible to atherosclerotic lesions. Magn Reson Med 78:2048-2054, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Xianchun Zeng
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Mladen Barbic
- Applied Physics and Instrumentation Group, Howard Huge Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - Liangliang Chen
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
15
|
Dorez H, Sablong R, Canaple L, Saint-Jalmes H, Gaillard S, Moussata D, Beuf O. Endoluminal high-resolution MR imaging protocol for colon walls analysis in a mouse model of colitis. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:657-69. [PMID: 26965510 DOI: 10.1007/s10334-016-0539-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/03/2016] [Accepted: 02/18/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE An endoluminal magnetic resonance (MR) imaging protocol including the design of an endoluminal coil (EC) was defined for high-spatial-resolution MR imaging of mice gastrointestinal walls at 4.7 T. MATERIALS AND METHODS A receive-only radiofrequency single-loop coil was developed for mice colon wall imaging. Combined with a specific protocol, the prototype was first characterized in vitro on phantoms and on vegetables. Signal-to-noise ratio (SNR) profiles were compared with a quadrature volume birdcage coil (QVBC). Endoluminal MR imaging protocol combined with the EC was assessed in vivo on mice. RESULTS The SNR measured close to the coil is significantly higher (10 times and up to 3 mm of the EC center) than the SNR measured with the QVBC. The gain in SNR can be used to reduce the in-plane pixel size up to 39 × 39 µm(2) (234 µm slice thickness) without time penalty. The different colon wall layers can only be distinguished on images acquired with the EC. CONCLUSION Dedicated EC provides suitable images for the assessment of mice colon wall layers. This proof of concept provides gains in spatial resolution and leads to adequate protocols for the assessment of human colorectal cancer, and can now be used as a new imaging tool for a better understanding of the pathology.
Collapse
Affiliation(s)
- Hugo Dorez
- Université de Lyon, CREATIS, CNRS UMR 5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France.
| | - Raphaël Sablong
- Université de Lyon, CREATIS, CNRS UMR 5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France
| | - Laurence Canaple
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon 1, UMR 5242 CNRS, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Hervé Saint-Jalmes
- LTSI, INSERM U642, Université Rennes 1, Rennes, France.,CRLCC, Centre Eugène Marquis, Rennes, France
| | - Sophie Gaillard
- Université de Lyon, CREATIS, CNRS UMR 5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France
| | - Driffa Moussata
- Université de Lyon, CREATIS, CNRS UMR 5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France.,Hôpital Régional Universitaire de Tours-Service Hépato-Gastroentérologie, Tours, France
| | - Olivier Beuf
- Université de Lyon, CREATIS, CNRS UMR 5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
16
|
Venkateswaran M, Unal O, Hurley S, Samsonov A, Wang P, Fain SB, Kurpad KN. Modeling Endovascular MRI Coil Coupling With Transmit RF Excitation. IEEE Trans Biomed Eng 2016; 64:70-77. [PMID: 26960218 DOI: 10.1109/tbme.2016.2538279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To model inductive coupling of endovascular coils with transmit RF excitation for selecting coils for MRI-guided interventions. METHODS Independent and computationally efficient FEM models are developed for the endovascular coil, cable, transmit excitation, and imaging domain. Electromagnetic and circuit solvers are coupled to simulate net B1 + fields and induced currents and voltages. Our models are validated using the Bloch-Siegert B1 + mapping sequence for a series-tuned multimode coil, capable of tracking, wireless visualization, and high-resolution endovascular imaging. RESULTS Validation shows good agreement at 24-, 28-, and 34-μT background RF excitation within experimental limitations. Quantitative coil performance metrics agree with simulation. A parametric study demonstrates tradeoff in coil performance metrics when varying number of coil turns. Tracking, imaging, and wireless marker multimode coil features and their integration is demonstrated in a pig study. CONCLUSION Developed models for the multimode coil were successfully validated. Modeling for geometric optimization and coil selection serves as a precursor to time consuming and expensive experiments. Specific applications demonstrated include parametric optimization, coil selection for a cardiac intervention, and an animal imaging experiment. SIGNIFICANCE Our modular, adaptable, and computationally efficient modeling approach enables rapid comparison, selection, and optimization of inductively coupled coils for MRI-guided interventions.
Collapse
|
17
|
Weiss K, Bottomley PA, Weiss RG. On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo ³¹P MRS. NMR IN BIOMEDICINE 2015; 28:694-705. [PMID: 25914379 PMCID: PMC4433167 DOI: 10.1002/nbm.3302] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 05/03/2023]
Abstract
Adenosine triphosphate (ATP) is absolutely required to fuel normal cyclic contractions of the heart. The creatine kinase (CK) reaction is a major energy reserve reaction that rapidly converts creatine phosphate (PCr) to ATP during the cardiac cycle and at times of stress and ischemia, but is significantly impaired in conditions such as hypertrophy and heart failure. Because the magnitudes of possible in vivo cyclic changes in cardiac high-energy phosphates (HEPs) during the cardiac cycle are not well known from previous work, this study uses mathematical modeling to assess whether, and to what extent, cyclic variations in HEPs and in the rate of ATP synthesis through CK (CK flux) could exist in the human heart, and whether they could be measured with current in vivo (31)P MRS methods. Multi-site exchange models incorporating enzymatic rate equations were used to study the cyclic dynamics of the CK reaction, and Bloch equations were used to simulate (31)P MRS saturation transfer measurements of the CK reaction. The simulations show that short-term buffering of ATP by CK requires temporal variations over the cardiac cycle in the CK reaction velocities modeled by enzymatic rate equations. The maximum variation in HEPs in the normal human heart beating at 60 min(-1) was approximately 0.4 mM and proportional to the velocity of ATP hydrolysis. Such HEP variations are at or below the current limits of detection by in vivo (31)P MRS methods. Bloch equation simulations show that (31)P MRS saturation transfer estimates the time-averaged, pseudo-first-order forward rate constant, k(f,ap)', of the CK reaction, and that periodic short-term fluctuations in kf ' and CK flux are not likely to be detectable in human studies employing current in vivo (31)P MRS methods.
Collapse
Affiliation(s)
- Kilian Weiss
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul A. Bottomley
- Division of Magnetic Resonance Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert G. Weiss
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Zhang C, Zhao L, Ma X, Zhang Z, Fan Z. A feasibility study of an intravascular imaging antenna to image atherosclerotic plaques in Swine using 3.0 T MRI. PLoS One 2014; 9:e108301. [PMID: 25259585 PMCID: PMC4178132 DOI: 10.1371/journal.pone.0108301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 08/28/2014] [Indexed: 12/04/2022] Open
Abstract
Purpose To investigate the feasibility of an intravascular imaging antenna to image abdominal aorta atherosclerotic plaque in swine using 3.0T magnetic resonance imaging (MRI). Methods Atherosclerotic model was established in 6 swine. After 8 months, swine underwent an MR examination, which was performed using an intravascular imaging guide-wire, and images of the common iliac artery and the abdominal aorta were acquired. Intravascular ultrasound (IVUS) was performed in the right femoral artery; images at the same position as for the MR examination were obtained. The luminal border and external elastic membrane of the targeted arteries were individually drawn in the MR and IVUS images. After co-registering these images, the vessel, lumen, and vessel wall areas and the plaque burden in the same lesions imaged using different modalities were calculated and compared. The diagnostic accuracy of intravascular MR examination in delineating the vessel wall and detecting plaques were analyzed and compared using IVUS. Results Compared with IVUS, good agreement was found between MRI and IVUS for delineating vessel, lumen, and vessel wall areas and plaque burden (r value: 0.98, 0.95, 0.96 and 0.91, respectively; P<0.001). Conclusion Compared with IVUS, using an intravascular imaging guide-wire to image deep seated arteries allowed determination of the vessel, lumen and vessel wall areas and plaque size and burden. This may provide an alternative method for detecting atherosclerotic plaques in the future.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaohai Ma
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- * E-mail:
| | - Zhaoqi Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhanming Fan
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Hegde SS, Zhang Y, Bottomley PA. Acceleration and motion-correction techniques for high-resolution intravascular MRI. Magn Reson Med 2014; 74:452-61. [PMID: 25163750 DOI: 10.1002/mrm.25436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 11/07/2022]
Abstract
PURPOSE High-resolution intravascular (IV) MRI is susceptible to degradation from physiological motion and requires high frame-rates for true endoscopy. Traditional cardiac-gating techniques compromise efficiency by reducing the effective scan rate. Here we test whether compressed sensing (CS) reconstruction and ungated motion-compensation using projection shifting, could provide faster motion-suppressed, IVMRI. THEORY AND METHODS CS reconstruction is developed for undersampled Cartesian and radial imaging using a new IVMRI-specific cost function to effectively increase imaging speed. A new motion correction method is presented wherein individual IVMRI projections are shifted based on the IVMRI detector's intrinsic amplitude and phase properties. The methods are tested at 3 Tesla (T) in fruit, human vessel specimens, and a rabbit aorta in vivo. Images are compared using structural-similarity and "spokal variation" indices. RESULTS Although some residual artifacts persisted, CS acceleration and radial motion compensation strategies reduced motion artifact in vitro and in vivo, allowing effective accelerations of up to eight-fold at 200-300 µm resolution. CONCLUSION The 3T IVMRI detectors are well-suited to CS and motion correction strategies based on their intrinsic radially-sparse sensitivity profiles and high signal-to-noise ratios.
Collapse
Affiliation(s)
- Shashank Sathyanarayana Hegde
- Russell H. Morgan Department of Radiology & Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yi Zhang
- Russell H. Morgan Department of Radiology & Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Paul A Bottomley
- Russell H. Morgan Department of Radiology & Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Zalesskiy SS, Danieli E, Blümich B, Ananikov VP. Miniaturization of NMR systems: desktop spectrometers, microcoil spectroscopy, and "NMR on a chip" for chemistry, biochemistry, and industry. Chem Rev 2014; 114:5641-94. [PMID: 24779750 DOI: 10.1021/cr400063g] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sergey S Zalesskiy
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Moscow, 119991, Russia
| | | | | | | |
Collapse
|
21
|
Etezadi-Amoli M, Stang P, Kerr A, Pauly J, Scott G. Interventional device visualization with toroidal transceiver and optically coupled current sensor for radiofrequency safety monitoring. Magn Reson Med 2014; 73:1315-27. [PMID: 24691876 DOI: 10.1002/mrm.25187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 01/25/2014] [Accepted: 01/28/2014] [Indexed: 11/09/2022]
Abstract
PURPOSE The development of catheters and guidewires that are safe from radiofrequency (RF) -induced heating and clearly visible against background tissue is a major challenge in interventional MRI. An interventional imaging approach using a toroidal transmit-receive (transceive) coil is presented. This toroidal transceiver allows controlled, low levels of RF current to flow in the catheter/guidewire for visualization, and can be used with conductive interventional devices that have a localized low-impedance tip contact. METHODS Toroidal transceivers were built, and phantom experiments were performed to quantify transmit power levels required for device visibility and to detect heating hazards. Imaging experiments in a pig cadaver tested the extendibility to higher field strength and nonphantom settings. A photonically powered optically coupled toroidal current sensor for monitoring induced RF currents was built, calibrated, and tested using an independent image-based current estimation method. RESULTS Results indicate that high signal-to-noise ratio visualization is achievable using milliwatts of transmit power-power levels orders of magnitude lower than levels that induce measurable heating in phantom tests. Agreement between image-based current estimates and RF current sensor measurements validates sensor accuracy. CONCLUSION The toroidal transceiver, integrated with power and current sensing, could offer a promising platform for safe and effective interventional device visualization.
Collapse
Affiliation(s)
- Maryam Etezadi-Amoli
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | | | | | | | | |
Collapse
|
22
|
Karimi H, Dominguez-Viqueira W, Cunningham CH. Spatial encoding using the nonlinear field perturbations from magnetic materials. Magn Reson Med 2013; 72:399-408. [PMID: 24105884 DOI: 10.1002/mrm.24950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 11/07/2022]
Abstract
PURPOSE A proof-of-concept study was performed to assess the technical feasibility of using magnetic materials to generate spatial encoding fields. THEORY AND METHODS Spatially varying magnetic fields were generated by the placement of markers with different volume susceptibilities within the imaging volume. No linear gradients were used for spatial encoding during the signal acquisition. A signal-encoding model is described for reconstructing the images encoded with these field perturbations. Simulation and proof-of-concept experimental results are presented. Experiments were performed using field perturbations from a cylindrical marker as an example of the new encoding fields. Based on this experimental setup, annular rings were reconstructed from signals encoded with the new fields. RESULTS Simulation results were presented for different acquisition parameters. Proof-of-concept was supported by the correspondence of regions in an image reconstructed from experimental data compared to those in a conventional gradient-echo image. Experimental results showed that inclusions of dimensions 1.5 mm in size could be resolved with the experimental setup. CONCLUSION This study shows the technical feasibility of using magnetic markers to produce encoding fields. Magnetic materials will allow generating spatial encoding fields, which can be tailored to an imaging application with less complexity and at lower cost compared to the use of gradient inserts.
Collapse
Affiliation(s)
- Hirad Karimi
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Physical Sciences Department, Toronto, Ontario, Canada
| | | | | |
Collapse
|
23
|
Syms RRA, Young IR, Ahmad MM, Taylor-Robinson SD, Rea M. Magneto-inductive catheter receiver for magnetic resonance imaging. IEEE Trans Biomed Eng 2013; 60:2421-31. [PMID: 23591471 DOI: 10.1109/tbme.2013.2258020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A catheter-based RF receiver for internal magnetic resonance imaging is demonstrated. The device consists of a double-sided thin-film circuit, wrapped around a hollow catheter and sealed in place with heat-shrink tubing. Signals are detected using a resonant LC circuit at the catheter tip and transmitted along the catheter using an array of coupled LC circuits arranged as a magneto-inductive waveguide, a form of low frequency metamaterial. Coupling to a conventional RF system is accomplished using a demountable inductive transducer. Protection against external B 1 and E fields is obtained by using figure-of-eight elements with an electrical length shorter than that of an immersed dipole. The system is primarily designed for biliary imaging, can pass the biopsy channel of a side-opening duodenoscope, and is guidewire-compatible, potentially allowing clinicians to implement MR image guided procedures without changing their standard practice. Decoupling against B 1 and E fields is verified, and in vitro (1)H magnetic resonance imaging with submillimeter resolution is demonstrated at 1.5 T using phantoms.
Collapse
Affiliation(s)
- Richard R A Syms
- Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
24
|
Qian C, Zabow G, Koretsky A. Engineering novel detectors and sensors for MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 229:67-74. [PMID: 23245489 PMCID: PMC4169702 DOI: 10.1016/j.jmr.2012.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 06/01/2023]
Abstract
Increasing detection sensitivity and image contrast have always been major topics of research in MRI. In this perspective, we summarize two engineering approaches to make detectors and sensors that have potential to extend the capability of MRI. The first approach is to integrate miniaturized detectors with a wireless powered parametric amplifier to enhance the detection sensitivity of remotely coupled detectors. The second approach is to microfabricate contrast agents with encoded multispectral frequency shifts, whose properties can be specified and fine-tuned by geometry. These two complementary approaches will benefit from the rapid development in nanotechnology and microfabrication which should enable new opportunities for MRI.
Collapse
Affiliation(s)
- Chunqi Qian
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892
| | - Gary Zabow
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892
- Electromagnetics Division, National Institute of Standards and Technology, Boulder, CO, 80305
| | - Alan Koretsky
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892
| |
Collapse
|
25
|
An intravascular loopless monopole antenna for vessel wall MR imaging at 3.0 T. Magn Reson Imaging 2013; 31:150-5. [PMID: 22902470 DOI: 10.1016/j.mri.2012.06.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/05/2012] [Accepted: 06/26/2012] [Indexed: 11/21/2022]
|
26
|
Sonmez AE, Webb AG, Spees WM, Ozcan A, Tsekos NV. A system for endoscopic mechanically scanned localized proton MR and light-induced fluorescence emission spectroscopies. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 222:16-25. [PMID: 22820260 DOI: 10.1016/j.jmr.2012.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/08/2012] [Accepted: 06/14/2012] [Indexed: 06/01/2023]
Abstract
Molecular and near-cellular modalities offer new opportunities in assessing living tissue in situ, and multimodality approaches, which offer complementary information, may lead to improved characterization of tissue pathophysiology benefiting diagnosis and focal therapy. However, many such modalities are limited by their low penetration through tissue, which has led to minimally invasive trans-cannula approaches to place the corresponding sensors locally at the area of interest. This work presents a system for performing localized fluorescence emission and proton magnetic resonance (MR) spectroscopies via endoscopic access. The in-house developed side-firing 1.9-mm wide dual-sensor integrates a three-fiber optical sensor for fluorescence emission optical spectroscopy and a 1-mm circular radiofrequency (RF) coil for localized MR proton spectroscopy. An MR-compatible manipulator was developed for carrying and mechanically translating the dual-sensor along a linear access channel. The hardware and software control of the system allows reconfigurable synchronization of the manipulator-assisted translation of the sensor, and MR and optical data collection. The manipulator serves as the mechanical link for the three modalities and MR images, MR spectra and optical spectra are inherently co-registered to the MR scanner coordinate system. These spectra were then used to generate spatio-spectral maps of the fluorophores and proton MR-signal sources in three-compartment phantoms with optically- and MR-visible, and distinguishable, materials. These data demonstrate a good spatial match between MR images, MR spectra and optical spectra along the scanned path. In addition to basic research, such a system may have clinical applications for assessing and characterizing cancer in situ, as well as guiding focal therapies.
Collapse
Affiliation(s)
- Ahmet E Sonmez
- Medical Robotics Laboratory Department of Computer Science at University of Houston, Houston, TX, United States.
| | | | | | | | | |
Collapse
|
27
|
Qian D, Bottomley PA. High-resolution intravascular magnetic resonance quantification of atherosclerotic plaque at 3T. J Cardiovasc Magn Reson 2012; 14:20. [PMID: 22448884 PMCID: PMC3340302 DOI: 10.1186/1532-429x-14-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The thickness of fibrous caps (FCT) of atherosclerotic lesions is a critical factor affecting plaque vulnerability to rupture. This study tests whether 3 Tesla high-resolution intravascular cardiovascular magnetic resonance (CMR) employing tiny loopless detectors can identify lesions and accurately measure FCT in human arterial specimens, and whether such an approach is feasible in vivo using animal models. METHODS Receive-only 2.2 mm and 0.8 mm diameter intravascular loopless CMR detectors were fabricated for a clinical 3 Tesla MR scanner, and the absolute signal-to-noise ratio determined. The detectors were applied in a two-step protocol comprised of CMR angiography to identify atherosclerotic lesions, followed by high-resolution CMR to characterize FCT, lesion size, and/or vessel wall thickness. The protocol was applied in fresh human iliac and carotid artery specimens in a human-equivalent saline bath. Mean FCT measured by 80 μm intravascular CMR was compared with histology of the same sections. In vivo studies compared aortic wall thickness and plaque size in healthy and hyperlipidemic rabbit models, with post-mortem histology. RESULTS Histology confirmed plaques in human specimens, with calcifications appearing as signal voids. Mean FCT agreed with histological measurements within 13% on average (correlation coefficient, R = 0.98; Bland-Altman analysis, -1.3 ± 68.9 μm). In vivo aortic wall and plaque size measured by 80 μm intravascular CMR agreed with histology. CONCLUSION Intravascular 3T CMR with loopless detectors can both locate atherosclerotic lesions, and accurately measure FCT at high-resolution in a strategy that appears feasible in vivo. The approach shows promise for quantifying vulnerable plaque for evaluating experimental therapies.
Collapse
Affiliation(s)
- Di Qian
- Division of MR Research, Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Paul A Bottomley
- Division of MR Research, Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
- Division of MR Research, Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, 600 N Wolfe St, Park 310, Baltimore, MD, USA
| |
Collapse
|
28
|
Qian C, Murphy-Boesch J, Dodd S, Koretsky A. Sensitivity enhancement of remotely coupled NMR detectors using wirelessly powered parametric amplification. Magn Reson Med 2012; 68:989-96. [PMID: 22246567 DOI: 10.1002/mrm.23274] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 10/02/2011] [Accepted: 10/05/2011] [Indexed: 11/06/2022]
Abstract
A completely wireless detection coil with an integrated parametric amplifier has been constructed to provide local amplification and transmission of MR signals. The sample coil is one element of a parametric amplifier using a zero-bias diode that mixes the weak MR signal with a strong pump signal that is obtained from an inductively coupled external loop. The NMR sample coil develops current gain via reduction in the effective coil resistance. Higher gain can be obtained by adjusting the level of the pumping power closer to the oscillation threshold, but the gain is ultimately constrained by the bandwidth requirement of MRI experiments. A feasibility study here shows that on a NaCl/D(2) O phantom, (23) Na signals with 20 dB of gain can be readily obtained with a concomitant bandwidth of 144 kHz. This gain is high enough that the integrated coil with parametric amplifier, which is coupled inductively to external loops, can provide sensitivity approaching that of direct wire connection.
Collapse
Affiliation(s)
- Chunqi Qian
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
29
|
Kurpad KN, Unal O. Multimode intravascular RF coil for MRI-guided interventions. J Magn Reson Imaging 2011; 33:995-1002. [PMID: 21448969 DOI: 10.1002/jmri.22506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To demonstrate the feasibility of using a single intravascular radiofrequency (RF) probe connected to the external magnetic resonance imaging (MRI) system via a single coaxial cable to perform active tip tracking and catheter visualization and high signal-to-noise ratio (SNR) intravascular imaging. MATERIALS AND METHODS A multimode intravascular RF coil was constructed on a 6F balloon catheter and interfaced to a 1.5T MRI scanner via a decoupling circuit. Bench measurements of coil impedances were followed by imaging experiments in saline and phantoms. RESULTS The multimode coil behaves as an inductively coupled transmit coil. The forward-looking capability of 6 mm was measured. A greater than 3-fold increase in SNR compared to conventional imaging using optimized external coil was demonstrated. Simultaneous active tip tracking and catheter visualization was demonstrated. CONCLUSION It is feasible to perform 1) active tip tracking, 2) catheter visualization, and 3) high SNR imaging using a single multimode intravascular RF coil that is connected to the external system via a single coaxial cable.
Collapse
Affiliation(s)
- Krishna N Kurpad
- Department of Radiology, University of Wisconsin, Madison, WI, USA.
| | | |
Collapse
|
30
|
Celik H, Atalar E. Reverse polarized inductive coupling to transmit and receive radiofrequency coil arrays. Magn Reson Med 2011; 67:446-56. [PMID: 21656566 DOI: 10.1002/mrm.23030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 04/25/2011] [Accepted: 05/05/2011] [Indexed: 11/07/2022]
Abstract
In this study, the reverse polarization method is implemented using transmit and receive arrays to improve the visibility of the interventional devices. Linearly polarized signal sources--inductively and receptively coupled radiofrequency coils--are used in the experimental setups to demonstrate the ability of the method to separate these sources from a forward polarized anatomy signal. Two different applications of the reverse polarization method are presented here: (a) catheter tracking and (b) fiducial marker visualization, in both of which transmit and receive arrays are used. The performance of the reverse polarization method was further tested with phantom and volunteer studies, and the results proved the feasibility of this method with transmit and receive arrays.
Collapse
Affiliation(s)
- Haydar Celik
- National Research Center for Magnetic Resonance (UMRAM), Bilkent University, Ankara, Turkey
| | | |
Collapse
|
31
|
Bottomley PA, Kumar A, Edelstein WA, Allen JM, Karmarkar PV. Designing passive MRI-safe implantable conducting leads with electrodes. Med Phys 2010; 37:3828-43. [PMID: 20831091 DOI: 10.1118/1.3439590] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The presence of implanted electronic devices with conducting leads and electrodes are contraindicated for magnetic resonance imaging (MRI), denying many patients its potential benefits. The prime concern is MRI's radio frequency (RF) fields, which can cause elevated local specific absorption rates (SARs) and potential heat injury. The purpose of this article is to develop and compare a range of passive implantable "MRI-safe" lead designs. METHODS Conducting leads incorporating different lengths (3-75 cm), insulation thicknesses (0-105 microm), resistances (100-3000 omega), coiled conductors (inner diameter < or = 1.2 mm), high-impedance (135-2700 omega) RF traps, and single-coiled and triple-coiled coaxial-wound "billabong" leads with reversed coil sections that oppose and reduce the induced current, are investigated both experimentally using local temperature measurements, and by numerical full-wave electromagnetic field analysis of the local SAR, in three different-sized bioanalogous model saline-gel phantoms at 1.5 T MRI and 4 W/kg exposure. RESULTS In all designs, the maximum computed 1 g average SAR and experimental temperature rise occur at the bare electrodes. Electrode heating increases with lead insulation thickness and peaks for uncoiled leads 25-50 cm long. A reasonable match between computed SAR and the point SAR estimated from thermal sensors obtained by approximating the computation volume to that of the thermal probes. Factors that maximize the impedance of leads with resistive, coiled, RF trap and billabong elements can effectively limit heating below 1-2 degrees, but folded lead configurations can be a concern. The RF trap and billabong designs can both support multiple conductors and electrodes, with billabong prototype leads also heating <1 degrees C when tested for 3 T MRI. CONCLUSIONS Lead insulation and length strongly affect implanted lead safety to RF exposure during MRI. Lead designs employing impedance and reversed winding sections offer hope for the development of passive, MRI-safe, implantable conducting leads for future human use.
Collapse
Affiliation(s)
- Paul A Bottomley
- SurgiVision, Inc., Suite B307, 1101 East 33rd Street, Baltimore, Maryland 21218, USA.
| | | | | | | | | |
Collapse
|
32
|
Kocaturk O, Kim AH, Saikus CE, Guttman MA, Faranesh AZ, Ozturk C, Lederman RJ. Active two-channel 0.035'' guidewire for interventional cardiovascular MRI. J Magn Reson Imaging 2009; 30:461-5. [PMID: 19629968 DOI: 10.1002/jmri.21844] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To develop an "active" (receiver-coil) clinical-grade guidewire with enhanced visibility for magnetic resonance imaging (MRI) and favorable mechanical characteristics for interventional MRI procedures that require conspicuous intravascular instruments distinguishable from surrounding tissues. MATERIALS AND METHODS We designed a 0.035-inch guidewire combining two antenna designs on separate channels. A loop antenna visualizes the tip and a dipole antenna visualizes the whole shaft. We compared mechanical characteristics of this guidewire with x-ray alternatives and tested MRI performance at 1.5T in vitro and in vivo in swine. RESULTS Images reflected tip position within 0.97 +/- 0.42 mm and afforded whole-shaft visibility under expected conditions without sacrificing device size or handling. We report tip stiffness, torquability, and pushability comparable to commercial interventional guidewires. CONCLUSION Our clinical-grade 0.035-inch active guidewire is conspicuous under MRI and has mechanical performance comparable to x-ray interventional guidewires. This may enable a range of interventional procedures using real-time MRI.
Collapse
Affiliation(s)
- Ozgur Kocaturk
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1061, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Sathyanarayana S, Bottomley PA. MRI endoscopy using intrinsically localized probes. Med Phys 2009; 36:908-19. [PMID: 19378751 DOI: 10.1118/1.3077125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Magnetic resonance imaging (MRI) is traditionally performed with fixed externally applied gradient magnetic fields and is hence intrinsically locked to the laboratory frame of reference (FoR). Here a method for high-resolution MRI that employs active, catheter-based, tiny internal probes that utilize the spatial properties of the probe itself for localization is proposed and demonstrated at 3 T. Because these properties are intrinsic to the probe, they move with it, transforming MRI from the laboratory FoR to the FoR of the device itself, analogous to an endoscope. The "MRI endoscope" can utilize loop coils and loopless antennas with modified sensitivity, in combination with adiabatic excitation by the device itself, to restrict the MRI sensitivity to a disk-shaped plane a few mm thick. Excitation with the MRI endoscope limits the eddy currents induced in the sample to an excited volume whose size is orders of magnitude below that excited by a conventional body MRI coil. Heat testing shows maximum local temperature increases of <1 degrees C during MRI, within regulatory guidelines. The method is demonstrated in a kiwifruit, in intact porcine and rabbit aortas, and in an atherosclerotic human iliac artery specimen, with in-plane resolution as small as 80 microm and 1.5-5 mm slice thickness.
Collapse
Affiliation(s)
- Shashank Sathyanarayana
- Department of Radiology, Division of MR Research, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | | |
Collapse
|
34
|
Ratnayaka K, Faranesh AZ, Guttman MA, Kocaturk O, Saikus CE, Lederman RJ. Interventional cardiovascular magnetic resonance: still tantalizing. J Cardiovasc Magn Reson 2008; 10:62. [PMID: 19114017 PMCID: PMC2637847 DOI: 10.1186/1532-429x-10-62] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 12/29/2008] [Indexed: 12/30/2022] Open
Abstract
The often touted advantages of MR guidance remain largely unrealized for cardiovascular interventional procedures in patients. Many procedures have been simulated in animal models. We argue these opportunities for clinical interventional MR will be met in the near future. This paper reviews technical and clinical considerations and offers advice on how to implement a clinical-grade interventional cardiovascular MR (iCMR) laboratory. We caution that this reflects our personal view of the "state of the art."
Collapse
Affiliation(s)
- Kanishka Ratnayaka
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- Cardiology Division, Children's National Medical Center, Washington, DC, USA
| | - Anthony Z Faranesh
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael A Guttman
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ozgur Kocaturk
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christina E Saikus
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert J Lederman
- Translational Medicine Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
35
|
El-Sharkawy AMM, Qian D, Bottomley PA. The performance of interventional loopless MRI antennae at higher magnetic field strengths. Med Phys 2008; 35:1995-2006. [PMID: 18561676 DOI: 10.1118/1.2905027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Interventional, "loopless antenna" MRI detectors are currently limited to 1.5 T. This study investigates whether loopless antennae offer signal-to-noise ratio (SNR) and field-of-view (FOV) advantages at higher fields, and whether device heating can be controlled within safe limits. The absolute SNR performance of loopless antennae from 0.5 to 5 T is investigated both analytically, using electromagnetic (EM) dipole antenna theory, and numerically with the EM method of moments, and found to vary almost quadratically with field strength depending on the medium's electrical properties, the noise being dominated by direct sample conduction losses. The prediction is confirmed by measurements of the absolute SNR of low-loss loopless antennae fabricated for 1.5, 3, and 4.7 T, immersed in physiologically comparable saline. Gains of 3.8 +/- 0.2- and 9.7 +/- 0.3-fold in SNR, and approximately 10- and 50-fold gains in the useful FOV area are observed at 3 and 4.7 T, respectively, compared to 1.5 T. Heat testing of a 3 T biocompatible nitinol-antenna fabricated with a redesigned decoupling circuit shows maximum heating of approximately 1 degrees C for MRI operating at high MRI exposure levels. Experiments in the rabbit aorta confirm the SNR and FOV advantages of the 3 T antenna versus an equivalent commercial 1.5 T device in vivo. This work is the first to study the performance of experimental internal MRI detectors above 1.5 T. The large SNR and FOV gains realized present a major opportunity for high-resolution imaging of vascular pathology and MRI-guided intervention.
Collapse
Affiliation(s)
- AbdEl-Monem M El-Sharkawy
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | | | | |
Collapse
|
36
|
Celik H, Ulutürk A, Tali T, Atalar E. A catheter tracking method using reverse polarization for MR-guided interventions. Magn Reson Med 2008; 58:1224-31. [PMID: 18046701 DOI: 10.1002/mrm.21419] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To conduct interventional procedures in MRI, reliable visualization of interventional devices such as catheters is necessary. For this purpose, the use of inductively-coupled radio frequency (ICRF) coils has been proposed. Without a wired connection, the signal around the ICRF coil is amplified, enabling catheters to be visualized. The wireless connection allows easy handling of catheters, in some pulse sequences, however, it might be difficult to differentiate the catheters from anatomical background information. In this work, a novel ICRF coil visualization method, which allows separation of the catheter and the anatomical information by using the reverse and forward polarization modes of a coil, is proposed. This method allows images of the anatomy and the catheter to be combined into a color-coded image. First, an ICRF coil with decoupling diodes was constructed; we call this a receive-coupled RF (RCRF) coil. The RF safety profile of the RCRF coil is shown to be better than the ICRF coil. Second, to demonstrate the feasibility of this method, a receive-only birdcage coil without a hybrid coupler was constructed and then connected to a scanner as a two-channel phased-array coil. MR signals acquired from two channels were added after phase adjustments to create the reverse and forward polarization mode images. The reverse polarization mode image contained signal only from the RCRF coil, but the forward polarization mode displayed both anatomical information and the RCRF coil. The performance of this novel tracking method was tested in phantom and animal experiments. Color-coded images demonstrate the feasibility of the method to track catheters using RCRF coils.
Collapse
Affiliation(s)
- Haydar Celik
- Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
| | | | | | | |
Collapse
|
37
|
Strick DS, Nunnally RL, Smith JC, Clark W, Mills DJ, Cohen MS, Judy JW. Towards a microcoil for intracranial and intraductal MR microscopy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2008; 2008:2047-50. [PMID: 19163097 PMCID: PMC3196548 DOI: 10.1109/iembs.2008.4649594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Implantable RF-coils have enabled sub-mm resolution magnetic resonance images (MRI) of deep structures. Scaling down the size of RF coils has similarly provided a gain in signal-to-noise ratio in nuclear-magnetic-resonance spectroscopy. By combining both approaches we designed, fabricated, and imaged with an implantable microcoil catheter. While typical implantable catheters use a transverse magnetization, the axial magnetization of the microcoil provides improved sensitivity and allows visualization of the tissue beyond the distal end of the catheter. The microcoil catheter was designed with a diameter of 1 mm for future integration with intracranial devices, and for intraductal use in breast oncology. We modified the NMR-microcoil design to allow implantation of the RF coil, by winding the microcoil on medical-grade silicone tubing and incorporating leads on the catheter to connect circuit components. In order to achieve proper turn spacing, we coated copper wire with 25 microm of biocompatible polymer (Parylene C). Tuning and matching circuitry insured that the impedance of the RF coil was approximately 50 ohm at the operating frequency for 3-T proton MR applications. A duplexer was used to enable use of the microcoil catheter as a transceiver. Experimental verification of the coil design was achieved through ex vivo imaging of neural tissue. As expected, the microcoil catheter provided microscale images with 20-microm in-plane-resolution and 170-microm-thick slices. While 3-T MRI typically provides 1 to 30 voxels per-cubic-millimeter, in this paper we report that the MRI microcoil can provide hundreds, and even thousands of voxels in the same volume.
Collapse
Affiliation(s)
- Debra S Strick
- Biomedical Engineering Interdepartmental program, University of California, LA 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Sathyanarayana S, Aksit P, Arepally A, Karmarkar PV, Solaiyappan M, Atalar E. Tracking planar orientations of active MRI needles. J Magn Reson Imaging 2007; 26:386-91. [PMID: 17610285 DOI: 10.1002/jmri.20960] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To determine and track the planar orientation of active interventional devices without using localizing RF microcoils. MATERIALS AND METHODS An image-based tracking method that determines a device's orientation using projection images was developed. An automated and a manual detection scheme were implemented. The method was demonstrated in an in vivo mesocaval puncture procedure in swine, which required accurate orientation of an active transvascular needle catheter. RESULTS The plane of the catheter was determined using two projection images. The scan plane was adjusted automatically to follow the catheter plane, and its orientation with respect to a previously acquired target plane was displayed. The algorithm facilitated navigation for a fast and accurate puncture. CONCLUSION Using image-based techniques, with no mechanical design changes, the orientation of an active intravascular probe could be tracked.
Collapse
Affiliation(s)
- Shashank Sathyanarayana
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
39
|
Mohammadzadeh M, Shahabadi M, Soltanian-Zadeh H, Tavakkoli A. A Novel open-ended intravascular MRI loop probe. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:1148-50. [PMID: 17271887 DOI: 10.1109/iembs.2004.1403368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Recently, intravascular catheter probes have been developed to increase SNR for MR imaging of coronary arteries. Miniaturization of these catheter probes without degrading their performances is very essential in imaging small arteries. Since both signal and noise received by intravascular loop probes are of low level, the noise generated by the cable connecting the probe to the matching circuit may reduce SNR significantly. Therefore, the tuning and matching circuit must be placed very close to the loop probe, which restricts its miniaturization and flexibility. We propose a novel open-ended loop probe for 64 MHz with an input impedance of 20 Ohm and a length of only 4 cm in the bare case. This has two advantages. Firstly, the matching and tuning circuits of the proposed probe can be located outside the vessel. Secondly, its signal level and uniformity is superior to that of the conventional loop antennas.
Collapse
|
40
|
Mohammad-Zadeh M, Soltanian-Zadeh H, Shah-Abadi M, Tavakkoli A. Novel double-turn loop probe for intravascular MRI. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:1151-4. [PMID: 17271888 DOI: 10.1109/iembs.2004.1403369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Key challenges for design of intravascular loop probes are minimization of the cross sectional and length while increasing signal-to-noise ratio (SNR). Although NPO grade captors under 1mm dimensions are now available, the impedance matching network components still constrain tunability. In this study, a new loop probe is proposed for intravascular magnetic resonance imaging (MRI) at 1.5 Tesla. The new design is based on a two-turn loop, separated by a gap, which can be placed over a perfused inflatable balloon structure. The length and impedance of the probe are 1.1 cm and 23.5OHM (bare case), respectively. The SNR of the new probe is greater than the conventional loop probe. To evaluate the performance of the probe, a series of SNR, length, and impedance comparisons with the conventional loop probes are carried out.
Collapse
|
41
|
Abstract
Coronary events often result from thrombi that form because of physical disruption of the atherosclerotic plaque. The dynamic nature of the plaque offers the opportunity to intervene to modify plaque biology with lifestyle changes and, if needed, pharmacologic measures. Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (statins) reduce levels of serum cholesterol and decrease the incidence of coronary events, but some of the benefits of statins may not depend on their effects on circulating lipids. Indeed, increasing evidence suggests that statins may also enhance plaque stability. Such evidence includes results of preclinical studies with experimental atherosclerosis as well as imaging data and analyses of proinflammatory and prothrombotic mediators in clinical trials. Currently, however, no studies have demonstrated conclusively the mechanisms underlying the unexpected magnitude and rapidity of statin benefits. This article reviews the evolution of the concept of plaque stabilization and reexamines the evidence for the role of statins in that process.
Collapse
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02135, USA.
| | | |
Collapse
|
42
|
Sailer J, Rand T, Berg A, Sulzbacher I, Peloschek P, Hölzenbein T, Lammer J. High-Resolution 3 T MR Microscopy Imaging of Arterial Walls. Cardiovasc Intervent Radiol 2006; 29:771-7. [PMID: 16755347 DOI: 10.1007/s00270-005-0051-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To achieve a high spatial resolution in MR imaging that allows for clear visualization of anatomy and even histology and documentation of plaque morphology in in vitro samples from patients with advanced atherosclerosis. A further objective of our study was to evaluate whether T2-weighted high-resolution MR imaging can provide accurate classification of atherosclerotic plaque according to a modified American Heart Association classification. METHODS T2-weighted images of arteries were obtained in 13 in vitro specimens using a 3 T MR unit (Medspec 300 Avance/Bruker, Ettlingen, Germany) combined with a dedicated MR microscopy system. Measurement parameters were: T2-weighted sequences with TR 3.5 sec, TE 15-120 msec; field of view (FOV) 1.4 x 1.4; NEX 8; matrix 192; and slice thickness 600 microm. MR measurements were compared with corresponding histologic sections. RESULTS We achieved excellent spatial and contrast resolution in all specimens. We found high agreement between MR images and histology with regard to the morphology and extent of intimal proliferations in all but 2 specimens. We could differentiate fibrous caps and calcifications from lipid plaque components based on differences in signal intensity in order to differentiate hard and soft atheromatous plaques. Hard plaques with predominantly intimal calcifications were found in 7 specimens, and soft plaques with a cholesterol/lipid content in 5 cases. In all specimens, hemorrhage or thrombus formation, and fibrotic and hyalinized tissue could be detected on both MR imaging and histopathology. CONCLUSION High-resolution, high-field MR imaging of arterial walls demonstrates the morphologic features, volume, and extent of intimal proliferations with high spatial and contrast resolution in in vitro specimens and can differentiate hard and soft plaques.
Collapse
Affiliation(s)
- Johannes Sailer
- Department of Angiography and Interventional Radiology, University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
43
|
Unal O, Li J, Cheng W, Yu H, Strother CM. MR-visible coatings for endovascular device visualization. J Magn Reson Imaging 2006; 23:763-9. [PMID: 16555229 DOI: 10.1002/jmri.20555] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To investigate the potential utility of magnetic resonance (MR)-visible coatings for passive visualization of therapeutic endovascular devices such as catheters and guidewires. MATERIALS AND METHODS Using a multistep coating process, gadolinium-based coatings were applied to commercially available off-the-shelf catheters and guidewires. These coated devices were imaged in phantoms made of fat-free yogurt, saline, and whole blood and also in live canine aorta on a 1.5-T cardiovascular MR scanner using T1-weighted two-dimensional radiofrequency (RF)-spoiled gradient-recalled echo, two-dimensional spin echo, and three-dimensional RF-spoiled gradient-recalled echo techniques. RESULTS Commercially available off-the shelf catheters (4, 5, and 6 French) and guidewires (0.038 inch) were clearly visualized in all phantoms and canine aorta and the coatings proved to be durable and imageable without degradation in signal intensity up to 24 hours. MR-visible coatings address some of the shortcomings that have previously limited the role of MR as a guidance tool. CONCLUSION Both in vitro and in vivo visualization of therapeutic endovascular devices coated with MR-visible coatings are found to be clinically viable.
Collapse
Affiliation(s)
- Orhan Unal
- Department of Medical Physics, University of Wisconsin, Madison, WI 53792-1590, USA.
| | | | | | | | | |
Collapse
|
44
|
Elgort DR, Hillenbrand CM, Zhang S, Wong EY, Rafie S, Lewin JS, Duerk JL. Image-guided and -monitored renal artery stenting using only MRI. J Magn Reson Imaging 2006; 23:619-27. [PMID: 16555228 DOI: 10.1002/jmri.20554] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To demonstrate the ability of a unique interventional MR system to be used safely and effectively as the only imaging modality for all phases of MR-guided stent-supported angioplasty. MATERIALS AND METHODS An experimental disease model of renal stenosis was created in six pigs. An interventional MR system, which employed previously reported tools for real-time catheter tracking with automated scan-plane positioning, adaptive image parameters, and radial true-FISP imaging with steady-state precession (True-FISP) imaging coupled with a high-speed reconstruction technique, was then used to guide all phases of the intervention, including: guidewire and catheter insertion, stent deployment, and confirmation of therapeutic success. Pre- and postprocedural X-ray imaging was used as a gold standard to validate the experimental results. RESULTS All of the stent-supported angioplasty interventions were a technical success and were performed without complications. The average postoperative residual stenosis was 14.9%. The image guidance enabled the stents to be deployed with an accuracy of 0.98 +/- 0.69 mm. Additionally, using this interventional MRI system to guide renal artery stenting significantly reduces the procedure time, as compared to using X-ray fluoroscopy. CONCLUSION This study has clearly demonstrated the first successful treatment of renal artery stenting in an experimental animal model solely under MRI guidance and monitoring.
Collapse
Affiliation(s)
- Daniel R Elgort
- Department of Radiology, University Hospitals of Cleveland, Cleveland, Ohio 044106, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Weiss CR, Georgiades C, Hofmann LV, Schulick R, Choti M, Thuluvath P, Bluemke DA, Arepally A. Intrabiliary MR Imaging: Assessment of Biliary Obstruction with Use of an Intraluminal MR Receiver Coil. J Vasc Interv Radiol 2006; 17:845-53. [PMID: 16687751 DOI: 10.1016/s1051-0443(07)60823-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The primary aim of this study was to determine whether intrabiliary magnetic resonance (MR) imaging is feasible in a clinical setting and to optimize MR imaging parameters for the technique. In addition, it was attempted to determine the accuracy of intrabiliary MR imaging in the setting of biliary obstruction of unknown cause. MATERIALS AND METHODS Intrabiliary MR was performed prospectively in 15 patients with biliary obstruction of unknown cause. A 0.030-inch MR intravascular receiver coil was placed in an existing biliary tube. Intrabiliary MR was performed on a 1.5-T system. T1-weighted, T2-weighted, and single-shot fast spin-echo images were acquired. T1-weighted images were also acquired after the administration of a gadolinium contrast agent. Signal intensity analysis was conducted in the region of the common bile duct. Accuracy of intrabiliary MR, computed tomography (CT), MR, and cholangiography were determined by correlation with surgical pathologic findings. RESULTS Intrabiliary MR was successfully performed in 14 of 15 patients. MR examinations were performed in less than 1 hour. The signal-to-noise ratio in the region of the common bile duct with the intrabiliary MR technique was increased by a factor of 9 compared with standard surface-coil MR imaging (P < .00001). The mean n-plane resolution achieved was 740 +/- 20 microm x 1,150 +/- 20 microm obtained with use of a field of view of 18 cm x 18 cm (range, 15-24 cm) and a matrix of 256 x 160. Of the pulse sequences tested, the gadolinium-enhanced T1-weighted image was the best for identifying tumor and delineating tumor margins. Intrabiliary MR had a higher sensitivity than CT (100% vs 50%), a higher specificity than cholangiography (80% vs 20%), and a better correlation (P = .015) with surgical pathologic findings than CT, MR imaging, or cholangiography. CONCLUSIONS Intrabiliary MR was well tolerated in a clinical setting and provided high spatial resolution and excellent contrast between the biliary lumen and adjacent structures. Intrabiliary MR demonstrated an advantage in detecting the presence or absence of biliary malignancies compared with currently available standard imaging techniques. The technique may be useful to evaluate biliary obstruction of unknown cause.
Collapse
Affiliation(s)
- Clifford R Weiss
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cardiovascular and Interventional Radiology, Johns Hopkins Medical Institutes, Blalock 544, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Abstract
Over the last 10 years, a number of technological advances have allowed real-time magnetic resonance imaging to guide cardiac catheterization, including improved image quality, faster scanning times, and open magnets allowing access to the patient. Potential advantages include better soft tissue imaging to improve catheter manipulation and additional functional information to assist with interventional decision-making, all without exposure to ionizing radiation. MRI-guided diagnostic catheterization, balloon dilation, stent placement, valvar replacement, atrial septal defect closure, and radiofrequency ablation all have been shown feasible in animal models. MRI-guided catheterization has the potential to replace the current X-ray-based diagnostic and interventional procedures for children with congenital heart disease, avoiding all radiation exposure while improving soft tissue imaging.
Collapse
Affiliation(s)
- Phillip Moore
- Department of Pediatrics, University of California, San Francisco, 94143, USA.
| |
Collapse
|
48
|
Affiliation(s)
- Robert J Lederman
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1538, USA.
| |
Collapse
|
49
|
Hillenbrand CM, Jesberger JA, Wong EY, Zhang S, Chang DT, Wacker FK, Lewin JS, Duerk JL. Toward rapid high resolution in vivo intravascular MRI: evaluation of vessel wall conspicuity in a porcine model using multiple imaging protocols. J Magn Reson Imaging 2006; 23:135-44. [PMID: 16416441 DOI: 10.1002/jmri.20497] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To assess magnetic resonance (MR) pulse sequences for high resolution intravascular imaging. MATERIALS AND METHODS Intravascular imaging of the abdominal aorta and iliac arteries was performed in vivo in a porcine model at 1.5 T using catheter-mounted micro-receive coils. Ten protocols, including spin-echo (SE)-echo planar imaging (SE-EPI), segmented EPI, half-Fourier single-shot turbo spin-echo (HASTE), fast imaging with steady-state free precession (TrueFISP), turbo spin-echo (TSE), and SE acquisition schemes were employed in 13 trials. Images were analyzed by six expert raters with respect to wall-conspicuity, wall-to-lumen/tissue contrast, visible layers of the arterial wall, anticipated clinical usefulness, and overall image quality. Mean differences between sequence-types were evaluated using analysis of variance (ANOVA) between groups with planned comparisons. RESULTS The vessel wall was delineated in almost all protocols. Motion artifacts from physiological and device motion were reduced in fast techniques. The best contrast between the wall and surrounding tissue was provided by a HASTE protocol. Anatomic layers of the vessel wall were best depicted on dark blood T2-weighted TSE. Overall, TrueFISP was ranked highest on the remaining measures. CONCLUSION Dedicated catheter-coils combined with fast sequences have potential for in vivo characterization of vessel walls. TrueFISP offered the best overall image quality and acquisition speed, but suffered from the inability to delineate the multiple layers of the wall, which seems associated with dark blood- and T2-weighted contrast. We believe future intra-arterial trials should proceed from this study in normal artery imaging and initially focus on fast T2-weighted dark blood techniques in trials with pathology.
Collapse
Affiliation(s)
- Claudia M Hillenbrand
- Department of Radiology, University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Venook RD, Hargreaves BA, Gold GE, Conolly SM, Scott GC. Automatic tuning of flexible interventional RF receiver coils. Magn Reson Med 2006; 54:983-93. [PMID: 16155871 DOI: 10.1002/mrm.20616] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Microcontroller-based circuitry was built and tested for automatically tuning flexible RF receiver coils at the touch of a button. This circuitry is robust to 10% changes in probe center frequency, is in line with the scanner, and requires less than 1 s to tune a simple probe. Images were acquired using this circuitry with a varactor-tunable 1-inch flexible probe in a phantom and in an in vitro porcine knee model. The phantom experiments support the use of automatic tuning by demonstrating 30% signal-to-noise ratio (SNR) losses for 5% changes in coil center frequency, in agreement with theoretical calculations. Comparisons between patellofemoral cartilage images obtained using a 3-inch surface coil and the surgically-implanted 1-inch flexible coil reveal a worst-case local SNR advantage of a factor of 4 for the smaller coil. This work confirms that surgically implanted coils can greatly improve resolution in small-field-of-view (FOV) applications, and demonstrates the importance and feasibility of automatically tuning such probes.
Collapse
Affiliation(s)
- Ross D Venook
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, CA 94305, USA.
| | | | | | | | | |
Collapse
|