1
|
Long Z, Yang HJ, Binesh N, Malagi AV, Shang Y, Huang LT, Zepeda J, Serry FM, Li D, Han H. Improving fat saturation robustness in outer extremity MRI with a local shim coil insert. Magn Reson Med 2025; 94:401-413. [PMID: 40106770 PMCID: PMC12021577 DOI: 10.1002/mrm.30474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE High-quality fat suppression is essential for various MRI applications. In musculoskeletal imaging, poor fat suppression caused by severe B0 inhomogeneity can obscure important lesions, potentially leading to inaccurate diagnoses. This problem is particularly exacerbated in off-isocenter imaging, where conventional shimming using second-order spherical harmonic shim coils often proves inadequate due to elevated B0 inhomogeneity. To address this challenge, we configured a simple local shim insert to provide additional localized B0 shimming for off-isocenter regions, offering a practical hardware solution. METHODS We designed and constructed a seven-channel shim coil and evaluated its performance in comparison to conventional second-order spherical harmonic shimming within a targeted volume near the scanner bore. The coil was tested with both phantom and in vivo studies using a clinical 3 T MRI scanner. RESULTS The improved B0 homogeneity achieved with the local shim coil significantly enhanced fat saturation (fat-sat) uniformity across the imaged volumes. This improvement was particularly beneficial for areas far from the scanner isocenter, where B0 inhomogeneity is most severe. Our results indicated a 40% reduction in RMS error of the B0 field for elbow imaging and 35% for hand imaging, highlighting substantial improvements in B0 field homogeneity. Additionally, the image quality score increased by 1 point for both hand and elbow images, reflecting enhanced fat-sat quality. CONCLUSION The simple local shim insert we configured improves fat-sat capability in both hand and elbow imaging. It offers the potential for improving off-isocenter musculoskeletal MRI.
Collapse
Affiliation(s)
- Ziyang Long
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hsin-Jung Yang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nader Binesh
- Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Archana Vadiraj Malagi
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yun Shang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Li-ting Huang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jeremy Zepeda
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Fardad Michael Serry
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hui Han
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
2
|
Wiens CN, Harris CT, Connell IRO. Characterization and inter-scanner reproducibility of geometric distortion on a small footprint, high-performance, head-specific 0.5 T scanner. Med Phys 2025. [PMID: 40156302 DOI: 10.1002/mp.17789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/07/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Magnetic resonance imaging (MRI) offers superior soft tissue contrast and essential imaging capabilities for modern medicine. MRI is increasingly being used in applications that require a high degree of spatial fidelity; however, distortions are a well-known limitation of the modality. The mid-field (0.3 T ≤ B0 < 1 T) has advantages in this respect due to being less susceptible to patient-induced distortions. PURPOSE The purpose of this work was to characterize the geometric fidelity of a short-bore, head-specific, 0.5T MRI system. METHODS Assessment of spatial fidelity was performed using a 3D gradient recalled echo (GRE) acquisition on a commercial distortion phantom using the validated distortion analysis software provided. B0-induced distortions were measured using a 3D field map. Inter-scanner reproducibility was assessed across four distinct systems of identical make and model, while intra-scanner repeatability was assessed at one site over six repeat measurements. RESULTS Inter-scanner reproducibility measured an average 95th percentile distortion over 100 and 180 mm DSV of 0.15 ± 0.03 and 0.33 ± 0.05 mm. Average 95th percentile distortions due to B0 field inhomogeneities over 100 and 180 mm DSV were 0.02 ± 0.01 and 0.07 ± 0.02 mm. Intra-scanner repeatability measured the uncertainty in distortion values to be 0.020 ± 0.005 mm. CONCLUSION The total residual distortions measured in this phantom study were less than half the recommended value required for radiosurgery and significantly better than data published from other MR systems. This demonstrates that in addition to the compact footprint of the Synaptive 0.5T scanner, it exceeds current standards for geometric accuracy.
Collapse
Affiliation(s)
- Curtis N Wiens
- Research and Development, Synaptive Medical, Toronto, Canada
| | - Chad T Harris
- Research and Development, Synaptive Medical, Toronto, Canada
| | - Ian R O Connell
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Centre for Advanced Neurotechnological Innovation to Application, KITE Research Institute, University Health Network, Toronto, Canada
- Biomedical Engineering, University Health Network, Toronto, Canada
| |
Collapse
|
3
|
Höfler D, Grigo J, Siavosch H, Saake M, Schmidt MA, Weissmann T, Schubert P, Voigt R, Lettmaier S, Semrau S, Dörfler A, Uder M, Bert C, Fietkau R, Putz F. MRI distortion correction is associated with improved local control in stereotactic radiotherapy for brain metastases. Sci Rep 2025; 15:9077. [PMID: 40097510 PMCID: PMC11914157 DOI: 10.1038/s41598-025-93255-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
Distortions in brain MRI caused by gradient nonlinearities may reach several millimeters, thus distortion correction is strongly recommended for radiotherapy treatment planning. However, the significance of MRI distortion correction on actual clinical outcomes has not been described yet. Therefore, we investigated the impact of planning MRI distortion correction on subsequent local control in a historic series of 419 brain metastases in 189 patients treated with stereotactic radiotherapy between 01/2003 and 04/2015. Local control was evaluated using a volumetric extension of the RANO-BM criteria. The predictive significance of distortion correction was assessed using competing risk analysis. In this cohort, 2D distortion-corrected MRIs had been used for treatment planning in 52.5% (220/419) of lesions, while uncorrected MRIs had been employed in 47.5% (199/419) of metastases. 2D distortion correction was associated with improved local control (Cumulative incidence of local progression at 12 months: 14.3% vs. 21.2% and at 24 months: 18.7% vs. 28.6%, p = 0.038). In multivariate analysis, adjusting for histology, baseline tumor volume, interval between MRI and treatment delivery, year of planning MRI, biologically effective dose and adjuvant Whole-brain radiotherapy, use of distortion correction remained significantly associated with improved local control (HR 0.55, p = 0.020). This is the first study to clinically evaluate the impact of MRI gradient nonlinearity distortion correction on local control in stereotactic radiotherapy for brain metastases. In this historic series, we found significantly higher local control when using 2D corrected vs. uncorrected MRI studies for treatment planning. These results stress the importance of assuring that MR images used for radiotherapy treatment planning are properly distortion-corrected.
Collapse
Affiliation(s)
- Daniel Höfler
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany.
- Bavarian Cancer Research Center (BZKF), Munich, Germany.
| | - Johanna Grigo
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Hadi Siavosch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Marc Saake
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Manuel Alexander Schmidt
- Department of Neuroradiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Thomas Weissmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Philipp Schubert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Raphaela Voigt
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Sebastian Lettmaier
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Sabine Semrau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Michael Uder
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Florian Putz
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| |
Collapse
|
4
|
Park J, Shin T, Park JY. Three-Dimensional Variable Slab-Selective Projection Acquisition Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:728-737. [PMID: 39348262 DOI: 10.1109/tmi.2024.3460974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Three-dimensional (3D) projection acquisition (PA) imaging has recently gained attention because of its advantages, such as achievability of very short echo time, less sensitivity to motion, and undersampled acquisition of projections without sacrificing spatial resolution. However, larger subjects require a stronger Nyquist criterion and are more likely to be affected by outer-volume signals outside the field of view (FOV), which significantly degrades the image quality. Here, we proposed a variable slab-selective projection acquisition (VSS-PA) method to mitigate the Nyquist criterion and effectively suppress aliasing streak artifacts in 3D PA imaging. The proposed method involves maintaining the vertical orientation of the slab-selective gradient for frequency-selective spin excitation and the readout gradient for data acquisition. As VSS-PA can selectively excite spins only in the width of the desired FOV in the projection direction during data acquisition, the effective size of the scanned object that determines the Nyquist criterion can be reduced. Additionally, unwanted signals originating from outside the FOV (e.g., aliasing streak artifacts) can be effectively avoided. The mitigation of the Nyquist criterion owing to VSS-PA was theoretically described and confirmed through numerical simulations and phantom and human lung experiments. These experiments further showed that the aliasing streak artifacts were nearly suppressed.
Collapse
|
5
|
Veldmann M, Edwards LJ, Pine KJ, Ehses P, Ferreira M, Weiskopf N, Stoecker T. Improving MR axon radius estimation in human white matter using spiral acquisition and field monitoring. Magn Reson Med 2024; 92:1898-1912. [PMID: 38817204 DOI: 10.1002/mrm.30180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE To compare MR axon radius estimation in human white matter using a multiband spiral sequence combined with field monitoring to the current state-of-the-art echo-planar imaging (EPI)-based approach. METHODS A custom multiband spiral sequence was used for diffusion-weighted imaging at ultra-highb $$ b $$ -values. Field monitoring and higher order image reconstruction were employed to greatly reduce artifacts in spiral images. Diffusion weighting parameters were chosen to match a state-of-the art EPI-based axon radius mapping protocol. The spiral approach was compared to the EPI approach by comparing the image signal-to-noise ratio (SNR) and performing a test-retest study to assess the respective variability and repeatability of axon radius mapping. Effective axon radius estimates were compared over white matter voxels and along the left corticospinal tract. RESULTS Increased SNR and reduced artifacts in spiral images led to reduced variability in resulting axon radius maps, especially in low-SNR regions. Test-retest variability was reduced by a factor of approximately 1.5 using the spiral approach. Reduced repeatability due to significant bias was found for some subjects in both spiral and EPI approaches, and attributed to scanner instability, pointing to a previously unknown limitation of the state-of-the-art approach. CONCLUSION Combining spiral readouts with field monitoring improved mapping of the effective axon radius compared to the conventional EPI approach.
Collapse
Affiliation(s)
- Marten Veldmann
- MR Physics, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
| | - Luke J Edwards
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kerrin J Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Philipp Ehses
- MR Physics, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
| | - Mónica Ferreira
- Clinical Research, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
- University of Bonn, Bonn, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth System Sciences, Leipzig University, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Tony Stoecker
- MR Physics, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
- Department of Physics & Astronomy, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Whelan BM, Liu PZY, Shan S, Waddington DEJ, Dong B, Jameson MG, Keall PJ. Open-source hardware and software for the measurement, characterization, reporting, and correction of geometric distortion in MRI. Med Phys 2024; 51:8399-8410. [PMID: 39111826 DOI: 10.1002/mp.17342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/16/2024] [Accepted: 06/11/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Geometric distortion is a serious problem in MRI, particularly in MRI guided therapy. A lack of affordable and adaptable tools in this area limits research progress and harmonized quality assurance. PURPOSE To develop and test a suite of open-source hardware and software tools for the measurement, characterization, reporting, and correction of geometric distortion in MRI. METHODS An open-source python library was developed, comprising modules for parametric phantom design, data processing, spherical harmonics, distortion correction, and interactive reporting. The code was used to design and manufacture a distortion phantom consisting of 618 oil filled markers covering a sphere of radius 150 mm. This phantom was imaged on a CT scanner and a novel split-bore 1.0 T MRI magnet. The CT images provide distortion-free dataset. These data were used to test all modules of the open-source software. RESULTS All markers were successfully extracted from all images. The distorted MRI markers were mapped to undistorted CT data using an iterative search approach. Spherical harmonics reconstructed the fitted gradient data to 1.0 ± 0.6% of the input data. High resolution data were reconstructed via spherical harmonics and used to generate an interactive report. Finally, distortion correction on an independent data set reduced distortion inside the DSV from 5.5 ± 3.1 to 1.6 ± 0.8 mm. CONCLUSION Open-source hardware and software for the measurement, characterization, reporting, and correction of geometric distortion in MRI have been developed. The utility of these tools has been demonstrated via their application on a novel 1.0 T split bore magnet.
Collapse
Affiliation(s)
- Brendan M Whelan
- Image-X Institute, School of Health Sciences, University of Sydney, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Paul Z Y Liu
- Image-X Institute, School of Health Sciences, University of Sydney, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Shanshan Shan
- Image-X Institute, School of Health Sciences, University of Sydney, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - David E J Waddington
- Image-X Institute, School of Health Sciences, University of Sydney, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Bin Dong
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Michael G Jameson
- GenesisCare, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University NSW, Sydney, Australia
| | - Paul J Keall
- Image-X Institute, School of Health Sciences, University of Sydney, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| |
Collapse
|
7
|
Kose R, Kose K, Fujimoto K, Okada T, Tamada D, Motosugi U. Nonlinear Gradient Field Mapping Using a Spherical Grid Phantom for 3 and 7 Tesla MR Imaging Systems Equipped with High-performance Gradient Coils. Magn Reson Med Sci 2024; 23:525-536. [PMID: 37690843 PMCID: PMC11447462 DOI: 10.2463/mrms.tn.2023-0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Recent high-performance gradient coils are fabricated mainly at the expense of spatial linearity. In this study, we measured the spatial nonlinearity of the magnetic field generated by the gradient coils of two MRI systems with high-performance gradient coils. The nonlinearity of the gradient fields was measured using 3D gradient echo sequences and a spherical phantom with a built-in lattice structure. The spatial variation of the gradient field was approximated to the 3rd order polynomials. The coefficients of the polynomials were calculated using the steepest descent method. The geometric distortion of the acquired 3D MR images was corrected using the polynomials and compared with the 3D images corrected using the harmonic functions provided by the MRI venders. As a result, it was found that the nonlinearity correction formulae provided by the vendors were insufficient and needed to be verified or corrected using a geometric phantom such as used in this study.
Collapse
Affiliation(s)
| | | | - Koji Fujimoto
- Human Brain Research Center, Graduate School of Medicine, Kyoto University
| | - Tomohisa Okada
- Human Brain Research Center, Graduate School of Medicine, Kyoto University
| | - Daiki Tamada
- Department of Radiology, University of Yamanashi
| | | |
Collapse
|
8
|
He L, Qin Y, Hu Q, Liu Z, Zhang Y, Ai T. Quantitative characterization of breast lesions and normal fibroglandular tissue using compartmentalized diffusion-weighted model: comparison of intravoxel incoherent motion and restriction spectrum imaging. Breast Cancer Res 2024; 26:71. [PMID: 38658999 PMCID: PMC11044413 DOI: 10.1186/s13058-024-01828-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND To compare the compartmentalized diffusion-weighted models, intravoxel incoherent motion (IVIM) and restriction spectrum imaging (RSI), in characterizing breast lesions and normal fibroglandular tissue. METHODS This prospective study enrolled 152 patients with 157 histopathologically verified breast lesions (41 benign and 116 malignant). All patients underwent a full-protocol preoperative breast MRI, including a multi-b-value DWI sequence. The diffusion parameters derived from the mono-exponential model (ADC), IVIM model (Dt, Dp, f), and RSI model (C1, C2, C3, C1C2, F1, F2, F3, F1F2) were quantitatively measured and then compared among malignant lesions, benign lesions and normal fibroglandular tissues using Kruskal-Wallis test. The Mann-Whitney U-test was used for the pairwise comparisons. Diagnostic models were built by logistic regression analysis. The ROC analysis was performed using five-fold cross-validation and the mean AUC values were calculated and compared to evaluate the discriminative ability of each parameter or model. RESULTS Almost all quantitative diffusion parameters showed significant differences in distinguishing malignant breast lesions from both benign lesions (other than C2) and normal fibroglandular tissue (all parameters) (all P < 0.0167). In terms of the comparisons of benign lesions and normal fibroglandular tissues, the parameters derived from IVIM (Dp, f) and RSI (C1, C2, C1C2, F1, F2, F3) showed significant differences (all P < 0.005). When using individual parameters, RSI-derived parameters-F1, C1C2, and C2 values yielded the highest AUCs for the comparisons of malignant vs. benign, malignant vs. normal tissue and benign vs. normal tissue (AUCs = 0.871, 0.982, and 0.863, respectively). Furthermore, the combined diagnostic model (IVIM + RSI) exhibited the highest diagnostic efficacy for the pairwise discriminations (AUCs = 0.893, 0.991, and 0.928, respectively). CONCLUSIONS Quantitative parameters derived from the three-compartment RSI model have great promise as imaging indicators for the differential diagnosis of breast lesions compared with the bi-exponential IVIM model. Additionally, the combined model of IVIM and RSI achieves superior diagnostic performance in characterizing breast lesions.
Collapse
Affiliation(s)
- Litong He
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China
| | - Yanjin Qin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58th the Second Zhongshan Road, Guangzhou, 510080, China
| | - Qilan Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China
| | - Zhiqiang Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China
| | - Yunfei Zhang
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Tao Ai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China.
| |
Collapse
|
9
|
Putz F, Bock M, Schmitt D, Bert C, Blanck O, Ruge MI, Hattingen E, Karger CP, Fietkau R, Grigo J, Schmidt MA, Bäuerle T, Wittig A. Quality requirements for MRI simulation in cranial stereotactic radiotherapy: a guideline from the German Taskforce "Imaging in Stereotactic Radiotherapy". Strahlenther Onkol 2024; 200:1-18. [PMID: 38163834 PMCID: PMC10784363 DOI: 10.1007/s00066-023-02183-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Accurate Magnetic Resonance Imaging (MRI) simulation is fundamental for high-precision stereotactic radiosurgery and fractionated stereotactic radiotherapy, collectively referred to as stereotactic radiotherapy (SRT), to deliver doses of high biological effectiveness to well-defined cranial targets. Multiple MRI hardware related factors as well as scanner configuration and sequence protocol parameters can affect the imaging accuracy and need to be optimized for the special purpose of radiotherapy treatment planning. MRI simulation for SRT is possible for different organizational environments including patient referral for imaging as well as dedicated MRI simulation in the radiotherapy department but require radiotherapy-optimized MRI protocols and defined quality standards to ensure geometrically accurate images that form an impeccable foundation for treatment planning. For this guideline, an interdisciplinary panel including experts from the working group for radiosurgery and stereotactic radiotherapy of the German Society for Radiation Oncology (DEGRO), the working group for physics and technology in stereotactic radiotherapy of the German Society for Medical Physics (DGMP), the German Society of Neurosurgery (DGNC), the German Society of Neuroradiology (DGNR) and the German Chapter of the International Society for Magnetic Resonance in Medicine (DS-ISMRM) have defined minimum MRI quality requirements as well as advanced MRI simulation options for cranial SRT.
Collapse
Affiliation(s)
- Florian Putz
- Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Michael Bock
- Klinik für Radiologie-Medizinphysik, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Daniela Schmitt
- Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Christoph Bert
- Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Blanck
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maximilian I Ruge
- Klinik für Stereotaxie und funktionelle Neurochirurgie, Zentrum für Neurochirurgie, Universitätsklinikum Köln, Cologne, Germany
| | - Elke Hattingen
- Institut für Neuroradiologie, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Christian P Karger
- Abteilung Medizinische Physik in der Strahlentherapie, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Nationales Zentrum für Strahlenforschung in der Onkologie (NCRO), Heidelberger Institut für Radioonkologie (HIRO), Heidelberg, Germany
| | - Rainer Fietkau
- Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johanna Grigo
- Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Manuel A Schmidt
- Neuroradiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Bäuerle
- Radiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea Wittig
- Klinik und Poliklinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Dubovan PI, Gilbert KM, Baron CA. A correction algorithm for improved magnetic field monitoring with distal field probes. Magn Reson Med 2023; 90:2242-2260. [PMID: 37598420 DOI: 10.1002/mrm.29781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 08/22/2023]
Abstract
PURPOSE A significant source of artifacts in MRI are field fluctuations. Field monitoring is a new technology that allows measurement of field dynamics during a scan via "field probes," which can be used to improve image reconstruction. Ideally, probes are located within the volume where gradients produce nominally linear field patterns. However, in some situations probes must be located far from isocenter where rapid field variation can arise, leading to erroneous field-monitoring characterizations and images. This work aimed to develop an algorithm that improves the robustness of field dynamics in these situations. METHODS The algorithm is split into three components. Component 1 calculates field dynamics one spatial order at a time, whereas the second implements a weighted least squares solution based on probe distance. Component 3 then calculates phase residuals and removes the residual phase for distant probes before recalculation. Two volunteers and a phantom were scanned on a 7T MRI using diffusion-weighted sequences, and field monitoring was performed. Image reconstructions were informed with field dynamics calculated conventionally, and with the correction algorithm, after which in vivo images were compared qualitatively and phantom image error was quantitatively assessed. RESULTS The algorithm was able to correct corrupted field dynamics, resulting in image-quality improvements. Significant artifact reduction was observed when correcting higher-order fits. Stepwise fitting provided the most correction benefit, which was marginally improved when adding the other correction strategies. CONCLUSION The proposed algorithm can mitigate effects of phase errors in field monitoring, providing improved characterization of field dynamics.
Collapse
Affiliation(s)
- Paul I Dubovan
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Center for Functional and Metabolic Mapping, Western University, London, Ontario, Canada
| | - Kyle M Gilbert
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Center for Functional and Metabolic Mapping, Western University, London, Ontario, Canada
| | - Corey A Baron
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Center for Functional and Metabolic Mapping, Western University, London, Ontario, Canada
| |
Collapse
|
11
|
Koori N, Kamekawa H, Mukawa N, Fuse H, Miyakawa S, Yasue K, Takahashi M, Yamada M, Henmi A, Kusumoto T, Kurata K. Relationship between imaging parameters and distortion in magnetic resonance images for gamma knife treatment planning. J Appl Clin Med Phys 2023; 24:e14205. [PMID: 37975638 PMCID: PMC10691626 DOI: 10.1002/acm2.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023] Open
Abstract
In magnetic resonance imaging (MRI), it is necessary to reduce image distortion as much as possible because it suppresses the increase in the planning target volume. This study investigated the relationship between imaging parameters and image distortion when using G-frames. The images were obtained using a 1.5-T MRI system with a 09-101 Pro-MRI phantom. Image distortion was measured by changing the RF pulse mode, gradient mode, asymmetric echo, and bandwidth (BW). The image distortion was increased in the high RF mode than in the Normal mode. The image distortion increased in the following order: Whisper ≦ Normal < Fast in the different gradient modes. The image distortion increased in the following order: Without ≦ Weak < Strong in the different asymmetric echo modes. The image distortion increased in the following order: 300 Hz/pixel > 670 Hz/pixel ≧ REF (150 Hz/pixel) in the different Bw. The relationship between parameters and image distortion was clarified in this study when G-frames were used for gamma knife therapy. There is had relationship between the parameters causing variation in the gradient magnetic field and image distortion. Therefore, these parameters should be adjusted to minimize distortion.
Collapse
Affiliation(s)
- Norikazu Koori
- School of Health SciencesIbaraki Prefectural University of Health SciencesAmiIbarakiJapan
- Division of Health SciencesKanazawa University Graduate School of Medical SciencesKanazawaIshikawaJapan
| | | | - Nanami Mukawa
- School of Health SciencesIbaraki Prefectural University of Health SciencesAmiIbarakiJapan
| | - Hiraku Fuse
- School of Health SciencesIbaraki Prefectural University of Health SciencesAmiIbarakiJapan
| | - Shin Miyakawa
- School of Health SciencesIbaraki Prefectural University of Health SciencesAmiIbarakiJapan
| | - Kenji Yasue
- School of Health SciencesIbaraki Prefectural University of Health SciencesAmiIbarakiJapan
| | - Masato Takahashi
- School of Health SciencesIbaraki Prefectural University of Health SciencesAmiIbarakiJapan
| | | | - Atsushi Henmi
- Department of RadiologyKomaki City HospitalKomakiAichiJapan
| | | | - Kazuma Kurata
- Department of RadiologyKomaki City HospitalKomakiAichiJapan
| |
Collapse
|
12
|
Kanakaraj P, Cai LY, Yao T, Rheault F, Rogers BP, Anderson A, Schilling KG, Landman BA. Efficient approximate signal reconstruction for correction of gradient nonlinearities in diffusion-weighted imaging. Magn Reson Imaging 2023; 102:20-25. [PMID: 36965836 PMCID: PMC10517071 DOI: 10.1016/j.mri.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
In diffusion weighted MRI (DW-MRI), hardware nonlinearities lead to spatial variations in the orientation and magnitude of diffusion weighting. While the correction of these spatial distortions has been well established for analyses of DW-MRI, the existing voxel-wise empirical correction for gradient nonlinearities requires reimplementation of existing models, as the resultant gradients vary by voxel. Herein, we propose a two-step signal approximation after voxel-wise correction of gradient nonlinearity effects in DW-MRI. The proposed technique (1) scales the diffusion signal and (2) resamples the gradient orientations. This results in uniform gradients across the corrected image and provides the key advantage of seamless integration into current diffusion workflows. We investigated the validity of our technique by fitting a multi-compartment neurite orientation dispersion and density imaging (NODDI) model to the empirical correction and proposed approximation in five subjects from the MASiVar pediatric dataset. We evaluated intra-cellular volume fraction (iVF), CSF volume fraction (cVF), and orientation dispersion index (ODI) from NODDI. The Cohen's d of iVF, cVF and ODI between the techniques was <0.2 indicating the proposed technique does not exhibit significant differences from the voxel-wise correction technique. Our two-step signal approximation is an efficient representation of the voxel-wise gradient table correction. Using this approximation, correction of gradient nonlinearities can be easily incorporated into existing diffusion preprocessing pipelines and is implemented in "PreQual: An automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images".
Collapse
Affiliation(s)
| | - Leon Y Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Tianyuan Yao
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA.
| | - Francois Rheault
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, Québec, Canada; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Baxter P Rogers
- Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Adam Anderson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Services, Vanderbilt University Medical Center, Vanderbilt University Medical, Nashville, TN, USA.
| | - Kurt G Schilling
- Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Bennett A Landman
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Services, Vanderbilt University Medical Center, Vanderbilt University Medical, Nashville, TN, USA.
| |
Collapse
|
13
|
Shan S, Gao Y, Liu PZY, Whelan B, Sun H, Dong B, Liu F, Waddington DEJ. Distortion-corrected image reconstruction with deep learning on an MRI-Linac. Magn Reson Med 2023; 90:963-977. [PMID: 37125656 PMCID: PMC10860740 DOI: 10.1002/mrm.29684] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE MRI is increasingly utilized for image-guided radiotherapy due to its outstanding soft-tissue contrast and lack of ionizing radiation. However, geometric distortions caused by gradient nonlinearities (GNLs) limit anatomical accuracy, potentially compromising the quality of tumor treatments. In addition, slow MR acquisition and reconstruction limit the potential for effective image guidance. Here, we demonstrate a deep learning-based method that rapidly reconstructs distortion-corrected images from raw k-space data for MR-guided radiotherapy applications. METHODS We leverage recent advances in interpretable unrolling networks to develop a Distortion-Corrected Reconstruction Network (DCReconNet) that applies convolutional neural networks (CNNs) to learn effective regularizations and nonuniform fast Fourier transforms for GNL-encoding. DCReconNet was trained on a public MR brain dataset from 11 healthy volunteers for fully sampled and accelerated techniques, including parallel imaging (PI) and compressed sensing (CS). The performance of DCReconNet was tested on phantom, brain, pelvis, and lung images acquired on a 1.0T MRI-Linac. The DCReconNet, CS-, PI-and UNet-based reconstructed image quality was measured by structural similarity (SSIM) and RMS error (RMSE) for numerical comparisons. The computation time and residual distortion for each method were also reported. RESULTS Imaging results demonstrated that DCReconNet better preserves image structures compared to CS- and PI-based reconstruction methods. DCReconNet resulted in the highest SSIM (0.95 median value) and lowest RMSE (<0.04) on simulated brain images with four times acceleration. DCReconNet is over 10-times faster than iterative, regularized reconstruction methods. CONCLUSIONS DCReconNet provides fast and geometrically accurate image reconstruction and has the potential for MRI-guided radiotherapy applications.
Collapse
Affiliation(s)
- Shanshan Shan
- ACRF Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD‐X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina
- Department of Medical PhysicsIngham Institute of Applied Medical ResearchLiverpoolNew South WalesAustralia
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneQueenslandAustralia
| | - Yang Gao
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneQueenslandAustralia
- School of Computer Science and EngineeringCentral South UniversityChangshaHunanChina
| | - Paul Z. Y. Liu
- ACRF Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Department of Medical PhysicsIngham Institute of Applied Medical ResearchLiverpoolNew South WalesAustralia
| | - Brendan Whelan
- ACRF Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Department of Medical PhysicsIngham Institute of Applied Medical ResearchLiverpoolNew South WalesAustralia
| | - Hongfu Sun
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneQueenslandAustralia
| | - Bin Dong
- Department of Medical PhysicsIngham Institute of Applied Medical ResearchLiverpoolNew South WalesAustralia
| | - Feng Liu
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneQueenslandAustralia
| | - David E. J. Waddington
- ACRF Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Department of Medical PhysicsIngham Institute of Applied Medical ResearchLiverpoolNew South WalesAustralia
| |
Collapse
|
14
|
Dorsch S, Paul K, Beyer C, Karger CP, Jäkel O, Debus J, Klüter S. Quality assurance and temporal stability of a 1.5 T MRI scanner for MR-guided Photon and Particle Therapy. Z Med Phys 2023:S0939-3889(23)00046-6. [PMID: 37150727 DOI: 10.1016/j.zemedi.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/12/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023]
Abstract
PURPOSE To describe performance measurements, adaptations and time stability over 20 months of a diagnostic MR scanner for integration into MR-guided photon and particle radiotherapy. MATERIAL AND METHODS For realization of MR-guided photon and particle therapy (MRgRT/MRgPT), a 1.5 T MR scanner was installed at the Heidelberg Ion Beam Therapy Center. To integrate MRI into the treatment process, a flat tabletop and dedicated coil holders for flex coils were used, which prevent deformation of the patient external contour and allow for the use of immobilization tools for reproducible positioning. The signal-to-noise ratio (SNR) was compared for the diagnostic and therapy-specific setup using the flat couch top and flexible coils for the a) head & neck and b) abdominal region as well as for different bandwidths and clinical pulse sequences. Additionally, a quality assurance (QA) protocol with monthly measurements of the ACR phantom and measurement of geometric distortions for a large field-of-view (FOV) was implemented to assess the imaging quality parameters of the device over the course of 20 months. RESULTS The SNR measurements showed a decreased SNR for the RT-specific as compared to the diagnostic setup of (a) 26% to 34% and (b) 11% to 33%. No significant bandwidth dependency for this ratio was found. The longitudinal assessment of the image quality parameters with the ACR and distortion phantom confirmed the long-term stability of the MRI device. CONCLUSION A diagnostic MRI was commissioned for use in MR-guided particle therapy. Using a radiotherapy specific setup, a high geometric accuracy and signal homogeneity was obtained after some adaptions and the measured parameters were shown to be stable over a period of 20 months.
Collapse
Affiliation(s)
- Stefan Dorsch
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.
| | - Katharina Paul
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Cedric Beyer
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Oliver Jäkel
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Core center Heidelberg, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sebastian Klüter
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Radiation Oncology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Alghamdi AJ. The Value of Various Post-Processing Modalities of Diffusion Weighted Imaging in the Detection of Multiple Sclerosis. Brain Sci 2023; 13:brainsci13040622. [PMID: 37190587 DOI: 10.3390/brainsci13040622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Diffusion tensor imaging (DTI) showed its adequacy in evaluating the normal-appearing white matter (NAWM) and lesions in the brain that are difficult to evaluate with routine clinical magnetic resonance imaging (MRI) in multiple sclerosis (MS). Recently, MRI systems have been developed with regard to software and hardware, leading to different proposed diffusion analysis methods such as diffusion tensor imaging, q-space imaging, diffusional kurtosis imaging, neurite orientation dispersion and density imaging, and axonal diameter measurement. These methods have the ability to better detect in vivo microstructural changes in the brain than DTI. These different analysis modalities could provide supplementary inputs for MS disease characterization and help in monitoring the disease’s progression as well as treatment efficacy. This paper reviews some of the recent diffusion MRI methods used for the assessment of MS in vivo.
Collapse
Affiliation(s)
- Ahmad Joman Alghamdi
- Radiological Sciences Department, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
16
|
Ramos-Llordén G, Park D, Kirsch JE, Scholz A, Keil B, Maffei C, Lee HH, Bilgiç B, Edlow BL, Mekkaoui C, Yendiki A, Witzel T, Huang SY. Eddy current-induced artifacts correction in high gradient strength diffusion MRI with dynamic field monitoring: demonstration in ex vivo human brain imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528684. [PMID: 36824894 PMCID: PMC9948962 DOI: 10.1101/2023.02.15.528684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Purpose To demonstrate the advantages of spatiotemporal magnetic field monitoring to correct eddy current-induced artifacts (ghosting and geometric distortions) in high gradient strength diffusion MRI (dMRI). Methods A dynamic field camera with 16 NMR field probes was used to characterize eddy current fields induced from diffusion gradients for different gradients strengths (up to 300 mT/m), diffusion directions, and shots in a 3D multi-shot EPI sequence on a 3T Connectom scanner. The efficacy of dynamic field monitoring-based image reconstruction was demonstrated on high-resolution whole brain ex vivo dMRI. A 3D multi-shot image reconstruction framework was informed with the actual nonlinear phase evolution measured with the dynamic field camera, thereby accounting for high-order eddy currents fields on top of the image encoding gradients in the image formation model. Results Eddy current fields from diffusion gradients at high gradient strength in a 3T Connectom scanner are highly nonlinear in space and time, inducing high-order spatial phase modulations between odd/even echoes and shots that are not static during the readout. Superior reduction of ghosting and geometric distortion was achieved with dynamic field monitoring compared to ghosting approaches such as navigator- and structured low-rank-based methods or MUSE, followed by image-based distortion correction with eddy. Improved dMRI analysis is demonstrated with diffusion tensor imaging and high-angular resolution diffusion imaging. Conclusion Strong eddy current artifacts characteristic of high gradient strength dMRI can be well corrected with dynamic field monitoring-based image reconstruction, unlike the two-step approach consisting of ghosting correction followed by geometric distortion reduction with eddy.
Collapse
|
17
|
Liu PZY, Shan S, Waddington D, Whelan B, Dong B, Liney G, Keall P. Rapid distortion correction enables accurate magnetic resonance imaging-guided real-time adaptive radiotherapy. Phys Imaging Radiat Oncol 2023; 25:100414. [PMID: 36713071 PMCID: PMC9880240 DOI: 10.1016/j.phro.2023.100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Background and purpose Magnetic resonance imaging (MRI)-Linac systems combine simultaneous MRI with radiation delivery, allowing treatments to be guided by anatomically detailed, real-time images. However, MRI can be degraded by geometric distortions that cause uncertainty between imaged and actual anatomy. In this work, we develop and integrate a real-time distortion correction method that enables accurate real-time adaptive radiotherapy. Materials and methods The method was based on the pre-treatment calculation of distortion and the rapid correction of intrafraction images. A motion phantom was set up in an MRI-Linac at isocentre (P0 ), the edge (P 1) and just outside (P 2) the imaging volume. The target was irradiated and tracked during real-time adaptive radiotherapy with and without the distortion correction. The geometric tracking error and latency were derived from the measurements of the beam and target positions in the EPID images. Results Without distortion correction, the mean geometric tracking error was 1.3 mm at P 1 and 3.1 mm at P 2. When distortion correction was applied, the error was reduced to 1.0 mm at P 1 and 1.1 mm at P 2. The corrected error was similar to an error of 0.9 mm at P0 where the target was unaffected by distortion indicating that this method has accurately accounted for distortion during tracking. The latency was 319 ± 12 ms without distortion correction and 335 ± 34 ms with distortion correction. Conclusions We have demonstrated a real-time distortion correction method that maintains accurate radiation delivery to the target, even at treatment locations with large distortion.
Collapse
Affiliation(s)
- Paul Z. Y Liu
- Image X Institute, University of Sydney Central Clinical School, Sydney, NSW, Australia
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Shanshan Shan
- Image X Institute, University of Sydney Central Clinical School, Sydney, NSW, Australia
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - David Waddington
- Image X Institute, University of Sydney Central Clinical School, Sydney, NSW, Australia
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Brendan Whelan
- Image X Institute, University of Sydney Central Clinical School, Sydney, NSW, Australia
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Bin Dong
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Gary Liney
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Paul Keall
- Image X Institute, University of Sydney Central Clinical School, Sydney, NSW, Australia
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| |
Collapse
|
18
|
Tuna EE, Poirot NL, Franson D, Bayona JB, Huang S, Seiberlich N, Griswold MA, Cavusoglu MC. MRI Distortion Correction and Robot-to-MRI Scanner Registration for an MRI-Guided Robotic System. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2022; 10:99205-99220. [PMID: 37041984 PMCID: PMC10085576 DOI: 10.1109/access.2022.3207156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Magnetic resonance imaging (MRI) guided robotic procedures require safe robotic instrument navigation and precise target localization. This depends on reliable tracking of the instrument from MR images, which requires accurate registration of the robot to the scanner. A novel differential image based robot-to-MRI scanner registration approach is proposed that utilizes a set of active fiducial coils, where background subtraction method is employed for coil detection. In order to use the presented preoperative registration approach jointly with the real-time high speed MRI image acquisition and reconstruction methods in real-time interventional procedures, the effects of the geometric MRI distortion in robot to scanner registration is analyzed using a custom distortion mapping algorithm. The proposed approach is validated by a set of target coils placed within the workspace, employing multi-planar capabilities of the scanner. Registration and validation errors are respectively 2.05 mm and 2.63 mm after the distortion correction showing an improvement of respectively 1.08 mm and 0.14 mm compared to the results without distortion correction.
Collapse
Affiliation(s)
- E Erdem Tuna
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nate Lombard Poirot
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Juana Barrera Bayona
- School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sherry Huang
- General Electric Healthcare, Royal Oak, MI 48067, USA
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, Ann-Anbor, MI 48109, USA
| | - Mark A Griswold
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - M Cenk Cavusoglu
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
19
|
Fu Z, Johnson K, Altbach MI, Bilgin A. Cancellation of streak artifacts in radial abdominal imaging using interference null space projection. Magn Reson Med 2022; 88:1355-1369. [PMID: 35608238 PMCID: PMC9973517 DOI: 10.1002/mrm.29285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE In radial abdominal imaging, it has been commonly observed that signal from the arms cause streaks due to system imperfections. We previously introduced a streak removal technique (B-STAR), which is inherently spatially variant and limited to work in image space. In this work, we propose a spatially invariant streak cancellation technique (CACTUS), which can be applied in either image space or k-space and is compatible with iterative reconstructions. THEORY AND METHODS Streak sources are typically spatially localized and can be represented using a low-dimensional subspace. CACTUS identifies the streak subspace by leveraging the spatial redundancy of receiver coils and projects the data onto the streak null space to eliminate the streaks. When applied in k-space, CACTUS can be combined with iterative reconstructions. CACTUS was tested in phantoms and in vivo abdominal imaging using a radial turbo spin-echo pulse sequence. RESULTS In phantoms, CACTUS improved T2 estimation in comparison to previous de-streaking methods. In vivo experiments showed that CACTUS reduced streaks and yielded T2 estimation, in regions affected by streaks, closer to a streak-free reference. Evaluation using a clinical abdominal dataset (n = 20) showed that CACTUS is comparable to B-STAR and yields significantly better signal preservation and streak cancellation than coil removal and suppression methods. CONCLUSION CACTUS provides superior signal preservation and streak reduction performance compared to coil removal and suppression methods. As a clear advantage over B-STAR, CACTUS can be integrated with iterative reconstruction methods. In abdominal T2 mapping, CACTUS improves the accuracy of parameter estimation in areas affected by streaks.
Collapse
Affiliation(s)
- Zhiyang Fu
- Department of Medical Imaging, The University of Arizona, Tucson, Arizona, USA
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona, USA
| | - Kevin Johnson
- Department of Medical Imaging, The University of Arizona, Tucson, Arizona, USA
| | - Maria I. Altbach
- Department of Medical Imaging, The University of Arizona, Tucson, Arizona, USA
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona, USA
| | - Ali Bilgin
- Department of Medical Imaging, The University of Arizona, Tucson, Arizona, USA
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona, USA
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
20
|
Retif P, Djibo Sidikou A, Mathis C, Letellier R, Verrecchia-Ramos E, Dupres R, Michel X. Evaluation of the ability of the Brainlab Elements Cranial Distortion Correction algorithm to correct clinically relevant MRI distortions for cranial SRT. Strahlenther Onkol 2022; 198:907-918. [PMID: 35980455 DOI: 10.1007/s00066-022-01988-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/10/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Cranial stereotactic radiotherapy (SRT) requires highly accurate lesion delineation. However, MRI can have significant inherent geometric distortions. We investigated how well the Elements Cranial Distortion Correction algorithm of Brainlab (Munich, Germany) corrects the distortions in MR image-sets of a phantom and patients. METHODS A non-distorted reference computed tomography image-set of a CIRS Model 603-GS (CIRS, Norfolk, VA, USA) phantom was acquired. Three-dimensional T1-weighted images were acquired with five MRI scanners and reconstructed with vendor-derived distortion correction. Some were reconstructed without correction to generate heavily distorted image-sets. All MR image-sets were corrected with the Brainlab algorithm relative to the computed tomography acquisition. CIRS Distortion Check software measured the distortion in each image-set. For all uncorrected and corrected image-sets, the control points that exceeded the 0.5-mm clinically relevant distortion threshold and the distortion maximum, mean, and standard deviation were recorded. Empirical cumulative distribution functions (eCDF) were plotted. Intraclass correlation coefficient (ICC) was calculated. The algorithm was evaluated with 10 brain metastases using Dice similarity coefficients (DSC). RESULTS The algorithm significantly reduced mean and standard deviation distortion in all image-sets. It reduced the maximum distortion in the heavily distorted image-sets from 2.072 to 1.059 mm and the control points with > 0.5-mm distortion fell from 50.2% to 4.0%. Before and especially after correction, the eCDFs of the four repeats were visually similar. ICC was 0.812 (excellent-good agreement). The algorithm increased the DSCs for all patients and image-sets. CONCLUSION The Brainlab algorithm significantly and reproducibly ameliorated MRI distortion, even with heavily distorted images. Thus, it increases the accuracy of cranial SRT lesion delineation. After further testing, this tool may be suitable for SRT of small lesions.
Collapse
Affiliation(s)
- Paul Retif
- Medical Physics Unit, CHR Metz-Thionville, Metz, France. .,Université de Lorraine, CNRS, CRAN, 54000, Nancy, France.
| | | | | | | | | | - Rémi Dupres
- Medical Imaging Department, CHR Metz-Thionville, Metz, France
| | - Xavier Michel
- Radiation Therapy Department, CHR Metz-Thionville, Metz, France
| |
Collapse
|
21
|
Nanayakkara ND, Arnott SR, Scott CJM, Solovey I, Liang S, Fonov VS, Gee T, Broberg DN, Haddad SMH, Ramirez J, Berezuk C, Holmes M, Adamo S, Ozzoude M, Theyers A, Sujanthan S, Zamyadi M, Casaubon L, Dowlatshahi D, Mandzia J, Sahlas D, Saposnik G, Hassan A, Swartz RH, Strother SC, Szilagyi GM, Black SE, Symons S, Investigators ONDRI, Bartha R. Increased brain volumetric measurement precision from multi-site 3D T1-weighted 3 T magnetic resonance imaging by correcting geometric distortions. Magn Reson Imaging 2022; 92:150-160. [PMID: 35753643 DOI: 10.1016/j.mri.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 04/29/2022] [Accepted: 06/19/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Magnetic resonance imaging (MRI) scanner-specific geometric distortions may contribute to scanner induced variability and decrease volumetric measurement precision for multi-site studies. The purpose of this study was to determine whether geometric distortion correction increases the precision of brain volumetric measurements in a multi-site multi-scanner study. METHODS Geometric distortion variation was quantified over a one-year period at 10 sites using the distortion fields estimated from monthly 3D T1-weighted MRI geometrical phantom scans. The variability of volume and distance measurements were quantified using synthetic volumes and a standard quantitative MRI (qMRI) phantom. The effects of geometric distortion corrections on MRI derived volumetric measurements of the human brain were assessed in two subjects scanned on each of the 10 MRI scanners and in 150 subjects with cerebrovascaular disease (CVD) acquired across imaging sites. RESULTS Geometric distortions were found to vary substantially between different MRI scanners but were relatively stable on each scanner over a one-year interval. Geometric distortions varied spatially, increasing in severity with distance from the magnet isocenter. In measurements made with the qMRI phantom, the geometric distortion correction decreased the standard deviation of volumetric assessments by 35% and distance measurements by 42%. The average coefficient of variance decreased by 16% in gray matter and white matter volume estimates in the two subjects scanned on the 10 MRI scanners. CONCLUSION Geometric distortion correction using an up-to-date correction field is recommended to increase precision in volumetric measurements made from MRI images.
Collapse
Affiliation(s)
- Nuwan D Nanayakkara
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Christopher J M Scott
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Igor Solovey
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Shuai Liang
- Rotman Research Institute, Baycrest Centre, Toronto, ON, Canada
| | - Vladimir S Fonov
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Tom Gee
- Rotman Research Institute, Baycrest Centre, Toronto, ON, Canada
| | - Dana N Broberg
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Seyyed M H Haddad
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Joel Ramirez
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Courtney Berezuk
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Melissa Holmes
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sabrina Adamo
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Miracle Ozzoude
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Athena Theyers
- Rotman Research Institute, Baycrest Centre, Toronto, ON, Canada
| | | | - Mojdeh Zamyadi
- Rotman Research Institute, Baycrest Centre, Toronto, ON, Canada
| | - Leanne Casaubon
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Jennifer Mandzia
- Department of Medicine, Division of Neurology, Western University, London, ON, Canada
| | - Demetrios Sahlas
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | | | - Ayman Hassan
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
| | - Richard H Swartz
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Stephen C Strother
- Rotman Research Institute, Baycrest Centre, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Gregory M Szilagyi
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sandra E Black
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sean Symons
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Robert Bartha
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Departments of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
22
|
Lee NG, Ramasawmy R, Lim Y, Campbell-Washburn AE, Nayak KS. MaxGIRF: Image reconstruction incorporating concomitant field and gradient impulse response function effects. Magn Reson Med 2022; 88:691-710. [PMID: 35445768 PMCID: PMC9232904 DOI: 10.1002/mrm.29232] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/04/2022] [Accepted: 02/23/2022] [Indexed: 02/03/2023]
Abstract
Purpose To develop and evaluate an improved strategy for compensating concomitant field effects in non‐Cartesian MRI at the time of image reconstruction. Theory We present a higher‐order reconstruction method, denoted as MaxGIRF, for non‐Cartesian imaging that simultaneously corrects off‐resonance, concomitant fields, and trajectory errors without requiring specialized hardware. Gradient impulse response functions are used to predict actual gradient waveforms, which are in turn used to estimate the spatiotemporally varying concomitant fields based on analytic expressions. The result, in combination with a reference field map, is an encoding matrix that incorporates a correction for all three effects. Methods The MaxGIRF reconstruction is applied to noiseless phantom simulations, spiral gradient‐echo imaging of an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom, and axial and sagittal multislice spiral spin‐echo imaging of a healthy volunteer at 0.55 T. The MaxGIRF reconstruction was compared against previously established concomitant field‐compensation and image‐correction methods. Reconstructed images are evaluated qualitatively and quantitatively using normalized RMS error. Finally, a low‐rank approximation of MaxGIRF is used to reduce computational burden. The accuracy of the low‐rank approximation is studied as a function of minimum rank. Results The MaxGIRF reconstruction successfully mitigated blurring artifacts both in phantoms and in vivo and was effective in regions where concomitant fields counteract static off‐resonance, superior to the comparator method. A minimum rank of 8 and 30 for axial and sagittal scans, respectively, gave less than 2% error compared with the full‐rank reconstruction. Conclusions The MaxGIRF reconstruction simultaneously corrects off‐resonance, trajectory errors, and concomitant field effects. The impact of this method is greatest when imaging with longer readouts and/or at lower field strength. Click here for author‐reader discussions
Collapse
Affiliation(s)
- Nam G Lee
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Rajiv Ramasawmy
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yongwan Lim
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Krishna S Nayak
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
23
|
Vaculčiaková L, Podranski K, Edwards LJ, Ocal D, Veale T, Fox NC, Haak R, Ehses P, Callaghan MF, Pine KJ, Weiskopf N. Combining navigator and optical prospective motion correction for high-quality 500 μm resolution quantitative multi-parameter mapping at 7T. Magn Reson Med 2022; 88:787-801. [PMID: 35405027 DOI: 10.1002/mrm.29253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE High-resolution quantitative multi-parameter mapping shows promise for non-invasively characterizing human brain microstructure but is limited by physiological artifacts. We implemented corrections for rigid head movement and respiration-related B0-fluctuations and evaluated them in healthy volunteers and dementia patients. METHODS Camera-based optical prospective motion correction (PMC) and FID navigator correction were implemented in a gradient and RF-spoiled multi-echo 3D gradient echo sequence for mapping proton density (PD), longitudinal relaxation rate (R1) and effective transverse relaxation rate (R2*). We studied their effectiveness separately and in concert in young volunteers and then evaluated the navigator correction (NAVcor) with PMC in a group of elderly volunteers and dementia patients. We used spatial homogeneity within white matter (WM) and gray matter (GM) and scan-rescan measures as quality metrics. RESULTS NAVcor and PMC reduced artifacts and improved the homogeneity and reproducibility of parameter maps. In elderly participants, NAVcor improved scan-rescan reproducibility of parameter maps (coefficient of variation decreased by 14.7% and 11.9% within WM and GM respectively). Spurious inhomogeneities within WM were reduced more in the elderly than in the young cohort (by 9% vs. 2%). PMC increased regional GM/WM contrast and was especially important in the elderly cohort, which moved twice as much as the young cohort. We did not find a significant interaction between the two corrections. CONCLUSION Navigator correction and PMC significantly improved the quality of PD, R1, and R2* maps, particularly in less compliant elderly volunteers and dementia patients.
Collapse
Affiliation(s)
- Lenka Vaculčiaková
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kornelius Podranski
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Luke J Edwards
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Dilek Ocal
- The Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas Veale
- The Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, UCL, London, UK
| | - Nick C Fox
- The Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, UCL, London, UK
| | - Rainer Haak
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Philipp Ehses
- Department of MR Physics, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Martina F Callaghan
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kerrin J Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK.,Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| |
Collapse
|
24
|
Tax CMW, Bastiani M, Veraart J, Garyfallidis E, Okan Irfanoglu M. What's new and what's next in diffusion MRI preprocessing. Neuroimage 2022; 249:118830. [PMID: 34965454 PMCID: PMC9379864 DOI: 10.1016/j.neuroimage.2021.118830] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/26/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Diffusion MRI (dMRI) provides invaluable information for the study of tissue microstructure and brain connectivity, but suffers from a range of imaging artifacts that greatly challenge the analysis of results and their interpretability if not appropriately accounted for. This review will cover dMRI artifacts and preprocessing steps, some of which have not typically been considered in existing pipelines or reviews, or have only gained attention in recent years: brain/skull extraction, B-matrix incompatibilities w.r.t the imaging data, signal drift, Gibbs ringing, noise distribution bias, denoising, between- and within-volumes motion, eddy currents, outliers, susceptibility distortions, EPI Nyquist ghosts, gradient deviations, B1 bias fields, and spatial normalization. The focus will be on "what's new" since the notable advances prior to and brought by the Human Connectome Project (HCP), as presented in the predecessing issue on "Mapping the Connectome" in 2013. In addition to the development of novel strategies for dMRI preprocessing, exciting progress has been made in the availability of open source tools and reproducible pipelines, databases and simulation tools for the evaluation of preprocessing steps, and automated quality control frameworks, amongst others. Finally, this review will consider practical considerations and our view on "what's next" in dMRI preprocessing.
Collapse
Affiliation(s)
- Chantal M W Tax
- Image Sciences Institute, University Medical Center Utrecht, The Netherlands; Cardiff University Brain Research Imaging Centre, School of Physics and Astronomy, Cardiff University, UK.
| | - Matteo Bastiani
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, UK
| | - Jelle Veraart
- Center for Biomedical Imaging, New York University Grossman School of Medicine, NY, USA
| | | | - M Okan Irfanoglu
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Long-Term Stability of Gradient Characteristics Warrants Model-Based Correction of Diffusion Weighting Bias. Tomography 2022; 8:364-375. [PMID: 35202195 PMCID: PMC8875771 DOI: 10.3390/tomography8010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 11/16/2022] Open
Abstract
The study aims to test the long-term stability of gradient characteristics for model-based correction of diffusion weighting (DW) bias in an apparent diffusion coefficient (ADC) for multisite imaging trials. Single spin echo (SSE) DWI of a long-tube ice-water phantom was acquired quarterly on six MR scanners over two years for individual diffusion gradient channels, along with B0 mapping, as a function of right-left (RL) and superior-inferior (SI) offsets from the isocenter. Additional double spin-echo (DSE) DWI was performed on two systems. The offset dependences of derived ADC were fit to 4th-order polynomials. Chronic shim gradients were measured from spatial derivatives of B0 maps along the tube direction. Gradient nonlinearity (GNL) was modeled using vendor-provided gradient field descriptions. Deviations were quantified by root-mean-square differences (RMSD), normalized to reference ice-water ADC, between the model and reference (RMSDREF), measurement and model (RMSDEXP), and temporal measurement variations (RMSDTMP). Average RMSDREF was 4.9 ± 3.2 (%RL) and –14.8 ± 3.8 (%SI), and threefold larger than RMSDEXP. RMSDTMP was close to measurement errors (~3%). GNL-induced bias across gradient systems varied up to 20%, while deviation from the model accounted at most for 6.5%, and temporal variation for less than 3% of ADC reproducibility error. Higher SSE RMSDEXP = 7.5–11% was reduced to 2.5–4.8% by DSE, consistent with the eddy current origin. Measured chronic shim gradients below 0.1 mT/m had a minor contribution to ADC bias. The demonstrated long-term stability of spatial ADC profiles and consistency with system GNL models justifies retrospective and prospective DW bias correction based on system gradient design models. Residual errors due to eddy currents and shim gradients should be corrected independent of GNL.
Collapse
|
26
|
Torres E, Froelich T, Wang P, DelaBarre L, Mullen M, Adriany G, Pizetta DC, Martins MJ, Vidoto ELG, Tannús A, Garwood M. B 1 -gradient-based MRI using frequency-modulated Rabi-encoded echoes. Magn Reson Med 2022; 87:674-685. [PMID: 34498768 PMCID: PMC8627437 DOI: 10.1002/mrm.29002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Reduce expense and increase accessibility of MRI by eliminating pulsed field (B0 ) gradient hardware. METHODS A radiofrequency imaging method is described that enables spatial encoding without B0 gradients. This method, herein referred to as frequency-modulated Rabi-encoded echoes (FREE), utilizes adiabatic full passage pulses and a gradient in the RF field (B1 ) to produce spatially dependent phase modulation, equivalent to conventional phase encoding. In this work, Cartesian phase encoding was accomplished using FREE in a multi-shot double spin-echo sequence. Theoretical analysis and computer simulations investigated the influence of resonance offset and B1 -gradient steepness and magnitude on reconstruction quality, which limit other radiofrequency imaging methodologies. Experimentally, FREE was compared to conventional phase-encoded MRI on human visual cortex using a simple surface transceiver coil. RESULTS Image distortions occurred in FREE when using nonlinear B1 fields where the phase dependence becomes nonlinear, but with minimal change in signal intensity. Resonance offset effects were minimal for Larmor frequencies within the adiabatic full-passage pulse bandwidth. CONCLUSION For the first time, FREE enabled slice-selective 2D imaging of the human brain without a B0 gradient in the y-direction. FREE achieved high resolution in regions where the B1 gradient was steepest, whereas images were distorted in regions where nonlinearity in the B1 gradient was significant. Given that FREE experiences no significant signal loss due to B1 nonlinearities and resonance offset, image distortions shown in this work might be corrected in the future based on B1 and B0 maps.
Collapse
Affiliation(s)
- Efraín Torres
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Taylor Froelich
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Paul Wang
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Lance DelaBarre
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Michael Mullen
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Gregory Adriany
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Daniel Cosmo Pizetta
- Centro de Imagens e Espectroscopia por Ressonância Magnética - CIERMag - São Carlos Physics Institute, University of São Paulo – IFSC-USP, São Carlos, Brazil
| | - Mateus José Martins
- Centro de Imagens e Espectroscopia por Ressonância Magnética - CIERMag - São Carlos Physics Institute, University of São Paulo – IFSC-USP, São Carlos, Brazil
| | - Edson Luiz Géa Vidoto
- Centro de Imagens e Espectroscopia por Ressonância Magnética - CIERMag - São Carlos Physics Institute, University of São Paulo – IFSC-USP, São Carlos, Brazil
| | - Alberto Tannús
- Centro de Imagens e Espectroscopia por Ressonância Magnética - CIERMag - São Carlos Physics Institute, University of São Paulo – IFSC-USP, São Carlos, Brazil
| | - Michael Garwood
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
27
|
McTavish S, Van AT, Peeters JM, Weiss K, Makowski MR, Braren RF, Karampinos DC. Gradient nonlinearity correction in liver DWI using motion-compensated diffusion encoding waveforms. MAGMA (NEW YORK, N.Y.) 2022; 35:827-841. [PMID: 34894335 PMCID: PMC9463296 DOI: 10.1007/s10334-021-00981-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE : To experimentally characterize the effectiveness of a gradient nonlinearity correction method in removing ADC bias for different motion-compensated diffusion encoding waveforms. METHODS The diffusion encoding waveforms used were the standard monopolar Stejskal-Tanner pulsed gradient spin echo (pgse) waveform, the symmetric bipolar velocity-compensated waveform (sym-vc), the asymmetric bipolar velocity-compensated waveform (asym-vc) and the asymmetric bipolar partial velocity-compensated waveform (asym-pvc). The effectiveness of the gradient nonlinearity correction method using the spherical harmonic expansion of the gradient coil field was tested with the aforementioned waveforms in a phantom and in four healthy subjects. RESULTS The gradient nonlinearity correction method reduced the ADC bias in the phantom experiments for all used waveforms. The range of the ADC values over a distance of ± 67.2 mm from isocenter reduced from 1.29 × 10-4 to 0.32 × 10-4 mm2/s for pgse, 1.04 × 10-4 to 0.22 × 10-4 mm2/s for sym-vc, 1.22 × 10-4 to 0.24 × 10-4 mm2/s for asym-vc and 1.07 × 10-4 to 0.11 × 10-4 mm2/s for asym-pvc. The in vivo results showed that ADC overestimation due to motion or bright vessels can be increased even further by the gradient nonlinearity correction. CONCLUSION The investigated gradient nonlinearity correction method can be used effectively with various motion-compensated diffusion encoding waveforms. In coronal liver DWI, ADC errors caused by motion and residual vessel signal can be increased even further by the gradient nonlinearity correction.
Collapse
Affiliation(s)
- Sean McTavish
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Anh T. Van
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | - Marcus R. Makowski
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Rickmer F. Braren
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
28
|
Crop F, Mouttet-Audouard R, Mirabel X, Ceugnart L, Lacornerie T. Technical note: Unexpected external markers artifact in 3D k-space based parallel imaging turbo spin-echo magnetic resonance imaging. Phys Med 2021; 90:150-157. [PMID: 34662818 DOI: 10.1016/j.ejmp.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/21/2021] [Accepted: 10/02/2021] [Indexed: 01/11/2023] Open
Abstract
PURPOSE MRI for radiotherapy planning requires spatial referencing using immobilization devices and markers. Clinical images of a difficult-to-interpret artifact are presented, resembling a metastasis, which occurs when combining CAIPIRINHA k-space-based parallel imaging (PI), 3D distortion correction, and external markers. METHODS A 3D variable flip angle Turbo Spin Echo sequence was used on a 1.5 T and 3 T MRI using flexible and head and neck coils. Two types of markers were tested: Liquimark LM1 and Spee-D-Mark. A silicone oil phantom was used that represents low signal intensity, such as gray matter. 3D Fourier transforms were also used to show the issue's origin. RESULTS The markers can appear in an unexpected region of a patient, not in the same original or reconstructed slice nor in a rectilinear direction in a slice, especially when using CAIPIRINHA acceleration with 3D distortion correction. The probability of occurrence was respectively 13% and 80% for distances of <=2 mm and >2 mm between marker and patient, for example when using thermoplastic masks. Clinical cases are shown where this semi-randomly occurring artifact appears post contrast only, and thus can be interpreted as metastases. The artifact did not appear when using compressed sensing acceleration. CONCLUSION Markers used for radiotherapy MRI application can introduce additional artifacts that can be interpreted as metastases. However, other high signal intensity structures on the surface of a patient, such as the ear, can lead to an equivalent error.
Collapse
Affiliation(s)
- Frederik Crop
- Medical Physics, Centre Oscar Lambret, Lille, France.
| | | | - Xavier Mirabel
- Academic Department of Radiotherapy, Centre Oscar Lambret, Lille, France
| | - Luc Ceugnart
- Radiology Department, Centre Oscar Lambret, Lille, France
| | | |
Collapse
|
29
|
Koike S, Uematsu A, Sasabayashi D, Maikusa N, Takahashi T, Ohi K, Nakajima S, Noda Y, Hirano Y. Recent Advances and Future Directions in Brain MR Imaging Studies in Schizophrenia: Toward Elucidating Brain Pathology and Developing Clinical Tools. Magn Reson Med Sci 2021; 21:539-552. [PMID: 34408115 DOI: 10.2463/mrms.rev.2021-0050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Schizophrenia is a common severe psychiatric disorder that affects approximately 1% of general population through the life course. Historically, in Kraepelin's time, schizophrenia was a disease unit conceptualized as dementia praecox; however, since then, the disease concept has changed. Recent MRI studies had shown that the neuropathology of the brain in this disorder was characterized by mild progression before and after the onset of the disease, and that the brain alterations were relatively smaller than assumed. Although genetic factors contribute to the brain alterations in schizophrenia, which are thought to be trait differences, other changes include factors that are common in psychiatric diseases. Furthermore, it has been shown that the brain differences specific to schizophrenia were relatively small compared to other changes, such as those caused by brain development, aging, and gender. In addition, compared to the disease and participant factors, machine and imaging protocol differences could affect MRI signals, which should be addressed in multi-site studies. Recent advances in MRI modalities, such as multi-shell diffusion-weighted imaging, magnetic resonance spectroscopy, and multimodal brain imaging analysis, may be candidates to sharpen the characterization of schizophrenia-specific factors and provide new insights. The Brain/MINDS Beyond Human Brain MRI (BMB-HBM) project has been launched considering the differences and noises irrespective of the disease pathologies and includes the future perspectives of MRI studies for various psychiatric and neurological disorders. The sites use restricted MRI machines and harmonized multi-modal protocols, standardized image preprocessing, and traveling subject harmonization. Data sharing to the public will be planned in FY 2024. In the future, we believe that combining a high-quality human MRI dataset with genetic data, randomized controlled trials, and MRI for non-human primates and animal models will enable us to understand schizophrenia, elucidate its neural bases and therapeutic targets, and provide tools for clinical application at bedside.
Collapse
Affiliation(s)
- Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo.,University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM).,University of Tokyo Center for Integrative Science of Human Behavior (CiSHuB).,The International Research Center for Neurointelligence (WPI-IRCN), Institutes for Advanced Study (UTIAS), The University of Tokyo
| | - Akiko Uematsu
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences.,Research Center for Idling Brain Science (RCIBS), University of Toyama
| | - Norihide Maikusa
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences.,Research Center for Idling Brain Science (RCIBS), University of Toyama
| | - Kazutaka Ohi
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine
| | | | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University.,Institute of Industrial Science, The University of Tokyo
| |
Collapse
|
30
|
Maikusa N, Zhu Y, Uematsu A, Yamashita A, Saotome K, Okada N, Kasai K, Okanoya K, Yamashita O, Tanaka SC, Koike S. Comparison of traveling-subject and ComBat harmonization methods for assessing structural brain characteristics. Hum Brain Mapp 2021; 42:5278-5287. [PMID: 34402132 PMCID: PMC8519865 DOI: 10.1002/hbm.25615] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/25/2022] Open
Abstract
Multisite magnetic resonance imaging (MRI) is increasingly used in clinical research and development. Measurement biases—caused by site differences in scanner/image‐acquisition protocols—negatively influence the reliability and reproducibility of image‐analysis methods. Harmonization can reduce bias and improve the reproducibility of multisite datasets. Herein, a traveling‐subject (TS) dataset including 56 T1‐weighted MRI scans of 20 healthy participants in three different MRI procedures—20, 19, and 17 subjects in Procedures 1, 2, and 3, respectively—was considered to compare the reproducibility of TS‐GLM, ComBat, and TS‐ComBat harmonization methods. The minimum participant count required for harmonization was determined, and the Cohen's d between different MRI procedures was evaluated as a measurement‐bias indicator. The measurement‐bias reduction realized with different methods was evaluated by comparing test–retest scans for 20 healthy participants. Moreover, the minimum subject count for harmonization was determined by comparing test–retest datasets. The results revealed that TS‐GLM and TS‐ComBat reduced measurement bias by up to 85 and 81.3%, respectively. Meanwhile, ComBat showed a reduction of only 59.0%. At least 6 TSs were required to harmonize data obtained from different MRI scanners, complying with the imaging protocol predetermined for multisite investigations and operated with similar scan parameters. The results indicate that TS‐based harmonization outperforms ComBat for measurement‐bias reduction and is optimal for MRI data in well‐prepared multisite investigations. One drawback is the small sample size used, potentially limiting the applicability of ComBat. Investigation on the number of subjects needed for a large‐scale study is an interesting future problem.
Collapse
Affiliation(s)
- Norihide Maikusa
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan.,Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yinghan Zhu
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
| | - Akiko Uematsu
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
| | - Ayumu Yamashita
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Kyoto, Japan
| | - Kousaku Saotome
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
| | - Naohiro Okada
- The International Research Center for Neurointelligence (WPI-IRCN), Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan.,Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- The International Research Center for Neurointelligence (WPI-IRCN), Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan.,Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The University of Tokyo Center for Integrative Science of Human Behavior (CiSHuB), Tokyo, Japan.,The University of Tokyo Institute for Diversity Adaptation of Human Mind (UTIDAHM), Tokyo, Japan
| | - Kazuo Okanoya
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan.,The International Research Center for Neurointelligence (WPI-IRCN), Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan.,The University of Tokyo Center for Integrative Science of Human Behavior (CiSHuB), Tokyo, Japan.,The University of Tokyo Institute for Diversity Adaptation of Human Mind (UTIDAHM), Tokyo, Japan
| | - Okito Yamashita
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Kyoto, Japan.,Center for Advanced Intelligence Project (AIP), RIKEN, Tokyo, Japan
| | - Saori C Tanaka
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Kyoto, Japan
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan.,The International Research Center for Neurointelligence (WPI-IRCN), Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan.,The University of Tokyo Center for Integrative Science of Human Behavior (CiSHuB), Tokyo, Japan.,The University of Tokyo Institute for Diversity Adaptation of Human Mind (UTIDAHM), Tokyo, Japan
| |
Collapse
|
31
|
Glutig K, Mentzel HJ, Prüfer FH, Teichgräber U, Obmann MM, Krämer M. RAVE-T2/T1 - Feasibility of a new hybrid MR-sequence for free-breathing abdominal MRI in children and adolescents. Eur J Radiol 2021; 143:109903. [PMID: 34392003 DOI: 10.1016/j.ejrad.2021.109903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The new radial volumetric encoding RAVE-T2/T1 hybrid sequence is a modern three-dimensional sequence with multiparametric approach, which includes T2- and T1-weighted contrasts obtained in identical slice position during one measurement. However, the RAVE-T2/T1 hybrid sequence is not yet being used in clinical routine. PURPOSE The aim of this study was to evaluate the RAVE-T2/T1 hybrid sequence in a pediatric population with a clinical indication for an abdominal MRI examination to demonstrate that the hybrid imaging may be less challenging to perform on children. MATERIALS AND METHODS Our retrospective observational study included pediatric patients of all age groups and required for an abdominal MRI examination. Non-contrast standard axial T1 DIXON and non-contrast RAVE-T2/T1 hybrid sequence were obtained at 3 T. MRI studies were analyzed independently by two pediatric radiologists using a 5-point Likert-type scale in five different categories. T1- and T2-weighted sequences were each compared with the RAVE-T2/T1-sequence using a Wilcoxon signed-rank test. RESULTS The analysis included 15 children (mean age, 11 years and 4 months, 7 girls and 8 boys). The Cohens Kappa of interrater agreement measured 0.62. The T2 weighted part of the RAVE-T2/T1 sequence was significantly better than the standard T2 HASTE sequence in four of five image quality categories: overall image quality (2.2 ± 0.7 vs 1.8 ± 0,7, p = 0.03), respiratory motion artefacts (3.8 ± 0.4 vs 2.0 ± 0.7, p <= 0.01), portal vein clarity (3.3 ± 0.8 vs 2.2 ± 0.7, p <= 0.01), hepatic margin sharpness (2.4 ± 1,0 vs 1.8 ± 0.7, p <= 0.01). The T1 weighted part of the RAVE-T2/T1 sequence was significantly better than the standard T1 DIXON weighted sequence in three of five image quality categories: respiratory motion artefacts (4.0 ± 0.2 vs 3.6 ± 0.8, p = 0.01), portal vein clarity (2.7 ± 0.9 vs 2.1 ± 0.7, p <= 0.01), hepatic margin sharpness (3.2 ± 0.7 vs 2.6 ± 0.9, p <= 0.01). CONCLUSIONS The RAVE-T2/T1 hybrid sequence is feasible and equal compared to standard T1- and T2-weighted sequences in the assessment of abdominal organs in a pediatric population. Due to non-inferiority to the current standard sequences for abdominal imaging, the RAVE-T2/T1 hybrid sequence is a good alternative for children who cannot be examined in breath-hold technique.
Collapse
Affiliation(s)
- K Glutig
- Jena University Hospital - Friedrich Schiller University Jena, Institute of Diagnostic and Interventional Radiology, Section of Pediatric Radiology, Am Klinikum 1, 07747 Jena, Germany.
| | - H-J Mentzel
- Jena University Hospital - Friedrich Schiller University Jena, Institute of Diagnostic and Interventional Radiology, Section of Pediatric Radiology, Am Klinikum 1, 07747 Jena, Germany
| | - F H Prüfer
- University Children's Hospital UKBB, University of Basel, Paediatric Radiology, Spitalstrasse 33, 4031 Basel, Switzerland
| | - U Teichgräber
- Jena University Hospital - Friedrich Schiller University Jena, Institute of Diagnostic and Interventional Radiology, Section of Pediatric Radiology, Am Klinikum 1, 07747 Jena, Germany
| | - M M Obmann
- University Hospital Basel USB, University of Basel, Clinic of Radiology and Nuclear Medicine, Petersgraben 4, 4031 Basel, Switzerland
| | - M Krämer
- Jena University Hospital - Friedrich Schiller University Jena, Institute of Diagnostic and Interventional Radiology, Section of Pediatric Radiology, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
32
|
Autio JA, Zhu Q, Li X, Glasser MF, Schwiedrzik CM, Fair DA, Zimmermann J, Yacoub E, Menon RS, Van Essen DC, Hayashi T, Russ B, Vanduffel W. Minimal specifications for non-human primate MRI: Challenges in standardizing and harmonizing data collection. Neuroimage 2021; 236:118082. [PMID: 33882349 PMCID: PMC8594288 DOI: 10.1016/j.neuroimage.2021.118082] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/16/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Recent methodological advances in MRI have enabled substantial growth in neuroimaging studies of non-human primates (NHPs), while open data-sharing through the PRIME-DE initiative has increased the availability of NHP MRI data and the need for robust multi-subject multi-center analyses. Streamlined acquisition and analysis protocols would accelerate and improve these efforts. However, consensus on minimal standards for data acquisition protocols and analysis pipelines for NHP imaging remains to be established, particularly for multi-center studies. Here, we draw parallels between NHP and human neuroimaging and provide minimal guidelines for harmonizing and standardizing data acquisition. We advocate robust translation of widely used open-access toolkits that are well established for analyzing human data. We also encourage the use of validated, automated pre-processing tools for analyzing NHP data sets. These guidelines aim to refine methodological and analytical strategies for small and large-scale NHP neuroimaging data. This will improve reproducibility of results, and accelerate the convergence between NHP and human neuroimaging strategies which will ultimately benefit fundamental and translational brain science.
Collapse
Affiliation(s)
- Joonas A Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| | - Qi Zhu
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven 3000, Belgium; Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
| | - Xiaolian Li
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven 3000, Belgium
| | - Matthew F Glasser
- Departments of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Departments of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstraße 5, 37077 Göttingen, Germany; Perception and Plasticity Group, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Damien A Fair
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Jan Zimmermann
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Western University, London, ON, Canada
| | - David C Van Essen
- Departments of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Brian Russ
- Department of Psychiatry, New York University Langone, New York City, New York, USA; Center for the Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, New York, USA; Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York City, New York, USA
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven 3000, Belgium; Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| |
Collapse
|
33
|
Pang Y, Malyarenko DI, Amouzandeh G, Barberi E, Cole M, Vom Endt A, Peeters J, Tan ET, Chenevert TL. Empirical validation of gradient field models for an accurate ADC measured on clinical 3T MR systems in body oncologic applications. Phys Med 2021; 86:113-120. [PMID: 34107440 PMCID: PMC8268998 DOI: 10.1016/j.ejmp.2021.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/28/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To empirically corroborate vendor-provided gradient nonlinearity (GNL) characteristics and demonstrate efficient GNL bias correction for human brain apparent diffusion coefficient (ADC) across 3T MR systems and spatial locations. METHODS Spatial distortion vector fields (DVF) were mapped in 3D using a surface fiducial array phantom for individual gradient channels on three 3T MR platforms from different vendors. Measured DVF were converted into empirical 3D GNL tensors and compared with their theoretical counterparts derived from vendor-provided spherical harmonic (SPH) coefficients. To illustrate spatial impact of GNL on ADC, diffusion weighted imaging using three orthogonal gradient directions was performed on a volunteer brain positioned at isocenter (as a reference) and offset superiorly by 10-17 cm (>10% predicted GNL bias). The SPH tensor-based GNL correction was applied to individual DWI gradient directions, and derived ADC was compared with low-bias reference for human brain white matter (WM) ROIs. RESULTS Empiric and predicted GNL errors were comparable for all three studied 3T MR systems, with <1.0% differences in the median and width of spatial histograms for individual GNL tensor elements. Median (±width) of ADC (10-3mm2/s) histograms measured at isocenter in WM reference ROIs from three MR systems were: 0.73 ± 0.11, 0.71 ± 0.14, 0.74 ± 0.17, and at off-isocenters (before versus after GNL correction) were respectively 0.63 ± 0.14 versus 0.72 ± 0.11, 0.53 ± 0.16 versus 0.74 ± 0.18, and 0.65 ± 0.16 versus 0.76 ± 0.18. CONCLUSION The phantom-based spatial distortion measurements validated vendor-provided gradient fields, and accurate WM ADC was recovered regardless of spatial locations and clinical MR platforms using system-specific tensor-based GNL correction for routine DWI.
Collapse
Affiliation(s)
- Yuxi Pang
- Radiology, University of Michigan, Ann Arbor, MI, United States.
| | | | | | - Enzo Barberi
- Modus Medical Devices Inc., London, ON, CA, Canada
| | - Michael Cole
- Modus Medical Devices Inc., London, ON, CA, Canada
| | | | | | - Ek T Tan
- Radiology and Imaging, Hospital for Special Surgery, New York, NY, United States
| | | |
Collapse
|
34
|
Keijnemans K, Borman PTS, van Lier ALHMW, Verhoeff JJC, Raaymakers BW, Fast MF. Simultaneous multi-slice accelerated 4D-MRI for radiotherapy guidance. Phys Med Biol 2021; 66. [PMID: 33827065 DOI: 10.1088/1361-6560/abf591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022]
Abstract
4D-MRI is becoming increasingly important for daily guidance of thoracic and abdominal radiotherapy. This study exploits the simultaneous multi-slice (SMS) technique to accelerate the acquisition of a balanced turbo field echo (bTFE) and a turbo spin echo (TSE) coronal 4D-MRI sequence performed on 1.5 T MRI scanners. SMS single-shot bTFE and TSE sequences were developed to acquire a stack of 52 coronal 2D images over 30 dynamics. Simultaneously excited slices were separated by half the field of view. Slices intersecting with the liver-lung interface were used as navigator slices. For each navigator slice location, an end-exhale dynamic was automatically identified, and used to derive the self-sorting signal by rigidly registering the remaining dynamics. Navigator slices were sorted into 10 amplitude bins, and the temporal relationship of simultaneously excited slices was used to generate sorted 4D-MRIs for 12 healthy volunteers. The self-sorting signal was validated using anin vivopeak-to-peak motion analysis. The smoothness of the liver-lung interface was quantified by comparing to sagittal cine images acquired directly after the SMS-4D-MRI sequence. To ensure compatibility with the MR-linac radiotherapy workflow, the 4D-MRIs were transformed into 3D mid-position (MidP) images using deformable image registration. Consistency of the deformable vector fields was quantified in terms of the distance discordance metric (DDM) in the body. The SMS-4D-TSE sequence was additionally acquired for 3 lung cancer patients to investigate tumor visibility. SMS-4D-MRI acquisition and processing took approximately 7 min. 4D-MRI reconstruction was possible for 26 out of 27 acquired datasets. Missing data in the sorted 4D-MRIs varied from 4%-26% for the volunteers and varied from 8%-24% for the patients. Peak-to-peak (SD) amplitudes analysis agreed within 1.8 (1.1) mm and 0.9 (0.4) mm between the sorted 4D-MRIs and the self-sorting signals of the volunteers and patients, respectively. Liver-lung interface smoothness was found to be in the range of 0.6-3.1 mm for volunteers. The percentage of DDM values smaller than 2 mm was in the range of 85%-89% and 86%-92% for the volunteers and patients, respectively. Lung tumors were clearly visibility in the SMS-4D-TSE images and MidP images. Two fast SMS-accelerated 4D-MRI sequences were developed resulting in T2/T1or T2weighted contrast. The SMS-4D-MRIs and derived 3D MidP-MRIs yielded anatomically plausible images and good tumor visibility. SMS-4D-MRI is therefore a strong candidate to be used for treatment simulation and daily guidance of thoracic and abdominal MR-guided radiotherapy.
Collapse
Affiliation(s)
- K Keijnemans
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - P T S Borman
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - A L H M W van Lier
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - J J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - B W Raaymakers
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - M F Fast
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
35
|
Shan S, Li M, Li M, Tang F, Crozier S, Liu F. ReUINet: A fast GNL distortion correction approach on a 1.0 T MRI-Linac scanner. Med Phys 2021; 48:2991-3002. [PMID: 33763850 DOI: 10.1002/mp.14861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 11/12/2022] Open
Abstract
PURPOSE The hybrid system combining a magnetic resonance imaging (MRI) scanner with a linear accelerator (Linac) has become increasingly desirable for tumor treatment because of excellent soft tissue contrast and nonionizing radiation. However, image distortions caused by gradient nonlinearity (GNL) can have detrimental impacts on real-time radiotherapy using MRI-Linac systems, where accurate geometric information of tumors is essential. METHODS In this work, we proposed a deep convolutional neural network-based method to efficiently recover undistorted images (ReUINet) for real-time image guidance. The ReUINet, based on the encoder-decoder structure, was created to learn the relationship between the undistorted images and distorted images. The ReUINet was pretrained and tested on a publically available brain MR image dataset acquired from 23 volunteers. Then, transfer learning was adopted to implement the pretrained model (i.e., network with optimal weights) on the experimental three-dimensional (3D) grid phantom and in-vivo pelvis image datasets acquired from the 1.0 T Australian MRI-Linac system. RESULTS Evaluations on the phantom (768 slices) and pelvis data (88 slices) showed that the ReUINet achieved improvement over 15 times and 45 times on computational efficiency in comparison with standard interpolation and GNL-encoding methods, respectively. Moreover, qualitative and quantitative results demonstrated that the ReUINet provided better correction results than the standard interpolation method, and comparable performance compared to the GNL-encoding approach. CONCLUSIONS Validated by simulation and experimental results, the proposed ReUINet showed promise in obtaining accurate MR images for the implementation of real-time MRI-guided radiotherapy.
Collapse
Affiliation(s)
- Shanshan Shan
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia.,ACRF Image X Institute, School of Health Sciences, University of Sydney, Sydney, Australia
| | - Mao Li
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia
| | - Mingyan Li
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia
| | - Fangfang Tang
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia
| | - Stuart Crozier
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia
| | - Feng Liu
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia
| |
Collapse
|
36
|
Tian Y, Lim Y, Zhao Z, Byrd D, Narayanan S, Nayak KS. Aliasing artifact reduction in spiral real-time MRI. Magn Reson Med 2021; 86:916-925. [PMID: 33728700 DOI: 10.1002/mrm.28746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/09/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE To mitigate a common artifact in spiral real-time MRI, caused by aliasing of signal outside the desired FOV. This artifact frequently occurs in midsagittal speech real-time MRI. METHODS Simulations were performed to determine the likely origin of the artifact. Two methods to mitigate the artifact are proposed. The first approach, denoted as "large FOV" (LF), keeps an FOV that is large enough to include the artifact signal source during reconstruction. The second approach, denoted as "estimation-subtraction" (ES), estimates the artifact signal source before subtracting a synthetic signal representing that source in multicoil k-space raw data. Twenty-five midsagittal speech-production real-time MRI data sets were used to evaluate both of the proposed methods. Reconstructions without and with corrections were evaluated by two expert readers using a 5-level Likert scale assessing artifact severity. Reconstruction time was also compared. RESULTS The origin of the artifact was found to be a combination of gradient nonlinearity and imperfect anti-aliasing in spiral sampling. The LF and ES methods were both able to substantially reduce the artifact, with an averaged qualitative score improvement of 1.25 and 1.35 Likert levels for LF correction and ES correction, respectively. Average reconstruction time without correction, with LF correction, and with ES correction were 160.69 ± 1.56, 526.43 ± 5.17, and 171.47 ± 1.71 ms/frame. CONCLUSION Both proposed methods were able to reduce the spiral aliasing artifacts, with the ES-reduction method being more effective and more time efficient.
Collapse
Affiliation(s)
- Ye Tian
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Yongwan Lim
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Ziwei Zhao
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Dani Byrd
- Department of Linguistics, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Shrikanth Narayanan
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA.,Department of Linguistics, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
37
|
Rabe M, Paganelli C, Riboldi M, Bondesson D, Jörg Schneider M, Chmielewski T, Baroni G, Dinkel J, Reiner M, Landry G, Parodi K, Belka C, Kamp F, Kurz C. Porcine lung phantom-based validation of estimated 4D-MRI using orthogonal cine imaging for low-field MR-Linacs. Phys Med Biol 2021; 66:055006. [PMID: 33171458 DOI: 10.1088/1361-6560/abc937] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Real-time motion monitoring of lung tumors with low-field magnetic resonance imaging-guided linear accelerators (MR-Linacs) is currently limited to sagittal 2D cine magnetic resonance imaging (MRI). To provide input data for improved intrafractional and interfractional adaptive radiotherapy, the 4D anatomy has to be inferred from data with lower dimensionality. The purpose of this study was to experimentally validate a previously proposed propagation method that provides continuous time-resolved estimated 4D-MRI based on orthogonal cine MRI for a low-field MR-Linac. Ex vivo porcine lungs were injected with artificial nodules and mounted in a dedicated phantom that allows for the simulation of periodic and reproducible breathing motion. The phantom was scanned with a research version of a commercial 0.35 T MR-Linac. Respiratory-correlated 4D-MRI were reconstructed and served as ground truth images. Series of interleaved orthogonal slices in sagittal and coronal orientation, intersecting the injected targets, were acquired at 7.3 Hz. Estimated 4D-MRI at 3.65 Hz were created in post-processing using the propagation method and compared to the ground truth 4D-MRI. Eight datasets at different breathing frequencies and motion amplitudes were acquired for three porcine lungs. The overall median (95[Formula: see text] percentile) deviation between ground truth and estimated deformation vector fields was 2.3 mm (5.7 mm), corresponding to 0.7 (1.6) times the in-plane imaging resolution (3.5 × 3.5 mm2). Median (95[Formula: see text] percentile) estimated nodule position errors were 1.5 mm (3.8 mm) for nodules intersected by orthogonal slices and 2.1 mm (7.1 mm) for nodules located more than 2 cm away from either of the orthogonal slices. The estimation error depended on the breathing phase, the motion amplitude and the location of the estimated position with respect to the orthogonal slices. By using the propagation method, the 4D motion within the porcine lung phantom could be accurately and robustly estimated. The method could provide valuable information for treatment planning, real-time motion monitoring, treatment adaptation, and post-treatment evaluation of MR-guided radiotherapy treatments.
Collapse
Affiliation(s)
- Moritz Rabe
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Chiara Paganelli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Marco Riboldi
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| | - David Bondesson
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center, German Center for Lung Research (DZL), Munich, Germany
| | - Moritz Jörg Schneider
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center, German Center for Lung Research (DZL), Munich, Germany
| | | | - Guido Baroni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy.,Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
| | - Julien Dinkel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center, German Center for Lung Research (DZL), Munich, Germany
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| | - Katia Parodi
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Florian Kamp
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| |
Collapse
|
38
|
Whelan B, Leghissa M, Amrei P, Zaitsev M, Heinrich B, Fahrig R, Rohdjess H. Magnetic modeling of actively shielded rotating MRI magnets in the presence of environmental steel. Phys Med Biol 2021; 66:045004. [PMID: 33264755 DOI: 10.1088/1361-6560/abd010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rotating MRI systems could enable novel integrated medical devices such as MRI-Linacs, MRI-xray-angiography systems, and MRI-proton therapy systems. This work aimed to investigate the feasibility of rotating actively shielded superconducting MRI magnets in the presence of environmental steel-in particular, construction steel in the floor of the installation site. Two magnets were investigated: a 1.0 T split bore magnet, and a 1.5 T closed bore magnet. Each magnet was scaled to emulate field strengths of 0.5, 1.0, and 1.5 T. Finite Element Modeling was used to simulate these magnets in the presence of a 3 × 4 m steel plate located 1250 mm or 1400 mm below the isocenter. There are two possible rotation directions: around the longitudinal (z) axis or around the transverse (x) axis. Each model was solved for rotation angles between 0 and 360° in 30° intervals around each of these axes. For each simulation, a 300 mm DSV was extracted and decomposed into spherical harmonics. For the closed-bore magnet, total induced perturbation for the zero degree rotation angle was 223, 432, and 562 μT peak-to-peak (pk-pk) for the 0.5, 1.0, and 1.5 T models respectively (steel at 1250 mm). For the split-bore magnet, the same numbers were 1477, 16747, and 1766 μT. The substantially higher perturbation for the split-bore magnet can be traced to its larger fringe field. For rotation around the z-axis, total perturbation does not change as a function of angle but is exchanged between different harmonics. For rotation around the x-axis, total perturbation is different at each rotation angle. For the closed bore magnet, maximum perturbations occurred for a 90° rotation around the transverse axis. For the split-bore magnet, the opposite was observed, with the same 90° rotation yielding total perturbation lower than the conventional position. In all cases, at least 95% of the total perturbation was composed of 1st and 2nd order harmonics. The presence of environmental steel poses a major challenge to the realization of an actively shielded rotating superconducting MRI system, requiring some novel form of shimming. Possible shimming strategies are discussed at length.
Collapse
Affiliation(s)
- Brendan Whelan
- Innovation, Advanced Therapies, Siemens Healthineers GmbH, Forchheim, Germany. ACRF Image X Institute, Sydney School of Health Sciences, University of Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
39
|
Hansen CB, Rogers BP, Schilling KG, Nath V, Blaber JA, Irfanoglu O, Barnett A, Pierpaoli C, Anderson AW, Landman BA. Empirical field mapping for gradient nonlinearity correction of multi-site diffusion weighted MRI. Magn Reson Imaging 2021; 76:69-78. [PMID: 33221421 PMCID: PMC7770121 DOI: 10.1016/j.mri.2020.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/23/2020] [Accepted: 11/14/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Achieving inter-site / inter-scanner reproducibility of diffusion weighted magnetic resonance imaging (DW-MRI) metrics has been challenging given differences in acquisition protocols, analysis models, and hardware factors. PURPOSE Magnetic field gradients impart scanner-dependent spatial variations in the applied diffusion weighting that can be corrected if the gradient nonlinearities are known. However, retrieving manufacturer nonlinearity specifications is not well supported and may introduce errors in interpretation of units or coordinate systems. We propose an empirical approach to mapping the gradient nonlinearities with sequences that are supported across the major scanner vendors. STUDY TYPE Prospective observational study. SUBJECTS A spherical isotropic diffusion phantom, and a single human control volunteer. FIELD STRENGTH/SEQUENCE 3 T (two scanners). Stejskal-Tanner spin echo sequence with b-values of 1000, 2000 s/mm2 with 12, 32, and 384 diffusion gradient directions per shell. ASSESSMENT We compare the proposed correction with the prior approach using manufacturer specifications against typical diffusion pre-processing pipelines (i.e., ignoring spatial gradient nonlinearities). In phantom data, we evaluate metrics against the ground truth. In human and phantom data, we evaluate reproducibility across scans, sessions, and hardware. STATISTICAL TESTS Wilcoxon rank-sum test between uncorrected and corrected data. RESULTS In phantom data, our correction method reduces variation in mean diffusivity across sessions over uncorrected data (p < 0.05). In human data, we show that this method can also reduce variation in mean diffusivity across scanners (p < 0.05). CONCLUSION Our method is relatively simple, fast, and can be applied retroactively. We advocate incorporating voxel-specific b-value and b-vector maps should be incorporated in DW-MRI harmonization preprocessing pipelines to improve quantitative accuracy of measured diffusion parameters.
Collapse
Affiliation(s)
| | - Baxter P. Rogers
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN USA;,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Kurt G. Schilling
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN USA
| | - Vishwesh Nath
- Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Justin A. Blaber
- Electrical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Okan Irfanoglu
- National Institute of Biomedical Imaging and Bioengineering, Bethesda MD USA
| | - Alan Barnett
- National Institute of Biomedical Imaging and Bioengineering, Bethesda MD USA
| | - Carlo Pierpaoli
- National Institute of Biomedical Imaging and Bioengineering, Bethesda MD USA
| | - Adam W. Anderson
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN USA;,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Bennett A. Landman
- Computer Science, Vanderbilt University, Nashville, TN, USA;,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN USA;,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA;,Electrical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
40
|
Mickevicius NJ, Paulson ES. On the use of low-dimensional temporal subspace constraints to reduce reconstruction time and improve image quality of accelerated 4D-MRI. Radiother Oncol 2021; 158:215-223. [PMID: 33412207 DOI: 10.1016/j.radonc.2020.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE The purpose of this work is to investigate the use of low-dimensional temporal subspace constraints for 4D-MRI reconstruction from accelerated data in the context of MR-guided online adaptive radiation therapy (MRgOART). MATERIALS AND METHODS Subspace basis functions are derived directly from the accelerated golden angle radial stack-of-stars 4D-MRI data. The reconstruction times, image quality, and motion estimates are investigated as a function of the number of subspace coefficients and compared with a conventional frame-by-frame reconstruction. These experiments were performed in five patients with four 4D-MRI scans per patient on a 1.5T MR-Linac. RESULTS If two or three subspace coefficients are used, the iterative reconstruction time is reduced by 32% and 18%, respectively, compared to conventional parallel imaging with compressed sensing reconstructions. No significant difference was found between motion estimates made with the subspace-constrained reconstructions (p > 0.08). Qualitative improvements in image quality included reduction in apparent noise and reductions in streaking artifacts from the radial k-space coverage. CONCLUSION Incorporating subspace constraints for accelerated 4D-MRI reconstruction reduces noise and residual undersampling artifacts in the images while reducing computation time, making it a strong candidate for use in clinical MRgOART workflows.
Collapse
Affiliation(s)
| | - Eric S Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, United States; Department of Radiology, Medical College of Wisconsin, United States; Department of Biophysics, Medical College of Wisconsin, United States
| |
Collapse
|
41
|
Drobnitzky M, vom Endt A, Dewdney A. A phantom based laser marking workflow to visually assess geometric image distortion in magnetic resonance guided radiotherapy. Phys Imaging Radiat Oncol 2021; 17:95-99. [PMID: 33898786 PMCID: PMC8058018 DOI: 10.1016/j.phro.2021.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/25/2022] Open
Abstract
Magnetic resonance (MR)-only workflows require quality assurance due to potential dosimetric impacts of using geometry distorted MR images in radiotherapy planning. MR-visible silicone-based fiducials were arranged in regular 3D structures to cover extended imaging volumes. The scanner’s patient marking workflow with a 2-axes movable laser bridge allowed to visually check geometric distortions of each MR reconstructed fiducial against its true position in 3D space. A measurement resolution and uncertainty of the order of 0.5 mm in sagittal and coronal, and 1 mm in transversal direction was found. The proposed workflow required 1 min of evaluation time per fiducial position, and a 9 min 3D MR volume acquisition.
Collapse
|
42
|
Yamamoto T, Fukunaga M, Sugawara SK, Hamano YH, Sadato N. Quantitative Evaluations of Geometrical Distortion Corrections in Cortical Surface-Based Analysis of High-Resolution Functional MRI Data at 7T. J Magn Reson Imaging 2020; 53:1220-1234. [PMID: 33151028 PMCID: PMC7984446 DOI: 10.1002/jmri.27420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 11/20/2022] Open
Abstract
Background Although 7T functional MRI (fMRI) provides better signal‐to‐noise ratio and higher spatial resolution than 3T fMRI, geometric distortions become more challenging because fMRI is more susceptible to distortions than structural MRI. Accurate alignment of 7T fMRI to structural MRI data is critical for precise cortical surface‐based analysis. Purpose To quantify the effectiveness of distortion corrections of 7T fMRI data. Study Type Prospective. Subjects Fifteen healthy individuals aged 19–26 years (mean: 21.9 years). Field Strength/Sequence Multiband gradient‐echo echo‐planar imaging sequence at 7T; 3D T1/T2‐weighted sequences (magnetization prepared rapid acquisition with gradient echo [MPRAGE] and sampling perfection with application optimized contrast using different flip angle evolution [SPACE]) at 3T. Assessment fMRI data at 7T were registered to cortical surfaces reconstructed from 3T structural data acquired in the same subjects. Distortions induced by B0 inhomogeneity and gradient nonlinearity (B0 and gradient distortions) were evaluated as cortical fallout (misregistration of noncortical areas) and displacement (misregistration along gray matter). Statistical Tests Repeated measures analyses of variance with post‐hoc t‐tests with Bonferroni correction. Results The accuracy of fully corrected fMRI images based on the intensity distribution was 89.2%. Without any corrections, 9.7% of vertices in the whole surfaces were fallout and the average displacement was 0.96 mm for the rest of the vertices. B0 and gradient distortion corrections significantly reduced the fallout (to 2.1% and 8.7%) and displacement (to 0.29 mm and 0.86 mm). These corrections were effective even around regions with moderate distortions (the somatosensory and visual cortices for B0 distortion, and the anterior frontal, inferior temporal, and posterior occipital cortices for gradient distortion). Data Conclusion B0 distortion correction is crucial for surface‐based analysis of fine‐resolution fMRI at 7T. Gradient distortion correction should be considered when regions of interest include regions distant from the isocenter of scanners. Evidence Level 1 Technical Efficacy Stage 1
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Department of System Neuroscience, Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, The Graduate School for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Masaki Fukunaga
- Department of System Neuroscience, Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, The Graduate School for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Sho K Sugawara
- Department of System Neuroscience, Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, The Graduate School for Advanced Studies (SOKENDAI), Hayama, Japan.,Neural Prosthesis Project, Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuki H Hamano
- Department of System Neuroscience, Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan
| | - Norihiro Sadato
- Department of System Neuroscience, Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, The Graduate School for Advanced Studies (SOKENDAI), Hayama, Japan
| |
Collapse
|
43
|
Yahanda AT, Goble TJ, Sylvester PT, Lessman G, Goddard S, McCollough B, Shah A, Andrews T, Benzinger TLS, Chicoine MR. Impact of 3-Dimensional Versus 2-Dimensional Image Distortion Correction on Stereotactic Neurosurgical Navigation Image Fusion Reliability for Images Acquired With Intraoperative Magnetic Resonance Imaging. Oper Neurosurg (Hagerstown) 2020; 19:599-607. [PMID: 32521010 DOI: 10.1093/ons/opaa152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/30/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Fusion of preoperative and intraoperative magnetic resonance imaging (iMRI) studies during stereotactic navigation may be very useful for procedures such as tumor resections but can be subject to error because of image distortion. OBJECTIVE To assess the impact of 3-dimensional (3D) vs 2-dimensional (2D) image distortion correction on the accuracy of auto-merge image fusion for stereotactic neurosurgical images acquired with iMRI using a head phantom in different surgical positions. METHODS T1-weighted intraoperative images of the head phantom were obtained using 1.5T iMRI. Images were postprocessed with 2D and 3D image distortion correction. These studies were fused to T1-weighted preoperative MRI studies performed on a 1.5T diagnostic MRI. The reliability of the auto-merge fusion of these images for 2D and 3D correction techniques was assessed both manually using the stereotactic navigation system and via image analysis software. RESULTS Eight surgical positions of the head phantom were imaged with iMRI. Greater image distortion occurred with increased distance from isocenter in all 3 axes, reducing accuracy of image fusion to preoperative images. Visually reliable image fusions were accomplished in 2/8 surgical positions using 2D distortion correction and 5/8 using 3D correction. Three-dimensional correction yielded superior image registration quality as defined by higher maximum mutual information values, with improvements ranging between 2.3% and 14.3% over 2D correction. CONCLUSION Using 3D distortion correction enhanced the reliability of surgical navigation auto-merge fusion of phantom images acquired with iMRI across a wider range of head positions and may improve the accuracy of stereotactic navigation using iMRI images.
Collapse
Affiliation(s)
- Alexander T Yahanda
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | | | - Peter T Sylvester
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | - Amar Shah
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Trevor Andrews
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Tammie L S Benzinger
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri.,Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael R Chicoine
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
44
|
de Leeuw den Bouter M, van Gijzen M, Remis R. Low-field magnetic resonance imaging using multiplicative regularization. Magn Reson Imaging 2020; 75:21-33. [PMID: 33039506 DOI: 10.1016/j.mri.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
In this paper we present a magnetic resonance imaging (MRI) technique that is based on multiplicative regularization. Instead of adding a regularizing objective function to a data fidelity term, we multiply by such a regularizing function. By following this approach, no regularization parameter needs to be determined for each new data set that is acquired. Reconstructions are obtained by iteratively updating the images using short-term conjugate gradient-type update formulas and Polak-Ribière update directions. We show that the algorithm can be used as an image reconstruction algorithm and as a denoising algorithm. We illustrate the performance of the algorithm on two-dimensional simulated low-field MR data that is corrupted by noise and on three-dimensional measured data obtained from a low-field MR scanner. Our reconstruction results show that the algorithm effectively suppresses noise and produces accurate reconstructions even for low-field MR signals with a low signal-to-noise ratio.
Collapse
Affiliation(s)
- Merel de Leeuw den Bouter
- Department of Numerical Analysis, Delft Institute of Applied Mathematics, Delft University of Technology, Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands.
| | - Martin van Gijzen
- Department of Numerical Analysis, Delft Institute of Applied Mathematics, Delft University of Technology, Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands
| | - Rob Remis
- Department of Microelectronics, Circuits and Systems Group, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
| |
Collapse
|
45
|
Li M, Shan S, Chandra SS, Liu F, Crozier S. Fast geometric distortion correction using a deep neural network: Implementation for the 1 Tesla MRI‐Linac system. Med Phys 2020; 47:4303-4315. [DOI: 10.1002/mp.14382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 07/04/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Mao Li
- School of Information Technology and Electrical Engineering University of Queensland Brisbane QLD 4067 Australia
| | - Shanshan Shan
- School of Information Technology and Electrical Engineering University of Queensland Brisbane QLD 4067 Australia
| | - Shekhar S. Chandra
- School of Information Technology and Electrical Engineering University of Queensland Brisbane QLD 4067 Australia
| | - Feng Liu
- School of Information Technology and Electrical Engineering University of Queensland Brisbane QLD 4067 Australia
| | - Stuart Crozier
- School of Information Technology and Electrical Engineering University of Queensland Brisbane QLD 4067 Australia
| |
Collapse
|
46
|
Kecskemeti SR, Alexander AL. Test-retest of automated segmentation with different motion correction strategies: A comparison of prospective versus retrospective methods. Neuroimage 2020; 209:116494. [PMID: 31899289 PMCID: PMC7056555 DOI: 10.1016/j.neuroimage.2019.116494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 01/10/2023] Open
Abstract
Test-retest of automated image segmentation algorithms (FSL FAST, FSL FIRST, and FREESURFER) are computed on magnetic resonance images from 12 unsedated children aged 9.4±2.6 years ([min,max] = [6.5 years, 13.8 years]) using different approaches to motion correction (prospective versus retrospective). The prospective technique, PROMO MPRAGE, dynamically estimates motion using specially acquired navigator images and adjusts the remaining acquisition accordingly, whereas the retrospective technique, MPnRAGE, uses a self-navigation property to retrospectively estimate and account for motion during image reconstruction. To increase the likelihood and range of motions, participants heads were not stabilized with padding during repeated scans. When motion was negligible both techniques had similar performance. When motion was not negligible, the automated image segmentation and anatomical labeling software tools showed the most consistent performance with the retrospectively corrected MPnRAGE technique (≥80% volume overlaps for 15 of 16 regions for FIRST and FREESURFER, with greater than 90% volume overlaps for 12 regions with FIRST and 11 regions with FREESURFER). Prospectively corrected MPRAGE with linear view-ordering also demonstrated lower performance than MPnRAGE without retrospective motion correction.
Collapse
|
47
|
Magnetic resonance imaging for brain stereotactic radiotherapy : A review of requirements and pitfalls. Strahlenther Onkol 2020; 196:444-456. [PMID: 32206842 PMCID: PMC7182639 DOI: 10.1007/s00066-020-01604-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/03/2020] [Indexed: 12/29/2022]
Abstract
Due to its superior soft tissue contrast, magnetic resonance imaging (MRI) is essential for many radiotherapy treatment indications. This is especially true for treatment planning in intracranial tumors, where MRI has a long-standing history for target delineation in clinical practice. Despite its routine use, care has to be taken when selecting and acquiring MRI studies for the purpose of radiotherapy treatment planning. Requirements on MRI are particularly demanding for intracranial stereotactic radiotherapy, where accurate imaging has a critical role in treatment success. However, MR images acquired for routine radiological assessment are frequently unsuitable for high-precision stereotactic radiotherapy as the requirements for imaging are significantly different for radiotherapy planning and diagnostic radiology. To assure that optimal imaging is used for treatment planning, the radiation oncologist needs proper knowledge of the most important requirements concerning the use of MRI in brain stereotactic radiotherapy. In the present review, we summarize and discuss the most relevant issues when using MR images for target volume delineation in intracranial stereotactic radiotherapy.
Collapse
|
48
|
Shan S, Liney GP, Tang F, Li M, Wang Y, Ma H, Weber E, Walker A, Holloway L, Wang Q, Wang D, Liu F, Crozier S. Geometric distortion characterization and correction for the 1.0 T Australian MRI‐linac system using an inverse electromagnetic method. Med Phys 2020; 47:1126-1138. [DOI: 10.1002/mp.13979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shanshan Shan
- School of Information Technology & Electrical Engineering University of Queensland Brisbane QLD 4067 Australia
| | - Gary P. Liney
- Department of Medical Physics Liverpool and Macarthur Cancer Therapy Centre Liverpool NSW 2170 Australia
- Ingham Institute for Applied Medical Research Liverpool NSW 2170 Australia
- Centre for Medical Radiation Physics University of Wollongong Wollongong NSW 2522 Australia
- South Western Sydney Clinical SchoolFaculty of Medicine University of New South Wales Sydney NSW 2052 Australia
| | - Fangfang Tang
- School of Information Technology & Electrical Engineering University of Queensland Brisbane QLD 4067 Australia
| | - Mingyan Li
- School of Information Technology & Electrical Engineering University of Queensland Brisbane QLD 4067 Australia
| | - Yaohui Wang
- Institute of Electrical Engineering Chinese Academy of Science Beijing 100190 China
| | - Huan Ma
- School of Geophysics and Information Technology China University of Geosciences Beijing 100083 China
| | - Ewald Weber
- School of Information Technology & Electrical Engineering University of Queensland Brisbane QLD 4067 Australia
| | - Amy Walker
- Department of Medical Physics Liverpool and Macarthur Cancer Therapy Centre Liverpool NSW 2170 Australia
- Ingham Institute for Applied Medical Research Liverpool NSW 2170 Australia
- Centre for Medical Radiation Physics University of Wollongong Wollongong NSW 2522 Australia
- South Western Sydney Clinical SchoolFaculty of Medicine University of New South Wales Sydney NSW 2052 Australia
| | - Lois Holloway
- Department of Medical Physics Liverpool and Macarthur Cancer Therapy Centre Liverpool NSW 2170 Australia
- Ingham Institute for Applied Medical Research Liverpool NSW 2170 Australia
- Centre for Medical Radiation Physics University of Wollongong Wollongong NSW 2522 Australia
- South Western Sydney Clinical SchoolFaculty of Medicine University of New South Wales Sydney NSW 2052 Australia
- Institute of Medical Physics Faculty of Science University of Sydney Sydney NSW 2006 Australia
| | - Qiuliang Wang
- Institute of Electrical Engineering Chinese Academy of Science Beijing 100190 China
| | - Deming Wang
- School of Information Technology & Electrical Engineering University of Queensland Brisbane QLD 4067 Australia
| | - Feng Liu
- School of Information Technology & Electrical Engineering University of Queensland Brisbane QLD 4067 Australia
| | - Stuart Crozier
- School of Information Technology & Electrical Engineering University of Queensland Brisbane QLD 4067 Australia
| |
Collapse
|
49
|
Mesri HY, David S, Viergever MA, Leemans A. The adverse effect of gradient nonlinearities on diffusion MRI: From voxels to group studies. Neuroimage 2020; 205:116127. [DOI: 10.1016/j.neuroimage.2019.116127] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 07/20/2019] [Accepted: 08/23/2019] [Indexed: 11/29/2022] Open
|
50
|
Sasamoto K, Kanamoto M, Ishida S, Shimada M, Kimura H, Adachi T. [Evaluation of Long-term Fluctuation of Geometric Distortion in MRI for Radiation Therapy Planning by Using an Automatic Analysis Tool]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2020; 76:705-714. [PMID: 32684563 DOI: 10.6009/jjrt.2020_jjrt_76.7.705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High tissue contrast in magnetic resonance imaging (MRI) allows better radiotherapy planning. However, geometric distortion in MRI induces inaccuracies affecting such planning, making it necessary to evaluate the characteristics of such geometric distortion. Although many studies have considered geometric distortion, most of these involved measurements performed only a few times. In this study, we evaluated MRI device-specific geometric distortion over long term and measured its variation by using an automatic analysis tool. The result showed that geometric distortion increased with distance from the center along both lateral and longitudinal directions. Specifically, the average distortion rate and average diameter error over the full measurement period increased by up to 1.02% and 1.96 mm, respectively, when using T1 weighted Image (WI) 3D fast spoiled gradient echo (FSPGR) at R15. In the case of T2 WI 2D fast spin echo (FSE) at R15, the standard deviation of the distortion rate and diameter error increased up to 0.38%, 0.72 mm, respectively. We conclude that periodic quality assurance of geometric distortion should be performed in order to maintain geometric distortion within allowable values.
Collapse
Affiliation(s)
| | | | | | | | | | - Toshiki Adachi
- Department of Radiological Technology, Niigata University of Health and Welfare
| |
Collapse
|