1
|
Bešić E, Rajić Z, Šakić D. Advancements in electron paramagnetic resonance (EPR) spectroscopy: A comprehensive tool for pharmaceutical research. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:551-594. [PMID: 39686630 DOI: 10.2478/acph-2024-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 12/18/2024]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy has long been established across various scientific disciplines for characterizing organic radicals, organometallic complexes, protein structures and dynamics, polymerization processes, and radical degradation phenomena. Despite its extensive utility in these areas, EPR spectroscopy's application within pharmaceutical science has historically been constrained, primarily due to factors such as high equipment costs, a steep learning curve, complex spectral deconvolution and analysis, and a traditional lack of emphasis on single-electron chemistry in pharmaceutical research. This review aims to provide a thorough examination of EPR spectroscopy's applications in analyzing a wide array of para-magnetic species relevant to pharmaceutical research. We detail how EPR spectroscopy can be employed to assess free radical scavenging properties in pharmaceutical compounds, elucidate drug mechanisms of action, and explore pharmacokinetics. Additionally, we investigate the role of free radicals in drug-induced toxicity and drug-membrane interactions, while also covering the application of EPR spectroscopy in drug delivery research, advanced studies of metallodrugs, and monitoring of oxygen levels in biological systems through EPR oximetry. The recent advancements in the miniaturization of EPR spectro meters have paved the way for their application in on-site and in-line mo nitoring during the manufacturing process and quality control of pharmaceutical substances and final drug formulations due to being the only direct and non-invasive detection technique for radical detection. Through these discussions, we highlight the substantial contributions of EPR spectroscopy to the advancement of pharmaceutical sciences.
Collapse
Affiliation(s)
- Erim Bešić
- University of Zagreb Faculty of Pharmacy and Biochemistry 10000 Zagreb, Croatia
| | - Zrinka Rajić
- University of Zagreb Faculty of Pharmacy and Biochemistry 10000 Zagreb, Croatia
| | - Davor Šakić
- University of Zagreb Faculty of Pharmacy and Biochemistry 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Boussâa M, Abergel R, Durand S, Frapart YM. Ultrafast multiple paramagnetic species EPR imaging using a total variation based model. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 357:107583. [PMID: 37989061 DOI: 10.1016/j.jmr.2023.107583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
An EPR spectrum or an EPR sinogram for imaging contains information about all the paramagnetic species that are in the analyzed sample. When only one species is present, an image of its spatial repartition can be reconstructed from the sinogram by using the well-known Filtered Back-Projection (FBP). However, in the case of several species, the FBP does not allow the reconstruction of the images of each species from a standard acquisition. One has to use for this spectral-spatial imaging whose acquisition can be very long. A new approach, based on Total Variation minimization, is proposed in order to efficiently extract the spatial repartitions of all the species present in a sample from standard imaging data and therefore drastically reduce the acquisition time. Experiments have been carried out on Tetrathiatriarylmethyl, nitroxide and DPPH.
Collapse
Affiliation(s)
- Mehdi Boussâa
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France; Université Paris Cité, CNRS, LCBPT, F-75006 Paris, France
| | - Rémy Abergel
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
| | - Sylvain Durand
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
| | | |
Collapse
|
3
|
Takakusagi Y, Kobayashi R, Saito K, Kishimoto S, Krishna MC, Murugesan R, Matsumoto KI. EPR and Related Magnetic Resonance Imaging Techniques in Cancer Research. Metabolites 2023; 13:metabo13010069. [PMID: 36676994 PMCID: PMC9862119 DOI: 10.3390/metabo13010069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Imaging tumor microenvironments such as hypoxia, oxygenation, redox status, and/or glycolytic metabolism in tissues/cells is useful for diagnostic and prognostic purposes. New imaging modalities are under development for imaging various aspects of tumor microenvironments. Electron Paramagnetic Resonance Imaging (EPRI) though similar to NMR/MRI is unique in its ability to provide quantitative images of pO2 in vivo. The short electron spin relaxation times have been posing formidable challenge to the technology development for clinical application. With the availability of the narrow line width trityl compounds, pulsed EPR imaging techniques were developed for pO2 imaging. EPRI visualizes the exogenously administered spin probes/contrast agents and hence lacks the complementary morphological information. Dynamic nuclear polarization (DNP), a phenomenon that transfers the high electron spin polarization to the surrounding nuclear spins (1H and 13C) opened new capabilities in molecular imaging. DNP of 13C nuclei is utilized in metabolic imaging of 13C-labeled compounds by imaging specific enzyme kinetics. In this article, imaging strategies mapping physiologic and metabolic aspects in vivo are reviewed within the framework of their application in cancer research, highlighting the potential and challenges of each of them.
Collapse
Affiliation(s)
- Yoichi Takakusagi
- Quantum Hyperpolarized MRI Research Team, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba 265-8522, Japan
- Correspondence: (Y.T.); (K.-i.M.); Tel.: +81-43-382-4297 (Y.T.); +81-43-206-3123 (K.-i.M.)
| | - Ryoma Kobayashi
- Quantum Hyperpolarized MRI Research Team, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
| | - Keita Saito
- Quantum Hyperpolarized MRI Research Team, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA
| | - Ramachandran Murugesan
- Karpaga Vinayaga Institute of Medical Sciences and Research Center, Palayanoor (PO), Chengalpattu 603308, India
| | - Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
- Correspondence: (Y.T.); (K.-i.M.); Tel.: +81-43-382-4297 (Y.T.); +81-43-206-3123 (K.-i.M.)
| |
Collapse
|
4
|
Dao NV, Ercole F, Li Y, Davis TP, Kaminskas LM, Sloan EK, Quinn JF, Whittaker MR. Nitroxide-functional PEGylated nanostars arrest cellular oxidative stress and exhibit preferential accumulation in co-cultured breast cancer cells. J Mater Chem B 2021; 9:7805-7820. [PMID: 34586131 DOI: 10.1039/d1tb00812a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The limited application of traditional antioxidants to reducing elevated levels of reactive oxygen species (ROS) is potentially due to their lack of stability and biocompatibility when tested in a biological milieu. For instance, the poor biological antioxidant performance of small molecular nitroxides arises from their limited diffusion across cell membranes and their significant side effects when applied at high doses. Herein, we describe the use of nanostructured carriers to improve the antioxidant activity of a typical nitroxide derivative, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). Polymers with star-shaped structures were synthesised and were further conjugated to TEMPO moieties via amide linkages. The TEMPO-loaded stars have small hydrodynamic sizes (<20 nm), and are better tolerated by cells than free TEMPO in a breast cancer-fibroblast co-culture, a system exhibiting elevated ROS levels. At a well-tolerated concentration, the polymer with the highest TEMPO-loading capacity successfully downregulated ROS production in co-cultured cells (a significant decrease of up to 50% vs. basal ROS levels), which was accompanied by a specific reduction in superoxide anion generation in the mitochondria. In contrast, the equivalent concentration of free TEMPO did not achieve the same outcome. Further investigation showed that the TEMPO-conjugated star polymers can be recycled inside the cells, thus providing longer term scavenging activity. Cell association studies demonstrated that the polymers can be taken up by both cell types in the co-culture, and are found to co-locate with the mitochondria. Interestingly the stars exhibited preferential mitochodria targeting in the co-cultured cancer cells compared to accompanying fibroblasts. The data suggest the potential of TEMPO-conjugated star polymers to arrest oxidative stress for various applications in cancer therapy.
Collapse
Affiliation(s)
- Nam V Dao
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. .,Department of Physical Chemistry and Physics, Hanoi University of Pharmacy, Hanoi 10000, Vietnam
| | - Francesca Ercole
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Yuhuan Li
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. .,Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Thomas P Davis
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. .,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.,Peter MacCallum Cancer Centre, Division of Surgery, Melbournem, VIC 3000, Australia
| | - John F Quinn
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. .,Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Michael R Whittaker
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
5
|
David Jebaraj D, Utsumi H, Milton Franklin Benial A. Low-frequency ESR studies on permeable and impermeable deuterated nitroxyl radicals in corn oil solution. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:257-264. [PMID: 29205482 DOI: 10.1002/mrc.4686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Low-frequency electron spin resonance studies were performed for 2 mM concentration of deuterated permeable and impermeable nitroxyl spin probes, 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl and 3-carboxy-2,2,5,5,-tetramethyl-1-pyrrolidinyloxy in pure water and various concentrations of corn oil solution. The electron spin resonance parameters such as the line width, hyperfine coupling constant, g factor, rotational correlation time, permeability, and partition parameter were estimated. The broadening of line width was observed for nitroxyl radicals in corn oil mixture. The rotational correlation time increases with increasing concentration of corn oil, which indicates the less mobile nature of spin probe in corn oil mixture. The membrane permeability and partition parameter values were estimated as a function of corn oil concentration, which reveals that the nitroxyl radicals permeate equally into the aqueous phase and oil phase at the corn oil concentration of 50%. The electron spin resonance spectra demonstrate the permeable and impermeable nature of nitroxyl spin probes. From these results, the corn oil concentration was optimized as 50% for phantom studies. In this work, the corn oil and pure water mixture phantom models with various viscosities correspond to plasma membrane, and whole blood membrane with different hematocrit levels was studied for monitoring the biological characteristics and their interactions with permeable nitroxyl spin probe. These results will be useful for the development of electron spin resonance and Overhauser-enhanced magnetic resonance imaging modalities in biomedical applications.
Collapse
Affiliation(s)
- D David Jebaraj
- Department of Physics, The American College, Madurai, Tamil Nadu, 625 002, India
| | - Hideo Utsumi
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, 812-8582, Japan
| | | |
Collapse
|
6
|
Utsumi H. Novel Redox Molecular Imaging “ReMI” with Dual Magnetic Resonance. YAKUGAKU ZASSHI 2013; 133:803-14. [DOI: 10.1248/yakushi.13-00139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hideo Utsumi
- Innovation Center for Medical Redox Navigation, Kyushu University
| |
Collapse
|
7
|
Rinkevicius Z, Frecuş B, Murugan NA, Vahtras O, Kongsted J, Ågren H. Encapsulation Influence on EPR Parameters of Spin-Labels: 2,2,6,6-Tetramethyl-4-methoxypiperidine-1-oxyl in Cucurbit[8]uril. J Chem Theory Comput 2011; 8:257-63. [DOI: 10.1021/ct200816z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zilvinas Rinkevicius
- Department of Theoretical Chemistry & Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
- Swedish e-Science Research Center (SeRC), Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Bogdan Frecuş
- Department of Theoretical Chemistry & Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - N. Arul Murugan
- Department of Theoretical Chemistry & Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Olav Vahtras
- Department of Theoretical Chemistry & Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Hans Ågren
- Department of Theoretical Chemistry & Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
8
|
Benial AMF, Utsumi H, Ichikawa K, Murugesan R, Yamada KI, Kinoshita Y, Naganuma T, Kato M. Dynamic nuclear polarization studies of redox-sensitive nitroxyl spin probes in liposomal solution. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 204:131-138. [PMID: 20226702 DOI: 10.1016/j.jmr.2010.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 05/28/2023]
Abstract
Overhauser-enhanced magnetic resonance imaging (OMRI) studies of a membrane-permeable nitroxyl spin probe, (2)H-enriched 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (MC-PROXYL), used in simultaneous molecular imaging is reported. Phantom imaging was performed with liposomal solutions of MC-PROXYL at varying spin probe and liposome concentrations using a field-cycle mode, custom-built OMRI scanner. Dynamic nuclear polarization (DNP) spectra of the liposomal solution of the spin probe, measured at 14.529mT using a 5mT sweep of the electron paramagnetic resonance (EPR) irradiation field showed splitting of the low and high filed hyperfine lines. Spectral measurements using D(2)O and a spin broadening agent, K(3)Fe(CN)(6) confirmed that these peaks originated from water molecules in two different environments, compartmentalized with liposomes. The nuclear Overhauser enhancement measured at different EPR irradiation times and power levels showed reduction in water nuclear magnetic resonance (NMR) signal enhancement in liposomal membrane due to the reduction in the coupling constant, rho. This study illustrates that OMRI can be used to differentiate between the intra- and extra- membrane water by loading the liposome vesicles with a lipid-permeable nitroxyl spin probe.
Collapse
Affiliation(s)
- A Milton Franklin Benial
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Direct visualization of mouse brain oxygen distribution by electron paramagnetic resonance imaging: application to focal cerebral ischemia. J Cereb Blood Flow Metab 2009; 29:1695-703. [PMID: 19675560 PMCID: PMC3633216 DOI: 10.1038/jcbfm.2009.89] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Electron paramagnetic resonance imaging (EPRI) is a new modality for visualizing O(2) distribution in tissues, such as the brain after stroke or after administration of drugs of abuse. We have recently shown that 3-acetoxymethoxycarbonyl-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl [1] is a pro-imaging agent that can cross the blood-brain barrier. After hydrolysis by esterases, the anion of 3-carboxy-2,2,5,5-tetramethyl-1-tetramethyl-1-pyrrolidinyloxyl [2] is trapped in brain tissue. In this study, we investigated the feasibility of using this to map the changes of O(2) concentration in mouse brain after focal ischemia. The decrease in tissue O(2) concentration in the ischemic region of mouse brain was clearly visualized by EPRI. The hypoxic zone mapped by EPRI was spatially well correlated with the infarction area in the brain imaged by diffusion-weighted magnetic resonance imaging (MRI). Finally, we observed a decrease in the size of the hypoxic region when the mouse breathed higher levels of O(2). This finding suggests that EPRI with specifically designed nitroxides is a promising imaging modality for visualizing O(2) distribution in brain tissue, especially in an ischemic brain. We believe that this imaging method can be used for monitoring the effects of therapeutic intervention aimed at enhancing brain O(2) supply, which is crucial in minimizing brain injury after stroke.
Collapse
|
10
|
Matsumoto KI, Anzai K, Utsumi H. Simple data acquisition method for multi-dimensional EPR spectral-spatial imaging using a combination of constant-time and projection-reconstruction modalities. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 197:161-166. [PMID: 19138539 DOI: 10.1016/j.jmr.2008.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 11/23/2008] [Accepted: 12/15/2008] [Indexed: 05/27/2023]
Abstract
A combination of the constant-time spectral-spatial imaging (CTSSI) modality and projection-reconstruction modality was tested to simplify data acquisition for multi-dimensional CW EPR spectral-spatial imaging. In this method, 3D spectral-spatial image data were obtained by simple repetition of conventional 2D CW imaging process, except that the field gradient amplitude was incremented in constant steps in each repetition. The data collection scheme was no different from the conventional CW imaging system for spectral-spatial data acquisition. No special equipment and/or rewriting of existing software were required. The data acquisition process for multi-dimensional spectral-spatial imaging is consequently simplified. There is also no "missing-angle" issue because the CTSSI modality was employed to reconstruct 2D spectral-spatial images. Extra reconstruction processes to obtain higher spatial dimensions were performed using a conventional projection-reconstruction modality. This data acquisition technique can be applied to any conventional CW EPR (spatial) imaging system for multi-dimensional spectral-spatial imaging.
Collapse
Affiliation(s)
- Ken-ichiro Matsumoto
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | | | | |
Collapse
|
11
|
Martini G, Ciani L. Electron spin resonance spectroscopy in drug delivery. Phys Chem Chem Phys 2009; 11:211-54. [DOI: 10.1039/b808263d] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Yan G, Peng L, Jian S, Li L, Bottle SE. Spin probes for electron paramagnetic resonance imaging. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0520-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Abstract
Nitroxides can undergo one- or two-electron reduction reactions to hydroxylamines or oxammonium cations, respectively, which themselves are interconvertible, thereby providing redox metabolic actions. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol) is the most extensively studied nitroxide. It is a cell membrane-permeable amphilite that dismutates superoxide catalytically, facilitates hydrogen peroxide metabolism by catalase-like actions, and limits formation of toxic hydroxyl radicals produced by Fenton reactions. It is broadly effective in detoxifying these reactive oxygen species in cell and animal studies. When administered intravenously to hypertensive rodent models, tempol caused rapid and reversible dose-dependent reductions in blood pressure in 22 of 26 studies. This was accompanied by vasodilation, increased nitric oxide activity, reduced sympathetic nervous system activity at central and peripheral sites, and enhanced potassium channel conductance in blood vessels and neurons. When administered orally or by infusion over days or weeks to hypertensive rodent models, it reduced blood pressure in 59 of 68 studies. This was accompanied by correction of salt sensitivity and endothelial dysfunction and reduced agonist-evoked oxidative stress and contractility of blood vessels, reduced renal vascular resistance, and increased renal tissue oxygen tension. Thus, tempol is broadly effective in reducing blood pressure, whether given by acute intravenous injection or by prolonged administration, in a wide range of rodent models of hypertension.
Collapse
Affiliation(s)
- Christopher S Wilcox
- Division of Nephrology and Hypertension, Kidney and Vascular Disorder Center, Georgetown University, Washington, DC 20007, USA.
| | | |
Collapse
|
14
|
Tseitlin M, Czechowski T, Eaton SS, Eaton GR. Regularized optimization (RO) reconstruction for oximetric EPR imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 194:212-21. [PMID: 18667346 PMCID: PMC3419263 DOI: 10.1016/j.jmr.2008.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Revised: 05/28/2008] [Accepted: 07/03/2008] [Indexed: 05/12/2023]
Abstract
A new algorithm for EPR imaging oximetry is described and tested with experimental data for the case of one spatial and one spectral dimension. A single species with variable linewidth is assumed. Instead of creating a 2D image, two one-dimensional profiles are reconstructed: the concentration of the radical and the corresponding oxygen concentration, which reduces the dimensionality of the problem. The algorithm (i) seeks to minimize the discrepancy between experimental data and projections calculated from the profiles and (ii) uses Tikhonov regularization to constrain the smoothness of the results. This approach controllably smoothes profiles rather than the data, while preserving sharp features.
Collapse
Affiliation(s)
- Mark Tseitlin
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | | | | | | |
Collapse
|
15
|
Matsumoto KI, Subramanian S, Murugesan R, Mitchell JB, Krishna MC. Spatially resolved biologic information from in vivo EPRI, OMRI, and MRI. Antioxid Redox Signal 2007; 9:1125-41. [PMID: 17571957 DOI: 10.1089/ars.2007.1638] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
EPR spectroscopy can give biologically important information, such as tissue redox status, pO2, pH, and microviscosity, based on variation of EPR spectral characteristics (i.e., intensity, linewidth, hyperfine splitting, and spectral shape of free radical probes. EPR imaging (EPRI) can obtain 1D-3D spatial distribution of such spectral components using several combinations of magnetic field gradients. Overhauser enhanced MRI (OMRI) is a double-resonance technique of electron and nuclear spins. Because the Overhauser enhancement depends on transverse relaxation rate of the electron spin, OMRI can provide pO2 information indirectly, along with a high-resolution MR image. MRI can also indirectly detect paramagnetic behaviors of free radical contrast agents. Imaging techniques and applications relating to paramagnetic species (i.e., EPRI, OMRI, and MRI) have the potential to obtain maximally 5D information (i.e., 3D spatial + 1D spectral + 1D temporal dimensions, theoretically). To obtain suitable dimensionality, several factors, such as the EPR spectral information, spatial resolution, temporal resolution, will have to be taken into account. For this review, the EPRI, OMRI, and MRI applications for the study biological systems were evaluated for researchers to apply the method of choice and the mode of measurements to specific experimental systems.
Collapse
Affiliation(s)
- Ken-ichiro Matsumoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
16
|
Matsumoto KI, Narazaki M, Ikehira H, Anzai K, Ikota N. Comparisons of EPR imaging and T1-weighted MRI for efficient imaging of nitroxyl contrast agents. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 187:155-62. [PMID: 17433743 DOI: 10.1016/j.jmr.2007.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 01/12/2007] [Accepted: 03/03/2007] [Indexed: 05/14/2023]
Abstract
The resolution and signal to noise ratio of EPR imaging and T(1)-weighted MRI were compared using an identical phantom. Several solutions of nitroxyl contrast agents with different EPR spectral shapes were tested. The feasibility of T(1)-weighted MRI to detect nitroxyl contrast agents was described. T(1)-weighted MRI can detect nitroxyl contrast agents with a complicated EPR spectrum easier and quicker; however, T(1)-weighted MRI has less quantitative ability especially for lipophilic nitroxyl contrast agents, because T(1)-relaxivity, i.e. accessibility to water, is affected by the hydrophilic/hydrophobic micro-environment of a nitroxyl contrast agent. The less quantitative ability of T(1)-weighted MRI may not be a disadvantage of redox imaging, which obtains reduction rate of a nitroxyl contrast. Therefore, T(1)-weighted MRI has a great advantage to check the pharmacokinetics of newly modified and/or designed nitroxyl contrast agents.
Collapse
Affiliation(s)
- Ken-ichiro Matsumoto
- Radiation Modifier Research Team, Heavy-Ion Radiobiology Research Group, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan.
| | | | | | | | | |
Collapse
|
17
|
Matsumoto KI, Kawai S, Chignell CF, Utsumi H. Location of anthralin radical generation in mouse skin by UV-A irradiation: An estimation using microscopic EPR spectral-spatial imaging. Magn Reson Med 2006; 55:738-42. [PMID: 16528709 DOI: 10.1002/mrm.20862] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In vivo location of the anthralin radical generated in mouse skin by ultraviolet A (UV-A) irradiation was estimated by microscopic electron paramagnetic resonance (EPR) spectral-spatial imaging. An X-band EPR spectrometer equipped with specially designed high-power imaging coils and a TE-mode cavity was employed. The maximum field gradient used in this study was 6.77 mT/mm. Anthralin was applied to the dorsal skin of live mice, which were then exposed to UV-A irradiation. A broad singlet EPR spectrum (peak-to-peak line width = 0.6 mT and g = 2.004) was obtained. Microscopic EPR spectral-spatial imaging of the skin tissue showed that the anthralin radical was located mainly in the epidermis (27 microm from the skin surface). This result was consistent with the finding that the proportions of the radical in the dermis and epidermis were about 15% and 85%, respectively.
Collapse
Affiliation(s)
- Ken-ichiro Matsumoto
- Department of Biofunction Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|