1
|
Kazemivalipour E, Atalar E. Enhancing fine-tuning efficiency and design optimization of an eight-channel 3T transmit array via equivalent circuit modeling and Eigenmode analysis. Med Phys 2025; 52:2025-2039. [PMID: 39815440 PMCID: PMC11972053 DOI: 10.1002/mp.17612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 11/20/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Radiofrequency (RF) transmit arrays play a crucial role in various MRI applications, offering enhanced field control and improved imaging capabilities. Designing and optimizing these arrays, particularly in high-field MRI settings, poses challenges related to coupling, resonance, and construction imperfections. Numerical electromagnetic simulation methods effectively aid in the initial design, but discrepancies between simulated and fabricated arrays often necessitate fine-tuning. Fine-tuning involves iteratively adjusting the array's lumped elements, a complex and time-consuming process that demands expertise and substantial experience. This process is particularly required for high-Q-factor arrays or those with decoupling circuitries, where the impact of construction variations and coupling between elements is more pronounced. In this context, our study introduces and validates an accelerated fine-tuning approach custom RF transmit arrays, leveraging the arrays equivalent circuit modeling and eigenmode analysis of the scattering (S) parameters. PURPOSE This study aims to streamline the fine-tuning process of lab-fabricated RF transmit arrays, specifically targeting an eight-channel degenerate birdcage coil designed for 3T MRI. The objective is to minimize the array's modal reflected power values and address challenges related to coupling and resonance. METHODS An eight-channel 3T transmit array is designed and simulated, optimizing capacitor values via the co-simulation strategy and eigenmode analysis. The resulting values are used in constructing a prototype. Experimental measurements of the fabricated coil's S-parameters and fitting them into an equivalent circuit model, enabling estimation of self/mutual-inductances and self/mutual-resistances of the fabricated coil. Capacitor adjustments in the equivalent circuit model minimize mismatches between experimental and simulated results. RESULTS The simulated eight-channel array, optimized for minimal normalized reflected power, exhibits excellent tuning and matching and an acceptable level of decoupling (|Snn|≤-23 dB and |Smn|≤-11 dB). However, the fabricated array displays deviations, including resonances at different frequencies and increased reflections. The proposed fine-tuning approach yields an updated set of capacitor values, improving resonance frequencies and reducing reflections. The fine-tuned array demonstrates comparable performance to the simulation (|Snn|≤-15 dB and |Smn|≤-9 dB), mitigating disparities caused by construction imperfections. The maximum error between the calculated and measured S-parameters is -7 dB. CONCLUSION This accelerated fine-tuning approach, integrating equivalent circuit modeling and eigenmode analysis, effectively optimizes the performance of fabricated transmit arrays. Demonstrated through the design and refinement of an eight-channel array, the method addresses construction-related disparities, showcasing its potential to enhance overall array performance. The approach holds promise for streamlining the design and optimization of complex RF coil systems, particularly for high Q-factor arrays and/or arrays with decoupling circuitry.
Collapse
Affiliation(s)
- Ehsan Kazemivalipour
- Department of Electrical and Electronics EngineeringBilkent UniversityAnkaraTurkey
- National Magnetic Resonance Research Center (UMRAM)Bilkent UniversityAnkaraTurkey
- A. A. Martinos Center for Biomedical ImagingDepartment of RadiologyMassachusetts General HospitalCharlestownMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Ergin Atalar
- Department of Electrical and Electronics EngineeringBilkent UniversityAnkaraTurkey
- National Magnetic Resonance Research Center (UMRAM)Bilkent UniversityAnkaraTurkey
| |
Collapse
|
2
|
Ayala C, Luo H, Godines K, Alghuraibawi W, Ahn S, Rehwald W, Grissom WA, Vandsburger MH. Individually tailored spatial-spectral pulsed CEST MRI for ratiometric mapping of myocardial energetic species at 3T. Magn Reson Med 2023; 90:2321-2333. [PMID: 37526176 DOI: 10.1002/mrm.29801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE CEST MRI has been used to probe changes in cardiac metabolism via assessment of CEST contrast from Cr. However, B1 variation across the myocardium leads to spatially variable Cr CEST contrast in healthy myocardium. METHODS We developed a spatial-spectral (SPSP) saturation pulsed CEST protocol to compensate for B1 variation. Flip angle maps were used to individually tailor SPSP pulses comprised of a train of one-dimensional spatially selective subpulses selective along the principal B1 gradient dimension. Complete Z-spectra in the hearts of (n = 10) healthy individuals were acquired using conventional Gaussian saturation and SPSP schemes and supported by phantom studies. RESULTS In simulations, the use of SPSP pulses reduced the average SD of the effective saturation B1 values within the myocardium (n = 10) from 0.12 ± 0.02 μT to 0.05 ± 0.01 μT (p < 0.01) and reduced the average SD of Cr CEST contrast in vivo from 10.0 ± 4.3% to 6.1 ± 3.5% (p < 0.05). Results from the hearts of human subjects showed a significant reduction of CEST contrast distribution at 2 ppm, as well as amplitude, when using SPSP saturation. Corresponding phantom experiments revealed PCr-specific contrast generation at body temperature when SPSP saturation was used but combined PCr and Cr contrast generation when Gaussian saturation was used. CONCLUSION The use of SPSP saturation pulsed CEST resulted in PCr-specific contrast generation and enabled ratiometric mapping of PCr to total Cr CEST contrast in the human heart at 3T.
Collapse
Affiliation(s)
- Cindy Ayala
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Huiwen Luo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Kevin Godines
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Wissam Alghuraibawi
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Sinyeob Ahn
- MR R&D Collaborations, Siemens Medical Solutions, San Francisco, California, USA
| | - Wolfgang Rehwald
- MR R&D Collaborations, Siemens Medical Solutions, Durham, North Carolina, USA
| | - William A Grissom
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Moriel H Vandsburger
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
3
|
Hori H, Yamada Y, Nakano M, Ouchi T, Takasaki M, Iijima K, Taira T, Abe K, Iwamuro H. Improvement in Intraoperative Image Quality in Transcranial Magnetic Resonance-Guided Focused Ultrasound Surgery Using Transmitter Gain Adjustment. Stereotact Funct Neurosurg 2023; 101:223-231. [PMID: 37379811 PMCID: PMC10614472 DOI: 10.1159/000531009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/24/2023] [Indexed: 06/30/2023]
Abstract
INTRODUCTION Transcranial magnetic resonance-guided focused ultrasound surgery (TcMRgFUS) has the advantage of allowing immediate evaluation of therapeutic effects after each sonication and intraoperative magnetic resonance imaging (MRI) to visualize the lesion. When the image shows that the lesion has missed the planned target and the therapeutic effects are insufficient, the target of the subsequent ablation can be finely adjusted based on the image. The precision of this adjustment is determined by the image quality. However, the current intraoperative image quality with a 3.0T MRI system is insufficient for precisely detecting the lesion. Thus, we developed and validated a method for improving intraoperative image quality. METHODS Because intraoperative image quality is affected by transmitter gain (TG), we acquired T2-weighted images (T2WIs) with two types of TG: the automatically adjusted TG (auto TG) and the manually adjusted TG (manual TG). To evaluate the character of images with 2 TGs, the actual flip angle (FA), the image uniformity, and the signal-to-noise ratio (SNR) were measured using a phantom. Then, to assess the quality of intraoperative images, T2WIs with both TGs were acquired during TcMRgFUS for 5 patients. The contrast-to-noise ratio (CNR) of the lesion was retrospectively estimated. RESULTS The images of the phantom with the auto TG showed substantial variations between the preset and actual FAs (p < 0.01), whereas on the images with the manual TG, there were no variations between the two FAs (p > 0.05). The total image uniformity was considerably lower with the manual TG than with the auto TG (p < 0.01), indicating that the image's signal values with the manual TG were more uniform. The manual TG produced significantly higher SNRs than the auto TG (p < 0.01). In the clinical study, the lesions were clearly detected in intraoperative images with the manual TG, but they were difficult to identify in images with the auto TG. The CNR of lesions in images with manual TG was considerably higher than in images with auto TG (p < 0.01). CONCLUSION Regarding intraoperative T2WIs using a 3.0T MRI system during TcMRgFUS, the manual TG method improved image quality and delineated the ablative lesion more clearly than the current method with auto TG.
Collapse
Affiliation(s)
- Hiroki Hori
- Department of FUS Center, Moriyama Neurosurgical Center Hospital, Tokyo, Japan
| | - Yusuke Yamada
- Department of Radiology, Hokkaido Ohno Memorial Hospital, Sapporo, Japan
| | - Masayuki Nakano
- Department of Neurosurgery, Shin-Yurigaoka General Hospital, Kawasaki, Japan
| | - Takahiro Ouchi
- Department of Neurology, Shin-Yurigaoka General Hospital, Kawasaki, Japan
| | - Masahito Takasaki
- Department of Anesthesiology, Shin-Yurigaoka General Hospital, Kawasaki, Japan
| | - Ken Iijima
- Department of Diagnostic Radiology, Saitama Sekishinkai Hospital, Saitama, Japan
| | - Takaomi Taira
- Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo, Japan
| | - Keiichi Abe
- Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo, Japan
| | | |
Collapse
|
4
|
Sadeghi-Tarakameh A, Jungst S, Lanagan M, DelaBarre L, Wu X, Adriany G, Metzger GJ, Van de Moortele PF, Ugurbil K, Atalar E, Eryaman Y. A nine-channel transmit/receive array for spine imaging at 10.5 T: Introduction to a nonuniform dielectric substrate antenna. Magn Reson Med 2021; 87:2074-2088. [PMID: 34825735 DOI: 10.1002/mrm.29096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE The purpose of this study is to introduce a new antenna element with improved transmit performance, named the nonuniform dielectric substrate (NODES) antenna, for building transmit arrays at ultrahigh-field. METHODS We optimized a dipole antenna at 10.5 Tesla by maximizing the B 1 + -SAR efficiency in a phantom for a human spine target. The optimization parameters included permittivity variation in the substrate, substrate thickness, antenna length, and conductor geometry. We conducted electromagnetic simulations as well as phantom experiments to compare the transmit/receive performance of the proposed NODES antenna design with existing coil elements from the literature. RESULTS Single NODES element showed up to 18% and 30% higher B 1 + -SAR efficiency than the fractionated dipole and loop elements, respectively. The new element is substantially shorter than a commonly used dipole, which enables z-stacked array formation; it is additionally capable of providing a relatively uniform current distribution along its conductors. The nine-channel transmit/receive NODES array achieved 7.5% higher B 1 + homogeneity than a loop array with the same number of elements. Excitation with the NODES array resulted in 33% lower peak 10g-averaged SAR and required 34% lower input power than the loop array for the target anatomy of the spine. CONCLUSION In this study, we introduced a new RF coil element: the NODES antenna. NODES antenna outperformed the widely used loop and dipole elements and may provide improved transmit/receive performance for future ultrahigh field MRI applications.
Collapse
Affiliation(s)
- Alireza Sadeghi-Tarakameh
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA.,Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Steve Jungst
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Mike Lanagan
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Kamil Ugurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Ma J, Gruber B, Yan X, Grissom WA. k-Space Domain Parallel Transmit Pulse Design. Magn Reson Med 2021; 85:2568-2579. [PMID: 33244784 PMCID: PMC7902435 DOI: 10.1002/mrm.28601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To accelerate the design of (under- or oversampled) multidimensional parallel transmission pulses. METHODS A k-space domain parallel transmission pulse design algorithm was proposed that produces a sparse matrix relating a complex-valued target excitation pattern to the pulses that produce it, and can be finely parallelized. The algorithm was applied in simulations to the design of 3D SPINS pulses for inner volume excitation in the brain at 7 Tesla. It was characterized in terms of the dependence of computation time, excitation error, and required memory on algorithm parameters, and it was compared to an iterative spatial domain pulse design method in terms of computation time, excitation error, Gibbs ringing, and ability to compensate off-resonance. RESULTS The proposed algorithm achieved approximately 80% faster pulse design compared to the spatial domain method with the same number of parallel threads, with the tradeoff of increased excitation error and RMS RF amplitude. It reduced the memory required to store the design matrix by 99% compared to a full matrix solution. Even with a coarse design grid, the algorithm produced patterns that were free of Gibbs ringing. It was similarly sensitive to k-space undersampling as the spatial domain method, and was similarly capable of compensating for off-resonance. CONCLUSIONS The proposed k-space domain algorithm accelerates and finely parallelizes parallel transmission pulse design, with a modest tradeoff of excitation error and RMS RF amplitude.
Collapse
Affiliation(s)
- Jun Ma
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bernhard Gruber
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Division MR Physics, Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
6
|
Sartoretti E, Sartoretti T, Wyss M, Reischauer C, van Smoorenburg L, Binkert CA, Sartoretti-Schefer S, Mannil M. Amide proton transfer weighted (APTw) imaging based radiomics allows for the differentiation of gliomas from metastases. Sci Rep 2021; 11:5506. [PMID: 33750899 PMCID: PMC7943598 DOI: 10.1038/s41598-021-85168-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
We sought to evaluate the utility of radiomics for Amide Proton Transfer weighted (APTw) imaging by assessing its value in differentiating brain metastases from high- and low grade glial brain tumors. We retrospectively identified 48 treatment-naïve patients (10 WHO grade 2, 1 WHO grade 3, 10 WHO grade 4 primary glial brain tumors and 27 metastases) with either primary glial brain tumors or metastases who had undergone APTw MR imaging. After image analysis with radiomics feature extraction and post-processing, machine learning algorithms (multilayer perceptron machine learning algorithm; random forest classifier) with stratified tenfold cross validation were trained on features and were used to differentiate the brain neoplasms. The multilayer perceptron achieved an AUC of 0.836 (receiver operating characteristic curve) in differentiating primary glial brain tumors from metastases. The random forest classifier achieved an AUC of 0.868 in differentiating WHO grade 4 from WHO grade 2/3 primary glial brain tumors. For the differentiation of WHO grade 4 tumors from grade 2/3 tumors and metastases an average AUC of 0.797 was achieved. Our results indicate that the use of radiomics for APTw imaging is feasible and the differentiation of primary glial brain tumors from metastases is achievable with a high degree of accuracy.
Collapse
Affiliation(s)
- Elisabeth Sartoretti
- Institute of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland.,Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Thomas Sartoretti
- Institute of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland.,Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Michael Wyss
- Institute of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland.,Philips Healthsystems, Zürich, Switzerland
| | - Carolin Reischauer
- Department of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Radiology, HFR Fribourg-Hôpital Cantonal, Fribourg, Switzerland
| | | | | | | | - Manoj Mannil
- Department of Neuroradiology, Kantonsspital Aarau, Aarau, Switzerland. .,Institute of Clinical Radiology, University Hospital Münster, University of Münster, Albrecht-Schweitzer-Campus 1, E48149, Münster, Germany.
| |
Collapse
|
7
|
Improved 7 Tesla transmit field homogeneity with reduced electromagnetic power deposition using coupled Tic Tac Toe antennas. Sci Rep 2021; 11:3370. [PMID: 33564013 PMCID: PMC7873125 DOI: 10.1038/s41598-020-79807-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022] Open
Abstract
Recently cleared by the FDA, 7 Tesla (7 T) MRI is a rapidly growing technology that can provide higher resolution and enhanced contrast in human MRI images. However, the increased operational frequency (~ 297 MHz) hinders its full potential since it causes inhomogeneities in the images and increases the power deposition in the tissues. This work describes the optimization of an innovative radiofrequency (RF) head coil coupled design, named Tic Tac Toe, currently used in large scale human MRI scanning at 7 T; to date, this device was used in more than 1,300 neuro 7 T MRI scans. Electromagnetic simulations of the coil were performed using the finite-difference time-domain method. Numerical optimizations were used to combine the calculated electromagnetic fields produced by these antennas, based on the superposition principle, resulting in homogeneous magnetic field distributions at low levels of power deposition in the tissues. The simulations were validated in-vivo using the Tic Tac Toe RF head coil system on a 7 T MRI scanner.
Collapse
|
8
|
Herrler J, Liebig P, Gumbrecht R, Ritter D, Schmitter S, Maier A, Schmidt M, Uder M, Doerfler A, Nagel AM. Fast online-customized (FOCUS) parallel transmission pulses: A combination of universal pulses and individual optimization. Magn Reson Med 2021; 85:3140-3153. [PMID: 33400302 DOI: 10.1002/mrm.28643] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra-high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject-specific optimization. METHODS Data sets consisting of B0 , B 1 + maps, and virtual observation point (VOP) data were acquired from 72 subjects (study groups of 48/12 healthy Europeans/Asians and 12 Europeans with pathological or incidental findings) using an 8Tx/32Rx head coil on a 7T whole-body MR system. Combined optimization values (COV) were defined as combination of spiral-nonselective (SPINS) trajectory parameters and an energy regularization weight. A set of COV was optimized universally by simulating the individual RF pulse optimizations of 12 training data sets (healthy Europeans). Subsequently, corresponding universal pulses (UPs) were calculated. Using COV and UPs, individually optimized pulses (IOPs) were calculated during the sequence preparation phase (maximum 15 s). Two different UPs and IOPs were evaluated by calculating their normalized root-mean-square error (NRMSE) of the FA and SAR in simulations of all data sets. Seven additional subjects were examined using an MPRAGE sequence that uses the designed pTx excitation pulses and a conventional adiabatic inversion. RESULTS All pTx pulses resulted in decreased mean NRMSE compared to a circularly polarized (CP) pulse (CP = ~28%, UPs = ~17%, and IOPs = ~12%). UPs and IOPs improved homogeneity for all subjects. Differences in NRMSE between study groups were much lower than differences between different pulse types. CONCLUSION UPs can be used to generate fast online-customized (FOCUS) pulses gaining lower NRMSE and/or lower SAR values.
Collapse
Affiliation(s)
- Jürgen Herrler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | | | | | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Andreas Maier
- Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Manuel Schmidt
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Institute of Medical Physics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Gudino N, de Zwart JA, Duyn JH. Eight-channel parallel transmit-receive system for 7 T MRI with optically controlled and monitored on-coil current-mode RF amplifiers. Magn Reson Med 2020; 84:3494-3501. [PMID: 32662913 DOI: 10.1002/mrm.28392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/12/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE To demonstrate a practical implementation of an eight-channel parallel-transmit system for brain imaging at 7 T based on on-coil amplifier technology. METHODS An eight-channel parallel transmit-receive system was built with optimized on-coil switch-mode current RF power amplifiers. The amplifiers were optically controlled from an eight-channel interface that was connected to a 7 T MRI scanner. The interface also optically received a down-converted version of the coil current sensed in each amplifier for monitoring and feedback adjustments. RESULTS Each on-coil amplifier delivered more than 100 W peak power and provided enough amplifier decoupling (<-15 dB) for the implemented eight-channel array configuration. Phantom and human images were acquired to demonstrate practical operation of this new technology in a 7 T MRI scanner. CONCLUSION Further development and improvement of previously demonstrated on-coil technology led to successful implementation of an eight-channel parallel-transmit system able to deliver strong B1 fields for typical brain imaging applications. This is an important step forward toward implementation of on-coil RF amplification for high-field MRI.
Collapse
Affiliation(s)
- Natalia Gudino
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacco A de Zwart
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeff H Duyn
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
He X, Ertürk MA, Grant A, Wu X, Lagore RL, DelaBarre L, Eryaman Y, Adriany G, Auerbach EJ, Van de Moortele PF, Uğurbil K, Metzger GJ. First in-vivo human imaging at 10.5T: Imaging the body at 447 MHz. Magn Reson Med 2019; 84:289-303. [PMID: 31846121 DOI: 10.1002/mrm.28131] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/31/2023]
Abstract
PURPOSE To investigate the feasibility of imaging the human torso and to evaluate the performance of several radiofrequency (RF) management strategies at 10.5T. METHODS Healthy volunteers were imaged on a 10.5T whole-body scanner in multiple target anatomies, including the prostate, hip, kidney, liver, and heart. Phase-only shimming and spoke pulses were used to demonstrate their performance in managing the B 1 + inhomogeneity present at 447 MHz. Imaging protocols included both qualitative and quantitative acquisitions to show the feasibility of imaging with different contrasts. RESULTS High-quality images were acquired and demonstrated excellent overall contrast and signal-to-noise ratio. The experimental results matched well with predictions and suggested good translational capabilities of the RF management strategies previously developed at 7T. Phase-only shimming provided increased efficiency, but showed pronounced limitations in homogeneity, demonstrating the need for the increased degrees of freedom made possible through single- and multispoke RF pulse design. CONCLUSION The first in-vivo human imaging was successfully performed at 10.5T using previously developed RF management strategies. Further improvement in RF coils, transmit chain, and full integration of parallel transmit functionality are needed to fully realize the benefits of 10.5T.
Collapse
Affiliation(s)
- Xiaoxuan He
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - M Arcan Ertürk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Andrea Grant
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Russell L Lagore
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Lance DelaBarre
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Yiğitcan Eryaman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Eddie J Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | | | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
11
|
Sartoretti E, Sartoretti T, Wyss M, Becker AS, Schwenk Á, van Smoorenburg L, Najafi A, Binkert C, Thoeny HC, Zhou J, Jiang S, Graf N, Czell D, Sartoretti-Schefer S, Reischauer C. Amide Proton Transfer Weighted Imaging Shows Differences in Multiple Sclerosis Lesions and White Matter Hyperintensities of Presumed Vascular Origin. Front Neurol 2019; 10:1307. [PMID: 31920930 PMCID: PMC6914856 DOI: 10.3389/fneur.2019.01307] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023] Open
Abstract
Objectives: To assess the ability of 3D amide proton transfer weighted (APTw) imaging based on magnetization transfer analysis to discriminate between multiple sclerosis lesions (MSL) and white matter hyperintensities of presumed vascular origin (WMH) and to compare APTw signal intensity of healthy white matter (healthy WM) with APTw signal intensity of MSL and WHM. Materials and Methods: A total of 27 patients (16 female, 11 males, mean age 39.6 years) with multiple sclerosis, 35 patients (17 females, 18 males, mean age 66.6 years) with small vessel disease (SVD) and 20 healthy young volunteers (9 females, 11 males, mean age 29 years) were included in the MSL, the WMH, and the healthy WM group. MSL and WMH were segmented on fluid attenuated inversion recovery (FLAIR) images underlaid onto APTw images. Histogram parameters (mean, median, 10th, 25th, 75th, 90th percentile) were calculated. Mean APTw signal intensity values in healthy WM were defined by "Region of interest" (ROI) measurements. Wilcoxon rank sum tests and receiver operating characteristics (ROC) curve analyses of clustered data were applied. Results: All histogram parameters except the 75 and 90th percentile were significantly different between MSL and WMH (p = 0.018-p = 0.034). MSL presented with higher median values in all parameters. The histogram parameters offered only low diagnostic performance in discriminating between MSL and WMH. The 10th percentile yielded the highest diagnostic performance with an AUC of 0.6245 (95% CI: [0.532, 0.717]). Mean APTw signal intensity values of MSL were significantly higher than mean values of healthy WM (p = 0.005). The mean values of WMH did not differ significantly from the values of healthy WM (p = 0.345). Conclusions: We found significant differences in APTw signal intensity, based on straightforward magnetization transfer analysis, between MSL and WMH and between MSL and healthy WM. Low AUC values from ROC analyses, however, suggest that it may be challenging to determine type of lesion with APTw imaging. More advanced analysis of the APT CEST signal may be helpful for further differentiation of MSL and WMH.
Collapse
Affiliation(s)
| | - Thomas Sartoretti
- Laboratory of Translational Nutrition Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Michael Wyss
- Institute of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland.,Philips Healthsystems, Zurich, Switzerland
| | - Anton S Becker
- Laboratory of Translational Nutrition Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Árpád Schwenk
- Institute of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland
| | | | - Arash Najafi
- Institute of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland
| | - Christoph Binkert
- Institute of Radiology, Kantonsspital Winterthur, Winterthur, Switzerland
| | - Harriet C Thoeny
- Department of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Radiology, HFR Fribourg-Hôpital Cantonal, Fribourg, Switzerland
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, United States
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, United States
| | | | - David Czell
- Department of Neurology, Spital Linth, Uznach, Switzerland
| | | | - Carolin Reischauer
- Department of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Radiology, HFR Fribourg-Hôpital Cantonal, Fribourg, Switzerland
| |
Collapse
|
12
|
Serrai H, Buch S, Oran O, Menon RS. Using variable-rate selective excitation (VERSE) radiofrequency pulses to reduce power deposition in pulsed arterial spin labeling sequence at 7 Tesla. Magn Reson Med 2019; 83:645-652. [PMID: 31483524 DOI: 10.1002/mrm.27944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/11/2022]
Abstract
PURPOSE Arterial spin labeling (ASL) is an established noninvasive MRI technique used for cerebral blood flow measurement, which generally suffers from a low signal-to-noise ratio (SNR). The use of ultra-high fields to enhance sensitivity inevitably results in an increase in TR because of specific absorption rate (SAR) constraints, causing inadequate sampling of hemodynamic response in functional MRI, and adversely affecting concurrent measurement such as blood oxygen level dependent. To address this problem, variable-rate selective excitation (VERSE) radiofrequency (RF) pulses were used. METHODS The conventional (sinc) selective RF pulses of the Q2TIPS block in the PICORE pulsed ASL (PASL) sequence used for blood saturation were replaced by their equivalent VERSE RF waveforms. Nine healthy volunteers were scanned using the conventional and VERSE PASL sequences on a head-only 7T scanner operating in parallel transmit mode. RESULTS VERSE PASL sequence provides perfusion images similar to the conventional version, with comparable perfusion SNR (conventional, 3.33 ± 0.48; VERSE, 3.26 ± 0.55) and temporal SNR (conventional, 1.02 ± 0.20; VERSE, 1.05 ± 0.12) for TR = 3.5 seconds and 70 measurements. With shorter acquisition time (TR = 2.5 seconds), VERSE PASL sequence still provides similar results to those acquired using the conventional PASL sequence with longer TR = 3.5 seconds. CONCLUSION The use of VERSE RF pulses in the Q2TIPS block of a PASL sequence allowed for the reduction of RF power deposition and, consequently, an increase in the temporal resolution and/or perfusion SNR.
Collapse
Affiliation(s)
- Hacene Serrai
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Sagar Buch
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Omer Oran
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada.,Medical Biophysics, Western University, London, Ontario, Canada
| |
Collapse
|
13
|
Connell IRO, Menon RS. Shape Optimization of an Electric Dipole Array for 7 Tesla Neuroimaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2177-2187. [PMID: 30908199 DOI: 10.1109/tmi.2019.2906507] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Radio-frequency (RF) arrays constructed using electric dipoles have potential benefits for transmit and receive applications using the ultra-high field (UHF) MRI. This paper examines some of the implementation barriers regarding dipole RF arrays for human head imaging at 7 T. The dipole array was constructed with conformal, meandered dipoles with dimensions selected utilizing an evolutionary-based optimization routine to shape-optimize the dipole structure. Coupling matrix synthesis (CMS) was utilized to decouple the dipole array. Mean and worst-case transmission between nearest-neighbour dipoles was -17.2 and -15.5 dB, respectively (±2.4 dB). Transmit efficiencies of 24.6 nT/V for the entire brain and 26.0 nT/V across the axial slice were observed. The total and peak 10-g SAR, normalized to 1 Watt accepted input power per channel, was 0.163 and 0.601 W/kg, respectively. Maximum and mean noise correlations were -17 dB and -32 dB, respectively. The use of both CMS and a novel shape optimization routine to design a dipole array translated into sufficient transmit uniformity with a simultaneous reduction in 10-g SAR in comparison to a non-optimized dipole array of the same geometry. As a receiver, the dipole array maintained high orthogonality between elements, resulting in strong parallel imaging performance.
Collapse
|
14
|
A Platform for 4-Channel Parallel Transmission MRI at 3 T: Demonstration of Reduced Radiofrequency Heating in a Test Object Containing an Implanted Wire. J Med Biol Eng 2019. [DOI: 10.1007/s40846-019-00478-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Sartoretti T, Sartoretti E, Wyss M, Schwenk Á, Najafi A, Binkert C, Reischauer C, Zhou J, Jiang S, Becker AS, Sartoretti-Schefer S. Amide Proton Transfer Contrast Distribution in Different Brain Regions in Young Healthy Subjects. Front Neurosci 2019; 13:520. [PMID: 31178687 PMCID: PMC6538817 DOI: 10.3389/fnins.2019.00520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Abstract
Objectives To define normal signal intensity values of amide proton transfer-weighted (APTw) magnetic resonance (MR) imaging in different brain regions. Materials and Methods Twenty healthy subjects (9 females, mean age 29 years, range 19 - 37 years) underwent MR imaging at 3 Tesla. 3D APTw (RF saturation B1,rms = 2 μT, duration 2 s, 100% duty cycle) and 2D T2-weighted turbo spin echo (TSE) images were acquired. Postprocessing (image fusion, ROI measurements of APTw intensity values in 22 different brain regions) was performed and controlled by two independent neuroradiologists. Values were measured separately for each brain hemisphere. A subject was scanned both in prone and supine position to investigate differences between hemispheres. A mixed model on a 5% significance level was used to assess the effect of gender, brain region and side on APTw intensity values. Results Mean APTw intensity values in the hippocampus and amygdala varied between 1.13 and 1.57%, in the deep subcortical nuclei (putamen, globus pallidus, head of caudate nucleus, thalamus, red nucleus, substantia nigra) between 0.73 and 1.84%, in the frontal, occipital and parietal cortex between 0.56 and 1.03%; in the insular cortex between 1.11 and 1.15%, in the temporal cortex between 1.22 and 1.37%, in the frontal, occipital and parietal white matter between 0.32 and 0.54% and in the temporal white matter between 0.83 and 0.89%. APTw intensity values were significantly impacted both by brain region (p < 0.001) and by side (p < 0.001), whereby overall values on the left side were higher than on the right side (1.13 vs. 0.9%). Gender did not significantly impact APTw intensity values (p = 0.24). APTw intensity values between the left and the right side were partially reversed after changing the position of one subject from supine to prone. Conclusion We determined normal baseline APTw intensity values in different anatomical localizations in healthy subjects. APTw intensity values differed both between anatomical regions and between left and right brain hemisphere.
Collapse
Affiliation(s)
- Thomas Sartoretti
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Elisabeth Sartoretti
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Wyss
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland.,Philips Health Systems, Zurich, Switzerland
| | - Árpád Schwenk
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Arash Najafi
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Christoph Binkert
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carolin Reischauer
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Jinyuan Zhou
- Department of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, United States
| | - Shanshan Jiang
- Department of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, United States
| | - Anton S Becker
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sabine Sartoretti-Schefer
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Krishnamurthy N, Santini T, Wood S, Kim J, Zhao T, Aizenstein HJ, Ibrahim TS. Computational and experimental evaluation of the Tic-Tac-Toe RF coil for 7 Tesla MRI. PLoS One 2019; 14:e0209663. [PMID: 30629618 PMCID: PMC6328242 DOI: 10.1371/journal.pone.0209663] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/10/2018] [Indexed: 01/18/2023] Open
Abstract
A variety of 7 Tesla RF coil systems have been proposed to produce spin excitation (B1+ field) and MR image acquisition. Different groups have attempted to mitigate the challenges at high and ultra-high field MRI by proposing novel hardware and software solutions to obtain uniformly high spin excitation at acceptable RF absorption levels. In this study, we extensively compare the designs of two distributed-circuit based RF coils: the Tic-Tac-Toe (TTT) head coil and TEM head coil on multiple anatomically detailed head models and in-vivo. Bench measurements of s-parameters and experimental B1+ field distribution were obtained in volunteers and compared with numerical simulations. RF absorption, quantified by both average and peak SAR, and B1+ field intensity and homogeneity, calculated/measured in terms of maximum over minimum and coefficient of variation (CV) in the region of interest (ROI), are presented for both coils. A study of the RF consistency of both coils across multiple head models for different RF excitation strategies is also presented.
Collapse
Affiliation(s)
- Narayanan Krishnamurthy
- University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, United States of America
| | - Tales Santini
- University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, United States of America
| | - Sossena Wood
- University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, United States of America
| | - Junghwan Kim
- University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, United States of America
| | - Tiejun Zhao
- Siemens Medical Solutions, New York, NY, United States of America
| | - Howard J. Aizenstein
- University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, United States of America
- University of Pittsburgh, Department of Psychiatry, Pittsburgh, PA, United States of America
| | - Tamer S. Ibrahim
- University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, United States of America
- University of Pittsburgh, Department of Psychiatry, Pittsburgh, PA, United States of America
- University of Pittsburgh, Department of Radiology, Pittsburgh, PA, United States of America
| |
Collapse
|
17
|
Wen J, Sukstanskii AL, Yablonskiy DA. Phase-sensitive B 1 mapping: Effects of relaxation and RF spoiling. Magn Reson Med 2018; 80:101-111. [PMID: 29159883 PMCID: PMC6433377 DOI: 10.1002/mrm.27009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/11/2022]
Abstract
PURPOSE To develop a phase-based B1 mapping technique accounting for the effects of imperfect RF spoiling and magnetization relaxation. THEORY AND METHODS The technique is based on a multi-gradient-echo sequence with 2 successive orthogonal radiofrequency (RF) excitation pulses followed by the train of gradient echoes measurements. We have derived a theoretical expression relating the MR signal phase produced by the 2 successive RF pulses to the B1 field and B0 -related frequency shift. The expression takes into account effects of imperfections of RF spoiling and T1 and T2* relaxations. RESULTS Our computer simulations and experiments revealed that imperfections of RF spoiling cause significant errors in B1 mapping if not accounted for. By accounting for these effects along with effects of magnetization relaxation and frequency shift, we demonstrated the high accuracy of our approach. The technique has been tested on spherical phantoms and a healthy volunteer. CONCLUSION In this paper, we have proposed, implemented, and demonstrated the accuracy of a new phase-based technique for fast and robust B1 mapping based on the measured MR signal phase, frequency, and relaxation. Because imperfect RF spoiling effects are accounted for, this technique can be applied with short TRs and therefore substantially reduces the scan time. Magn Reson Med 80:101-111, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
| | | | - Dmitriy A. Yablonskiy
- Correspondence to: Dmitriy A. Yablonskiy, Ph.D., Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Ave., Room 3216, St. Louis, MO 63110.
| |
Collapse
|
18
|
Garwood M, Uğurbil K. RF pulse methods for use with surface coils: Frequency-modulated pulses and parallel transmission. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:84-93. [PMID: 29705035 PMCID: PMC5943143 DOI: 10.1016/j.jmr.2018.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
The first use of a surface coil to obtain a 31P NMR spectrum from an intact rat by Ackerman and colleagues initiated a revolution in magnetic resonance imaging (MRI) and spectroscopy (MRS). Today, we take it for granted that one can detect signals in regions external to an RF coil; at the time, however, this concept was most unusual. In the approximately four decade long period since its introduction, this simple idea gave birth to an increasing number of innovations that has led to transformative changes in the way we collect data in an in vivo magnetic resonance experiment, particularly with MRI of humans. These innovations include spatial localization and/or encoding based on the non-uniform B1 field generated by the surface coil, leading to new spectroscopic localization methods, image acceleration, and unique RF pulses that deal with B1 inhomogeneities and even reduce power deposition. Without the surface coil, many of the major technological advances that define the extraordinary success of MRI in clinical diagnosis and in biomedical research, as exemplified by projects like the Human Connectome Project, would not have been possible.
Collapse
Affiliation(s)
- Michael Garwood
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN 55455 USA.
| | - Kamil Uğurbil
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
19
|
Ianni JD, Cao Z, Grissom WA. Machine learning RF shimming: Prediction by iteratively projected ridge regression. Magn Reson Med 2018; 80:1871-1881. [PMID: 29572990 DOI: 10.1002/mrm.27192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/22/2018] [Accepted: 03/05/2018] [Indexed: 11/11/2022]
Abstract
PURPOSE To obviate online slice-by-slice RF shim optimization and reduce B1+ mapping requirements for patient-specific RF shimming in high-field magnetic resonance imaging. THEORY AND METHODS RF Shim Prediction by Iteratively Projected Ridge Regression (PIPRR) predicts patient-specific, SAR-efficient RF shims with a machine learning approach that merges learning with training shim design. To evaluate it, a set of B1+ maps was simulated for 100 human heads for a 24-element coil at 7T. Features were derived from tissue masks and the DC Fourier coefficients of the coils' B1+ maps in each slice, which were used for kernelized ridge regression prediction of SAR-efficient RF shim weights. Predicted shims were compared to directly designed shims, circularly polarized mode, and nearest-neighbor shims predicted using the same features. RESULTS PIPRR predictions had 87% and 13% lower B1+ coefficients of variation compared to circularly polarized mode and nearest-neighbor shims, respectively, and achieved homogeneity and SAR similar to that of directly designed shims. Predictions were calculated in 4.92 ms on average. CONCLUSION PIPRR predicted uniform, SAR-efficient RF shims, and could save a large amount of B1+ mapping and computation time in RF-shimmed ultra-high field magnetic resonance imaging.
Collapse
Affiliation(s)
- Julianna D Ianni
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Zhipeng Cao
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.,Department of Radiology, Vanderbilt University, Nashville, Tennessee.,Department of Electrical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
20
|
Uğurbil K. Imaging at ultrahigh magnetic fields: History, challenges, and solutions. Neuroimage 2018; 168:7-32. [PMID: 28698108 PMCID: PMC5758441 DOI: 10.1016/j.neuroimage.2017.07.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 01/06/2023] Open
Abstract
Following early efforts in applying nuclear magnetic resonance (NMR) spectroscopy to study biological processes in intact systems, and particularly since the introduction of 4 T human scanners circa 1990, rapid progress was made in imaging and spectroscopy studies of humans at 4 T and animal models at 9.4 T, leading to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has provided numerous technological solutions to challenges posed at these ultrahigh fields, and demonstrated the existence of significant advantages in signal-to-noise ratio and biological information content. Primary difference from lower fields is the deviation from the near field regime at the radiofrequencies (RF) corresponding to hydrogen resonance conditions. At such ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image non-uniformities for a given sample-coil configuration because of destructive and constructive interferences. These non-uniformities were initially considered detrimental to progress of imaging at high field strengths. However, they are advantageous for parallel imaging in signal reception and transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies and improvements in instrumentation and imaging methods, today ultrahigh fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques.
Collapse
Affiliation(s)
- Kamil Uğurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
21
|
Grissom WA, Setsompop K, Hurley SA, Tsao J, Velikina JV, Samsonov AA. Advancing RF pulse design using an open-competition format: Report from the 2015 ISMRM challenge. Magn Reson Med 2017; 78:1352-1361. [PMID: 27790754 PMCID: PMC5408273 DOI: 10.1002/mrm.26512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 02/03/2023]
Abstract
PURPOSE To advance the best solutions to two important RF pulse design problems with an open head-to-head competition. METHODS Two sub-challenges were formulated in which contestants competed to design the shortest simultaneous multislice (SMS) refocusing pulses and slice-selective parallel transmission (pTx) excitation pulses, subject to realistic hardware and safety constraints. Short refocusing pulses are needed for spin echo SMS imaging at high multiband factors, and short slice-selective pTx pulses are needed for multislice imaging in ultra-high field MRI. Each sub-challenge comprised two phases, in which the first phase posed problems with a low barrier of entry, and the second phase encouraged solutions that performed well in general. The Challenge ran from October 2015 to May 2016. RESULTS The pTx Challenge winners developed a spokes pulse design method that combined variable-rate selective excitation with an efficient method to enforce SAR constraints, which achieved 10.6 times shorter pulse durations than conventional approaches. The SMS Challenge winners developed a time-optimal control multiband pulse design algorithm that achieved 5.1 times shorter pulse durations than conventional approaches. CONCLUSION The Challenge led to rapid step improvements in solutions to significant problems in RF excitation for SMS imaging and ultra-high field MRI. Magn Reson Med 78:1352-1361, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- William A. Grissom
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Julia V. Velikina
- Department of Medical Physics, University of Wisconsin, Madison, USA
| | | |
Collapse
|
22
|
Gudino N, de Zwart JA, Duan Q, Dodd SJ, Murphy-Boesch J, van Gelderen P, Duyn JH. Optically controlled on-coil amplifier with RF monitoring feedback. Magn Reson Med 2017; 79:2833-2841. [PMID: 28905426 DOI: 10.1002/mrm.26916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/27/2022]
Abstract
PURPOSE To develop a new optically controlled on-coil amplifier that facilitates safe use of multi-channel radiofrequency (RF) transmission in MRI by real-time monitoring of signal phase and amplitude. METHODS Monitoring was carried out with a 4-channel prototype system by sensing, down sampling, digitizing, and optically transmitting the RF transmit signal to a remote PC to control the amplifiers. Performance was evaluated with benchtop and 7 T MRI experiments. RESULTS Monitored amplitude and phase were stable across repetitions and had standard deviations of 0.061 μT and 0.0073 rad, respectively. The feedback system allowed inter-channel phase and B1 amplitude to be adjusted within two iterations. MRI experiments demonstrated the feasibility of this approach to perform safe and accurate multi-channel RF transmission and monitoring at high field. CONCLUSION We demonstrated a 4-channel transceiver system based on optically controlled on-coil amplifiers with RF signal monitoring and feedback control. The approach allows the safe and precise control of RF transmission fields, required to achieve uniform excitation at high field. Magn Reson Med 79:2833-2841, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Natalia Gudino
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacco A de Zwart
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Qi Duan
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen J Dodd
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Joe Murphy-Boesch
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter van Gelderen
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeff H Duyn
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Ma J, Wismans C, Cao Z, Klomp DWJ, Wijnen JP, Grissom WA. Tailored spiral in-out spectral-spatial water suppression pulses for magnetic resonance spectroscopic imaging. Magn Reson Med 2017; 79:31-40. [PMID: 28370494 DOI: 10.1002/mrm.26683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/02/2017] [Accepted: 02/28/2017] [Indexed: 11/10/2022]
Abstract
PURPOSE To develop short water suppression sequences for 7 T magnetic resonance spectroscopic imaging, with mitigation of subject-specific transmit RF field ( B1+) inhomogeneity. METHODS Patient-tailored spiral in-out spectral-spatial saturation pulses were designed for a three-pulse WET water suppression sequence. The pulses' identical spatial subpulses were designed using patient-specific B1+ maps and a spiral in-out excitation k-space trajectory. The subpulse train was weighted by a spectral envelope that was root-flipped to minimize peak RF demand. The pulses were validated in in vivo experiments that acquired high resolution magnetic resonance spectroscopic imaging data, using a crusher coil for fast lipid suppression. Residual water signals and MR spectra were compared between the proposed tailored sequence and a conventional WET sequence. RESULTS Replacing conventional spectrally-selective pulses with tailored spiral in-out spectral-spatial pulses reduced mean water residual from 5.88 to 2.52% (57% improvement). Pulse design time was less then 0.4 s. The pulses' specific absorption rate were compatible with magnetic resonance spectroscopic imaging TRs under 300 ms, which enabled spectra of fine in plane spatial resolution (5 mm) with good quality to be measured in 7.5 min. CONCLUSION Tailored spiral in-out spectral-spatial water suppression enables efficient high resolution magnetic resonance spectroscopic imaging in the brain. Magn Reson Med 79:31-40, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jun Ma
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Carrie Wismans
- Department of Radiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Zhipeng Cao
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Dennis W J Klomp
- Department of Radiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Jannie P Wijnen
- Department of Radiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Gras V, Vignaud A, Amadon A, Mauconduit F, Le Bihan D, Boulant N. In vivo demonstration of whole-brain multislice multispoke parallel transmit radiofrequency pulse design in the small and large flip angle regimes at 7 Tesla. Magn Reson Med 2016; 78:1009-1019. [PMID: 27774653 DOI: 10.1002/mrm.26491] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 11/07/2022]
Abstract
PURPOSE A multispoke specific absorption rate (SAR) -aware pulse design approach for homogeneous multiple-slice small and large flip angle (FA) excitations with parallel transmission is proposed. The approach aims at optimizing in a slice-specific manner the spokes locations and radiofrequency pulses. METHODS The problem is posed as a set of slice-specific magnitude-least-squares problems, linked together by hardware and SAR constraints, and solved jointly using an active-set algorithm. Average Hamiltonian theory is exploited in the large FA case to greatly reduce the computational burden. The approach is validated numerically by means of simulations and experimentally on two volunteers at 7 Tesla through application of a high-resolution T2*-weighted brain imaging protocol. RESULTS The optimization of up to 1300 variables under 745 explicit constraints could be performed in less than 1 and 4 min for the small and large FA cases, respectively. The joint design proves valuable for SAR demanding protocols. Compared with the conventional circularly polarized mode, the designed pulses increased the signal by more than 40% in 70% of the voxels. CONCLUSION The B1+ inhomogeneity problem was mitigated efficiently in a multislice near whole-brain coverage protocol in the small and large FA regimes using a rapid slice-specific pulse design algorithm where the pulses were optimized jointly. Magn Reson Med 78:1009-1019, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
|
25
|
Ertürk MA, Wu X, Eryaman Y, Van de Moortele PF, Auerbach EJ, Lagore RL, DelaBarre L, Vaughan JT, Uğurbil K, Adriany G, Metzger GJ. Toward imaging the body at 10.5 tesla. Magn Reson Med 2016; 77:434-443. [PMID: 27770469 DOI: 10.1002/mrm.26487] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/08/2016] [Accepted: 09/11/2016] [Indexed: 01/29/2023]
Abstract
PURPOSE To explore the potential of performing body imaging at 10.5 Tesla (T) compared with 7.0T through evaluating the transmit/receive performance of similarly configured dipole antenna arrays. METHODS Fractionated dipole antenna elements for 10.5T body imaging were designed and evaluated using numerical simulations. Transmit performance of antenna arrays inside the prostate, kidneys and heart were investigated and compared with those at 7.0T using both phase-only radiofrequency (RF) shimming and multi-spoke pulses. Signal-to-noise ratio (SNR) comparisons were also performed. A 10-channel antenna array was constructed to image the abdomen of a swine at 10.5T. Numerical methods were validated with phantom studies at both field strengths. RESULTS Similar power efficiencies were observed inside target organs with phase-only shimming, but RF nonuniformity was significantly higher at 10.5T. Spokes RF pulses allowed similar transmit performance with accompanying local specific absorption rate increases of 25-90% compared with 7.0T. Relative SNR gains inside the target anatomies were calculated to be >two-fold higher at 10.5T, and 2.2-fold SNR gain was measured in a phantom. Gradient echo and fast spin echo imaging demonstrated the feasibility of body imaging at 10.5T with the designed array. CONCLUSION While comparable power efficiencies can be achieved using dipole antenna arrays with static shimming at 10.5T; increasing RF nonuniformities underscore the need for efficient, robust, and safe parallel transmission methods. Magn Reson Med 77:434-443, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- M Arcan Ertürk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yiğitcan Eryaman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Edward J Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Russell L Lagore
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lance DelaBarre
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - J Thomas Vaughan
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Biomedical Engineering in The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
26
|
Connell IRO, Menon RS. General Coupling Matrix Synthesis for Decoupling MRI RF Arrays. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:2229-2242. [PMID: 27093549 DOI: 10.1109/tmi.2016.2553844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Multi-channel radio-frequency (RF) arrays, composed of multiple resonant coils, provide significant benefits for MRI during both signal reception (receive) and excitation (transmit). Demonstration of increased signal-to-noise ratio (SNR) and acceleration factors during parallel acquisitions has lead to the development of receive arrays. Conversely, transmit arrays have demonstrated considerable potential for mitigating excitation inhomogeneity arising at ultra-high magnetic field strengths ( ≥ 7 T) , present due to wave-like interactions inside the sample. Due to geometric constraints, the design of both receive and transmit arrays requires the resonating coils to be closely spaced. Significant overlap in the near-field distributions from each coil results in coupling. Without an adequate decoupling strategy applied between individual elements in an RF array, the MRI performance of the array can be significantly degraded. This work presents a method to design decoupling networks for arbitrarily large RF arrays based on direct synthesis of a coupling matrix. Reflection coefficients are fitted to transfer polynomials with transmission coefficients simultaneously minimized through a nonlinear optimization. The method demonstrates the design of nth-order distributed filters and lumped element networks that compensate for all first-order and cross-coupling terms arising in an RF array suitable for MRI. The synthesis results are computed for 4-, 8-, and 32-channel RF arrays. Monte Carlo analyses and experimental results for two RF array constructions demonstrate the robustness of this approach.
Collapse
|
27
|
Cao Z, Yan X, Grissom WA. Array-compressed parallel transmit pulse design. Magn Reson Med 2016; 76:1158-69. [PMID: 26510117 PMCID: PMC4848238 DOI: 10.1002/mrm.26020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 11/06/2022]
Abstract
PURPOSE To design array-compressed parallel transmit radiofrequency (RF) pulses and compare them to pulses designed with existing transmit array compression strategies. THEORY AND METHODS Array-compressed parallel RF pulse design is proposed as the joint optimization of a matrix of complex-valued compression weights that relate a full-channel physical array to a reduced-channel virtual array, along with a set of RF pulses for the virtual array. In this way, the physics of the RF pulse application determine the coil combination weights. Array-compressed pulse design algorithms are described for four parallel transmit applications: accelerated two-dimensional spiral excitation, multislice RF shimming, small-tip-angle kT -points excitation, and slice-selective spokes refocusing. Array-compressed designs are compared in simulations and an experiment to pulses designed using four existing array compression strategies. RESULTS In all cases, array-compressed pulses achieved the lowest root-mean-square excitation error among the array compression approaches. Low errors were generally achieved without increasing root-mean-square RF amplitudes or maximum local 10-gram specific absorption rate. Leave-one-out multisubject shimming simulations demonstrated that array-compressed RF shimming can identify useful fixed coil combination weights that perform well across a population. CONCLUSION Array-compressed pulse design jointly identifies the transmit coil array compression weights and RF pulses that perform best for a specific parallel excitation application. Magn Reson Med 76:1158-1169, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhipeng Cao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiology, Vanderbilt University, Nashville, Tennessee, USA
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.
- Department of Radiology, Vanderbilt University, Nashville, Tennessee, USA.
- Department of Electrical Engineering, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
28
|
O'Reilly TPA, Webb AG, Brink WM. Practical improvements in the design of high permittivity pads for dielectric shimming in neuroimaging at 7T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 270:108-114. [PMID: 27434779 DOI: 10.1016/j.jmr.2016.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/15/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
Improvements are proposed for practical design and use of high permittivity materials in high field neuroimaging in three different areas: (i) a simple formula to predict the permittivity of tri-component aqueous-based perovskite suspensions with relative permittivities between 110 and 300, (ii) characterization of addition of a hydroxyethyl-cellulose gelling agent to improve the long-term stability and material properties of "dielectric pads", and (iii) investigation of the integration of, for example, headphones into the dielectric pads to increase patient comfort within tightly-fitting receive coil arrays.
Collapse
Affiliation(s)
- T P A O'Reilly
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - A G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.
| | - W M Brink
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
29
|
Guo J, Patay Z, Reddick WE. Fast frequency-sweep spectroscopic imaging with an ultra-low flip angle. Sci Rep 2016; 6:30066. [PMID: 27440077 PMCID: PMC4954958 DOI: 10.1038/srep30066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/28/2016] [Indexed: 11/08/2022] Open
Abstract
Magnetic resonance (MR) spectroscopic imaging has become an important tool in clinical settings for noninvasively obtaining spatial and metabolic information on a molecular scale. Conventional spectroscopic imaging is acquired in the time domain, and its clinical application is limited by the long acquisition time, restricted spatial coverage, and complex suppression and reconstruction procedures. We introduce a fast MR spectroscopic imaging technique in the frequency domain, termed phase-cycled spectroscopic imaging (PCSI). PCSI uses a balanced steady-state free precession (bSSFP) sequence with an ultra-low flip angle to achieve very high acquisition efficiency with a short repetition time. This approach enables faster frequency sweeping by changing the cycled RF phase and using flexible non-uniform sampling, and it greatly reduces the RF energy deposition in tissue. With its intrinsic water and fat suppression, PCSI more closely resembles routine clinical scans because it eliminates the suppression steps. We demonstrate that it is feasible to acquire PCSI spectra in a phantom and in humans and that PCSI provides an efficient spectroscopic imaging method, even for J-coupled metabolites. PCSI may enable spectroscopic imaging to play a larger role in the clinical assessment of the spatial tissue distribution of metabolites.
Collapse
Affiliation(s)
- Junyu Guo
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, 38105 Tennessee, USA
| | - Zoltan Patay
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, 38105 Tennessee, USA
| | - Wilburn E. Reddick
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, 38105 Tennessee, USA
| |
Collapse
|
30
|
Etezadi-Amoli M, Stang P, Kerr A, Pauly J, Scott G. Controlling radiofrequency-induced currents in guidewires using parallel transmit. Magn Reson Med 2015; 74:1790-802. [PMID: 25521751 PMCID: PMC4470871 DOI: 10.1002/mrm.25543] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/31/2014] [Accepted: 11/02/2014] [Indexed: 11/09/2022]
Abstract
PURPOSE Elongated conductors, such as pacemaker leads, neurostimulator leads, and conductive guidewires used for interventional procedures can couple to the MRI radiofrequency (RF) transmit field, potentially causing dangerous tissue heating. The purpose of this study was to demonstrate the feasibility of using parallel transmit to control induced RF currents in elongated conductors, thereby reducing the RF heating hazard. METHODS Phantom experiments were performed on a four-channel parallel transmit system at 1.5T. Parallel transmit "null mode" excitations that induce minimal wire current were designed using coupling measurements derived from axial B1 (+) maps. The resulting current reduction performance was evaluated with B1 (+) maps, current sensor measurements, and fluoroptic temperature probe measurements. RESULTS Null mode excitations reduced the maximum coupling mode current by factors ranging from 2 to 80. For the straight wire experiment, a current null imposed at a single wire location was sufficient to reduce tip heating below detectable levels. For longer insertion lengths and a curved geometry, imposing current nulls at two wire locations resulted in more distributed current reduction along the wire length. CONCLUSION Parallel transmit can be used to create excitations that induce minimal RF current in elongated conductors, thereby decreasing the RF heating risk, while still allowing visualization of the surrounding volume.
Collapse
Affiliation(s)
- Maryam Etezadi-Amoli
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Pascal Stang
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Adam Kerr
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - John Pauly
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Greig Scott
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
31
|
van Gorp JS, Seevinck PR, Andreychenko A, Raaijmakers AJE, Luijten PR, Viergever MA, Koopman M, Boer VO, Klomp DWJ. (19)F MRSI of capecitabine in the liver at 7 T using broadband transmit-receive antennas and dual-band RF pulses. NMR IN BIOMEDICINE 2015; 28:1433-1442. [PMID: 26373355 DOI: 10.1002/nbm.3390] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 06/05/2023]
Abstract
Capecitabine (Cap) is an often prescribed chemotherapeutic agent, successfully used to cure some patients from cancer or reduce tumor burden for palliative care. However, the efficacy of the drug is limited, it is not known in advance who will respond to the drug and it can come with severe toxicity. (19)F Magnetic Resonance Spectroscopy (MRS) and Magnetic Resonance Spectroscopic Imaging (MRSI) have been used to non-invasively study Cap metabolism in vivo to find a marker for personalized treatment. In vivo detection, however, is hampered by low concentrations and the use of radiofrequency (RF) surface coils limiting spatial coverage. In this work, the use of a 7T MR system with radiative multi-channel transmit-receive antennas was investigated with the aim of maximizing the sensitivity and spatial coverage of (19)F detection protocols. The antennas were broadband optimized to facilitate both the (1)H (298 MHz) and (19)F (280 MHz) frequencies for accurate shimming, imaging and signal combination. B1(+) simulations, phantom and noise measurements showed that more than 90% of the theoretical maximum sensitivity could be obtained when using B1(+) and B1(-) information provided at the (1)H frequency for the optimization of B1(+) and B1(-) at the (19)F frequency. Furthermore, to overcome the limits in maximum available RF power, whilst ensuring simultaneous excitation of all detectable conversion products of Cap, a dual-band RF pulse was designed and evaluated. Finally, (19)F MRS(I) measurements were performed to detect (19)F metabolites in vitro and in vivo. In two patients, at 10 h (patient 1) and 1 h (patient 2) after Cap intake, (19)F metabolites were detected in the liver and the surrounding organs, illustrating the potential of the set-up for in vivo detection of metabolic rates and drug distribution in the body.
Collapse
Affiliation(s)
- Jetse S van Gorp
- University Medical Center Utrecht, Image Sciences Institute, Utrecht, the Netherlands
| | - Peter R Seevinck
- University Medical Center Utrecht, Image Sciences Institute, Utrecht, the Netherlands
| | - Anna Andreychenko
- University Medical Center Utrecht, Radiotherapy, Utrecht, the Netherlands
| | | | - Peter R Luijten
- University Medical Center Utrecht, Radiology, Utrecht, the Netherlands
| | - Max A Viergever
- University Medical Center Utrecht, Image Sciences Institute, Utrecht, the Netherlands
| | - Miriam Koopman
- University Medical Center Utrecht, Medical Oncology, Utrecht, the Netherlands
| | - Vincent O Boer
- Hvidovre Hospital, Danish Research Center for Magnetic Resonance, Hvidovre, Denmark
| | - Dennis W J Klomp
- University Medical Center Utrecht, Radiology, Utrecht, the Netherlands
| |
Collapse
|
32
|
Wu X, Zhang X, Tian J, Schmitter S, Hanna B, Strupp J, Pfeuffer J, Hamm M, Wang D, Nistler J, He B, Vaughan JT, Ugurbil K, Van de Moortele PF. Comparison of RF body coils for MRI at 3 T: a simulation study using parallel transmission on various anatomical targets. NMR IN BIOMEDICINE 2015; 28:1332-44. [PMID: 26332290 PMCID: PMC4573930 DOI: 10.1002/nbm.3378] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 05/09/2023]
Abstract
The performance of multichannel transmit coil layouts and parallel transmission (pTx) RF pulse design was evaluated with respect to transmit B1 (B1 (+)) homogeneity and specific absorption rate (SAR) at 3 T for a whole body coil. Five specific coils were modeled and compared: a 32-rung birdcage body coil (driven either in a fixed quadrature mode or a two-channel transmit mode), two single-ring stripline arrays (with either 8 or 16 elements), and two multi-ring stripline arrays (with two or three identical rings, stacked in the z axis and each comprising eight azimuthally distributed elements). Three anatomical targets were considered, each defined by a 3D volume representative of a meaningful region of interest (ROI) in routine clinical applications. For a given anatomical target, global or local SAR controlled pTx pulses were designed to homogenize RF excitation within the ROI. At the B1 (+) homogeneity achieved by the quadrature driven birdcage design, pTx pulses with multichannel transmit coils achieved up to about eightfold reduction in local and global SAR. When used for imaging head and cervical spine or imaging thoracic spine, the double-ring array outperformed all coils, including the single-ring arrays. While the advantage of the double-ring array became much less pronounced for pelvic imaging, with a substantially larger ROI, the pTx approach still provided significant gains over the quadrature birdcage coil. For all design scenarios, using the three-ring array did not necessarily improve the RF performance. Our results suggest that pTx pulses with multichannel transmit coils can reduce local and global SAR substantially for body coils while attaining improved B1 (+) homogeneity, particularly for a "z-stacked" double-ring design with coil elements arranged on two transaxial rings.
Collapse
Affiliation(s)
- Xiaoping Wu
- University of Minnesota Medical School, Department of Radiology, Center for Magnetic Resonance Research, Minneapolis, MN, United States
| | - Xiaotong Zhang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Jinfeng Tian
- University of Minnesota Medical School, Department of Radiology, Center for Magnetic Resonance Research, Minneapolis, MN, United States
| | - Sebastian Schmitter
- University of Minnesota Medical School, Department of Radiology, Center for Magnetic Resonance Research, Minneapolis, MN, United States
| | - Brian Hanna
- University of Minnesota Medical School, Department of Radiology, Center for Magnetic Resonance Research, Minneapolis, MN, United States
| | - John Strupp
- University of Minnesota Medical School, Department of Radiology, Center for Magnetic Resonance Research, Minneapolis, MN, United States
| | | | | | | | | | - Bin He
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, United States
| | - J. Thomas Vaughan
- University of Minnesota Medical School, Department of Radiology, Center for Magnetic Resonance Research, Minneapolis, MN, United States
| | - Kamil Ugurbil
- University of Minnesota Medical School, Department of Radiology, Center for Magnetic Resonance Research, Minneapolis, MN, United States
| | - Pierre-Francois Van de Moortele
- University of Minnesota Medical School, Department of Radiology, Center for Magnetic Resonance Research, Minneapolis, MN, United States
| |
Collapse
|
33
|
Gudino N, Duan Q, de Zwart JA, Murphy-Boesch J, Dodd SJ, Merkle H, van Gelderen P, Duyn JH. Optically controlled switch-mode current-source amplifiers for on-coil implementation in high-field parallel transmission. Magn Reson Med 2015; 76:340-9. [PMID: 26256671 DOI: 10.1002/mrm.25857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/23/2015] [Accepted: 07/12/2015] [Indexed: 01/20/2023]
Abstract
PURPOSE We tested the feasibility of implementing parallel transmission (pTX) for high-field MRI using a radiofrequency (RF) amplifier design to be located on or in the immediate vicinity of an RF transmit coil. METHOD We designed a current-source switch-mode amplifier based on miniaturized, nonmagnetic electronics. Optical RF carrier and envelope signals to control the amplifier were derived, through a custom-built interface, from the RF source accessible in the scanner control. Amplifier performance was tested by benchtop measurements as well as with imaging at 7T (300 MHz) and 11.7 T (500 MHz). The ability to perform pTX was evaluated by measuring interchannel coupling and phase adjustment in a two-channel setup. RESULTS The amplifier delivered in excess of 44 W RF power and caused minimal interference with MRI. The interface derived accurate optical control signals with carrier frequencies ranging from 64 to 750 MHz. Decoupling better than 14 dB was obtained between two coil loops separated by only 1 cm. Application to MRI was demonstrated by acquiring artifact-free images at 7 T and 11.7 T. CONCLUSION We propose an optically controlled miniaturized RF amplifier for on-coil implementation at high fields that should facilitate implementation of high-density pTX arrays. Magn Reson Med 76:340-349, 2016. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Natalia Gudino
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Qi Duan
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacco A de Zwart
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Joe Murphy-Boesch
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen J Dodd
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Hellmut Merkle
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter van Gelderen
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeff H Duyn
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
34
|
Investigation of Parallel Radiofrequency Transmission for the Reduction of Heating in Long Conductive Leads in 3 Tesla Magnetic Resonance Imaging. PLoS One 2015; 10:e0134379. [PMID: 26237218 PMCID: PMC4523176 DOI: 10.1371/journal.pone.0134379] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/08/2015] [Indexed: 12/17/2022] Open
Abstract
Deep Brain Stimulation (DBS) is increasingly used to treat a variety of brain diseases by sending electrical impulses to deep brain nuclei through long, electrically conductive leads. Magnetic resonance imaging (MRI) of patients pre- and post-implantation is desirable to target and position the implant, to evaluate possible side-effects and to examine DBS patients who have other health conditions. Although MRI is the preferred modality for pre-operative planning, MRI post-implantation is limited due to the risk of high local power deposition, and therefore tissue heating, at the tip of the lead. The localized power deposition arises from currents induced in the leads caused by coupling with the radiofrequency (RF) transmission field during imaging. In the present work, parallel RF transmission (pTx) is used to tailor the RF electric field to suppress coupling effects. Electromagnetic simulations were performed for three pTx coil configurations with 2, 4, and 8-elements, respectively. Optimal input voltages to minimize coupling, while maintaining RF magnetic field homogeneity, were determined for all configurations using a Nelder-Mead optimization algorithm. Resulting electric and magnetic fields were compared to that of a 16-rung birdcage coil. Experimental validation was performed with a custom-built 4-element pTx coil. In simulation, 95-99% reduction of the electric field at the tip of the lead was observed between the various pTx coil configurations and the birdcage coil. Maximal reduction in E-field was obtained with the 8-element pTx coil. Magnetic field homogeneity was comparable to the birdcage coil for the 4- and 8-element pTx configurations. In experiment, a temperature increase of 2±0.15°C was observed at the tip of the wire using the birdcage coil, whereas negligible increase (0.2±0.15°C) was observed with the optimized pTx system. Although further research is required, these initial results suggest that the concept of optimizing pTx to reduce DBS heating effects holds considerable promise.
Collapse
|
35
|
Umesh Rudrapatna S, Juchem C, Nixon TW, de Graaf RA. Dynamic multi-coil tailored excitation for transmit B1 correction at 7 Tesla. Magn Reson Med 2015. [PMID: 26223503 DOI: 10.1002/mrm.25856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
PURPOSE Tailored excitation (TEx) based on interspersing multiple radio frequency pulses with linear gradient and higher-order shim pulses can be used to obtain uniform flip angle in the presence of large radio frequency transmission (B 1+) inhomogeneity. Here, an implementation of dynamic, multislice tailored excitation using the recently developed multi-coil nonlinear shim hardware (MC-DTEx) is reported. METHODS MC-DTEx was developed and tested both in a phantom and in vivo at 7 T, and its efficacy was quantitatively assessed. Predicted outcomes of MC-DTEx and DTEx based on spherical harmonic shims (SH-DTEx) were also compared. RESULTS For a planned 30 ° flip angle, in a phantom, the standard deviation in excitation improved from 28% (regular excitation) to 12% with MC-DTEx. The SD in in vivo excitation improved from 22 to 12%. The improvements achieved with experimental MC-DTEx closely matched the theoretical predictions. Simulations further showed that MC-DTEx outperforms SH-DTEx for both scenarios. CONCLUSION Successful implementation of multislice MC-DTEx is presented and is shown to be capable of homogenizing excitation over more than twofold B 1+ variations. Its benefits over SH-DTEx are also demonstrated. A distinct advantage of MC hardware over SH shim hardware is the absence of significant eddy current effects, which allows for a straightforward, multislice implementation of MC-DTEx. Magn Reson Med 76:83-93, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- S Umesh Rudrapatna
- Department of Diagnostic Radiology, Yale University School of Medicine, Magnetic Resonance Research Center, 300 Cedar Street, New Haven, Connecticut, USA
| | - Christoph Juchem
- Department of Diagnostic Radiology, Yale University School of Medicine, Magnetic Resonance Research Center, 300 Cedar Street, New Haven, Connecticut, USA
| | - Terence W Nixon
- Department of Diagnostic Radiology, Yale University School of Medicine, Magnetic Resonance Research Center, 300 Cedar Street, New Haven, Connecticut, USA
| | - Robin A de Graaf
- Department of Diagnostic Radiology, Yale University School of Medicine, Magnetic Resonance Research Center, 300 Cedar Street, New Haven, Connecticut, USA
| |
Collapse
|
36
|
Connell IRO, Gilbert KM, Abou-Khousa MA, Menon RS. Design of a parallel transmit head coil at 7T with magnetic wall distributed filters. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:836-845. [PMID: 25415982 DOI: 10.1109/tmi.2014.2370533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ultra-high field magnetic resonance imaging (MRI) scanners ( ≥ 7T) require radio-frequency (RF) coils to operate in the range of the electromagnetic spectrum where the effective wavelength in the tissue approaches the patient dimensions. Multi-channel transmit arrays, driven in parallel, have been developed to increase the transmit field (B1(+)) uniformity in this wavelength regime. However, the closely packed array elements interact through mutual coupling. This paper expands on the ability of a distributed planar filter (the "magnetic wall") to decouple individual elements in an entire array. A transmit RF coil suitable for neuroimaging at 7T was constructed. The transmit coil, composed of 10 individual surface coil elements, was decoupled with magnetic walls. A separate receive coil array was used for signal reception. The hardware and imaging performance of the transmit coil was validated with electromagnetic simulation, bench-top measurements, and in vivo MRI experiments. Analysis and measurements confirmed that the magnetic wall decoupling method provides high isolation between transmit channels, while minimally affecting the B1(+) field profiles. Electromagnetic simulations confirmed that the decoupling method did not correlate to local specific absorption rate (SAR) "hot spots" or increase local-to-global SAR fractions in comparison to previously reported 7T multi-channel transmit arrays employing different decoupling methods.
Collapse
|
37
|
Connell IRO, Gilbert KM, Abou-Khousa MA, Menon RS. MRI RF array decoupling method with magnetic wall distributed filters. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:825-835. [PMID: 25838388 DOI: 10.1109/tmi.2014.2378695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Multi-channel radio-frequency (RF) transmit coil arrays have been developed to mitigate many of the RF challenges associated with ultra-high field ( ≥ 7T) magnetic resonance imaging (MRI). These arrays can be used for parallel RF transmission to produce spatially tailored RF excitation over the field of view. However, the realization of such arrays remains a challenge due to significant reactive interaction between the array coils, i.e., mutual coupling. In this paper, a novel bandstop filter ("magnetic wall") is used in an MRI RF transmit array to decouple individual coils. The proposed decoupling method is inspired by periodic resonator designs commonly used in frequency selective surfaces and is used as a distributed RF filter to suppress the transmission of RF energy between coils in an array. The decoupling of the magnetic wall (MW) is analyzed in terms of equivalent circuits that include terms for both magnetic and electric coupling for an arbitrary number of MW resonant conductors. Both frequency-and time-domain full-wave simulations were performed to analyze a specific MW structure. The performance of the proposed method is experimentally validated for both first-order coupling and higher-order coupling with a three-coil 7T array setup. Analysis and measurements confirm that the rejection band of the MW can be tuned to provide high isolation in the presence of cross coupling between RF array coils.
Collapse
|
38
|
Yan X, Pedersen JO, Wei L, Zhang X, Xue R. Multichannel Double-Row Transmission Line Array for Human MR Imaging at Ultrahigh Fields. IEEE Trans Biomed Eng 2015; 62:1652-9. [PMID: 25706499 DOI: 10.1109/tbme.2015.2401976] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In microstrip transmission line (MTL) transmit/receive (transceive) arrays used for ultrahigh field MRI, the array length is often constrained by the required resonant frequency, limiting the image coverage. The purpose of this study is to increase the imaging coverage and also improve its parallel imaging capability by utilizing a double-row design. METHODS A 16-channel double-row MTL transceive array was designed, constructed, and tested for human head imaging at 7 T. Array elements between two rows were decoupled by using the induced current elimination or magnetic wall decoupling technique. In vivo human head images were acquired, and g-factor results were calculated to evaluate the performance of this double-row array. RESULTS Testing results showed that all coil elements were well decoupled with a better than -18 dB transmission coefficient between any two elements. The double-row array improves the imaging quality of the lower portion of the human head, and has low g-factors even at high acceleration rates. CONCLUSION Compared with a regular single-row MTL array, the double-row array demonstrated a larger imaging coverage along the z-direction with improved parallel imaging capability. SIGNIFICANCE The proposed technique is particularly suitable for the design of large-sized transceive arrays with large channel counts, which ultimately benefits the imaging performance in human MRI.
Collapse
|
39
|
Sharma A, Bammer R, Stenger VA, Grissom WA. Low peak power multiband spokes pulses for B1 (+) inhomogeneity-compensated simultaneous multislice excitation in high field MRI. Magn Reson Med 2014; 74:747-55. [PMID: 25203620 DOI: 10.1002/mrm.25455] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 11/11/2022]
Abstract
PURPOSE To design low peak and integrated power simultaneous multislice excitation radiofrequency pulses with transmit field inhomogeneity compensation in high field MRI. THEORY AND METHODS The "interleaved greedy and local optimization" algorithm for small-tip-angle spokes pulses is extended to design multiband (MB) spokes pulses that simultaneously excite multiple slices, with independent spokes weight optimization for each slice. The peak power of the pulses is controlled using a slice phase optimization technique. Simulations were performed at 7T to compare the peak power of optimized MB spokes pulses to unoptimized pulses, and to compare the proposed slice-independent spokes weight optimization to a joint approach. In vivo experiments were performed at 7T to validate the pulse's function and compare them to conventional MB pulses. RESULTS Simulations showed that the peak power-minimized pulses had lower peak power than unregularized and integrated power-regularized pulses, and that the slice-independent spokes weight optimization consistently produced lower flip angle inhomogeneity and lower peak and integrated power pulses. In the brain imaging experiments, the MB spokes pulses showed significant improvement in excitation flip angle and subsequently signal homogeneity compared to conventional MB pulses. CONCLUSION The proposed MB spokes pulses improve flip angle homogeneity in simultaneous multislice acquisitions at ultrahigh field, with minimal increase in integrated and peak radiofrequency power.
Collapse
Affiliation(s)
- Anuj Sharma
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Roland Bammer
- Department of Radiology, Stanford University, Stanford, California, USA
| | - V Andrew Stenger
- Department of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
40
|
Wu EL, Chiueh TD, Chen JH. Multiple-frequency excitation wideband MRI (ME-WMRI). Med Phys 2014; 41:092304. [DOI: 10.1118/1.4893502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
41
|
Keith GA, Rodgers CT, Hess AT, Snyder CJ, Vaughan JT, Robson MD. Automated tuning of an eight-channel cardiac transceive array at 7 tesla using piezoelectric actuators. Magn Reson Med 2014; 73:2390-7. [PMID: 24986525 PMCID: PMC4245186 DOI: 10.1002/mrm.25356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 05/21/2014] [Accepted: 06/17/2014] [Indexed: 11/22/2022]
Abstract
Purpose Ultra-high field (UHF) MR scanning in the body requires novel coil designs due to B1 field inhomogeneities. In the transverse electromagnetic field (TEM) design, maximum B1 transmit power can only be achieved if each individual transmit element is tuned and matched for different coil loads, which requires a considerable amount of valuable scanner time. Methods An integrated system for autotuning a multichannel parallel transmit (pTx) cardiac TEM array was devised, using piezoelectric actuators, power monitoring equipment and control software. The reproducibility and performance of the system were tested and the power responses of the coil elements were profiled. An automated optimization method was devised and evaluated. Results The time required to tune an eight-element pTx cardiac RF array was reduced from a mean of 30 min to less than 10 min with the use of this system. Conclusion Piezoelectric actuators are an attractive means of tuning RF coil arrays to yield more efficient B1 transmission into the subject. An automated mechanism for tuning these elements provides a practical solution for cardiac imaging at UHF, bringing this technology closer to clinical use. Magn Reson Med 73:2390–2397, 2015. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Graeme A Keith
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Christopher T Rodgers
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Aaron T Hess
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Carl J Snyder
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - J Thomas Vaughan
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matthew D Robson
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
42
|
Pang Y, Jiang X, Zhang X. Sparse parallel transmission on randomly perturbed spiral k-space trajectory. Quant Imaging Med Surg 2014; 4:106-11. [PMID: 24834422 DOI: 10.3978/j.issn.2223-4292.2014.04.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 12/13/2022]
Abstract
Combination of parallel transmission and sparse pulse is able to shorten the excitation by using both the coil sensitivity and sparse k-space, showing improved fast excitation capability over the use of parallel transmission alone. However, to design an optimal k-space trajectory for sparse parallel transmission is a challenging task. In this work, a randomly perturbed sparse k-space trajectory is designed by modifying the path of a spiral trajectory along the sparse k-space data, and the sparse parallel transmission RF pulses are subsequently designed based on this optimal trajectory. This method combines the parallel transmission and sparse spiral k-space trajectory, potentially to further reduce the RF transmission time. Bloch simulation of 90° excitation by using a four channel coil array is performed to demonstrate its feasibility. Excitation performance of the sparse parallel transmission technique at different reduction factors of 1, 2, and 4 is evaluated. For comparison, parallel excitation using regular spiral trajectory is performed. The passband errors of the excitation profiles of each transmission are calculated for quantitative assessment of the proposed excitation method.
Collapse
Affiliation(s)
- Yong Pang
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Department of Electrical Engineering, Tsinghua University, Beijing 100084, China ; 3 UCSF/UC Berkeley Joint Group Program in Bioengineering, San Francisco & Berkeley, CA, USA ; 4 California Institute for Quantitative Biosciences (QB3), San Francisco, CA, USA
| | - Xiaohua Jiang
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Department of Electrical Engineering, Tsinghua University, Beijing 100084, China ; 3 UCSF/UC Berkeley Joint Group Program in Bioengineering, San Francisco & Berkeley, CA, USA ; 4 California Institute for Quantitative Biosciences (QB3), San Francisco, CA, USA
| | - Xiaoliang Zhang
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA ; 2 Department of Electrical Engineering, Tsinghua University, Beijing 100084, China ; 3 UCSF/UC Berkeley Joint Group Program in Bioengineering, San Francisco & Berkeley, CA, USA ; 4 California Institute for Quantitative Biosciences (QB3), San Francisco, CA, USA
| |
Collapse
|
43
|
Abstract
Since the introduction of 4 T human systems in three academic laboratories circa 1990, rapid progress in imaging and spectroscopy studies in humans at 4 T and animal model systems at 9.4 T have led to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has demonstrated the existence of significant advantages in SNR and biological information content at these ultrahigh fields, as well as the presence of numerous challenges. Primary difference from lower fields is the deviation from the near field regime; at the frequencies corresponding to hydrogen resonance conditions at ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image nonuniformities for a given sample-coil configuration because of interferences. These nonuniformities were considered detrimental to the progress of imaging at high field strengths. However, they are advantageous for parallel imaging for signal reception and parallel transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies, and improvements in instrumentation and imaging methods, ultrahigh fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques.
Collapse
|
44
|
Wu X, Schmitter S, Auerbach EJ, Uğurbil K, Van de Moortele PF. Mitigating transmit B 1 inhomogeneity in the liver at 7T using multi-spoke parallel transmit RF pulse design. Quant Imaging Med Surg 2014; 4:4-10. [PMID: 24649429 DOI: 10.3978/j.issn.2223-4292.2014.02.06] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/26/2014] [Indexed: 11/14/2022]
Abstract
In this work, the use of multi-spoke slice-selective parallel transmit (pTX) RF pulse was explored to address B 1+ inhomogeneity in the largest transverse section of the liver at 7T. The impact of the number of spokes was specifically investigated, considering RF pulses consisting of 2, 3 and 4 spokes, as well as single-spoke RF pulses corresponding to static B 1 shimming. Healthy volunteers were imaged on a whole body MR scanner equipped with an eight-channel transmit system. A robust and fast transmit B 1 (B 1+) estimation method was employed to obtain the eight-channel B 1+ maps within a single breath hold. Gradient echo (GRE) images of the liver were acquired using the four different RF pulses and the results were compared. The use of static B 1 shimming (i.e., 1-spoke RF pulse) resulted in partial improvement but significant signal dropouts were still observed in the target region. By comparison, the use of multi-spoke pTX RF pulse design gave rise to much improved excitation homogeneity without signal dropouts. These results demonstrate the effectiveness of multi-spoke pTX RF pulse design in B 1+ homogenization for liver magnetic resonance imaging (MRI) at 7T. The current findings at 7T may have implications for body imaging applications in clinical settings at 3T where B 1+ inhomogeneities are also known for degrading image quality in the torso.
Collapse
Affiliation(s)
- Xiaoping Wu
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Sebastian Schmitter
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Pierre-François Van de Moortele
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
45
|
Avdievich NI, Pan JW, Hetherington HP. Resonant inductive decoupling (RID) for transceiver arrays to compensate for both reactive and resistive components of the mutual impedance. NMR IN BIOMEDICINE 2013; 26:1547-54. [PMID: 23775840 PMCID: PMC3800502 DOI: 10.1002/nbm.2989] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 04/17/2013] [Accepted: 05/17/2013] [Indexed: 05/16/2023]
Abstract
Transceiver surface coil arrays improve transmit performance (B1/√kW) and B1 homogeneity for head imaging up to 9.4 T. To further improve reception performance and parallel imaging, the number of array elements must be increased with a corresponding decrease in their size. With a large number of small interacting antennas, decoupling is one of the most challenging aspects in the design and construction of transceiver arrays. Previously described decoupling techniques using geometric overlap, inductive or capacitive decoupling have focused on the elimination of the reactance of the mutual impedance only, which can limit the obtainable decoupling to -10 dB as a result of residual mutual resistance. A novel resonant inductive decoupling (RID) method, which allows compensation for both reactive and resistive components of the mutual impedance between the adjacent surface coils, has been developed and verified experimentally. This method provides an easy way to adjust the decoupling remotely by changing the resonance frequency of the RID circuit through the adjustment of a variable capacitor. As an example, a single-row (1 × 16) 7-T transceiver head array of n = 16 small overlapped surface coils using RID decoupling between adjacent coils was built. In combination with overlapped coils, the RID technique achieved better than -24 dB of decoupling for all adjacent coils.
Collapse
|
46
|
Wu X, Adriany G, Ugurbil K, Van de Moortele PF. Correcting for strong eddy current induced B0 modulation enables two-spoke RF pulse design with parallel transmission: demonstration at 9.4T in the human brain. PLoS One 2013; 8:e78078. [PMID: 24205098 PMCID: PMC3804469 DOI: 10.1371/journal.pone.0078078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/17/2013] [Indexed: 11/18/2022] Open
Abstract
Successful implementation of homogeneous slice-selective RF excitation in the human brain at 9.4T using 16-channel parallel transmission (pTX) is demonstrated. A novel three-step pulse design method incorporating fast real-time measurement of eddy current induced B0 variations as well as correction of resulting phase errors during excitation is described. To demonstrate the utility of the proposed method, phantom and in-vivo experiments targeting a uniform excitation in an axial slice were conducted using two-spoke pTX pulses. Even with the pre-emphasis activated, eddy current induced B0 variations with peak-to-peak values greater than 4 kHz were observed on our system during the rapid switches of slice selective gradients. This large B0 variation, when not corrected, resulted in drastically degraded excitation fidelity with the coefficient of variation (CV) of the flip angle calculated for the region of interest being large (~ 12% in the phantom and ~ 35% in the brain). By comparison, excitation fidelity was effectively restored, and satisfactory flip angle uniformity was achieved when using the proposed method, with the CV value reduced to ~ 3% in the phantom and ~ 8% in the brain. Additionally, experimental results were in good agreement with the numerical predictions obtained from Bloch simulations. Slice-selective flip angle homogenization in the human brain at 9.4T using 16-channel 3D spoke pTX pulses is achievable despite of large eddy current induced excitation phase errors; correcting for the latter was critical in this success.
Collapse
Affiliation(s)
- Xiaoping Wu
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| | - Gregor Adriany
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Pierre-Francois Van de Moortele
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| |
Collapse
|
47
|
Uğurbil K, Xu J, Auerbach EJ, Moeller S, Vu AT, Duarte-Carvajalino JM, Lenglet C, Wu X, Schmitter S, Van de Moortele PF, Strupp J, Sapiro G, De Martino F, Wang D, Harel N, Garwood M, Chen L, Feinberg DA, Smith SM, Miller KL, Sotiropoulos SN, Jbabdi S, Andersson JLR, Behrens TEJ, Glasser MF, Van Essen DC, Yacoub E. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project. Neuroimage 2013; 80:80-104. [PMID: 23702417 PMCID: PMC3740184 DOI: 10.1016/j.neuroimage.2013.05.012] [Citation(s) in RCA: 607] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/05/2013] [Accepted: 05/07/2013] [Indexed: 12/21/2022] Open
Abstract
The Human Connectome Project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce 'functional connectivity'; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3T, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 s for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total dMRI data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 T magnetic field are also presented, targeting higher spatial resolution, enhanced specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields, and reduced power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure.
Collapse
Affiliation(s)
- Kamil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Li Y, Wang C, Yu B, Vigneron D, Chen W, Zhang X. Image homogenization using pre-emphasis method for high field MRI. Quant Imaging Med Surg 2013; 3:217-23. [PMID: 24040618 DOI: 10.3978/j.issn.2223-4292.2013.07.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/16/2013] [Indexed: 11/14/2022]
Abstract
Radiofrequency (RF) field (B 1) inhomogeneity due to shortened wavelength at high field is a major cause of magnetic resonance imaging (MRI) nonuniformity in high dielectric biological samples (e.g., human body). In this work, we propose a method to improve the B 1 and MRI homogeneity by using pre-emphasized non-uniform B 1 distribution. The intrinsic B 1 distribution that could be generated by a RF volume coil, specifically a microstrip transmission line (MTL) coil used in this work, was pre-emphasized in the sample's periphery region of interest to compensate for the central brightness induced by high frequency interference effect due to shortened wave length. This pre-emphasized non-uniform B 1 can be realized by varying the parameters of microstrip elements, such as the substrate thickness of MTL volume coil. Both numerical simulation and phantom MR imaging studies were carried out to investigate the feasibility and merit of the proposed method in achieving homogeneous MR images. The simulation results demonstrate that by using a pre-emphasized B 1 distribution generated by the MTL volume coil, relatively uniform B 1 distribution and homogeneous MR image (98% homogeneity) within the spherical phantom (15 cm diameter) were achieved with 4.5 mm thickness. The B 1 and MRI intensity distributions of a 16-element MTL volume coil with fixed substrate thickness and five varied saline loads were modeled and experimentally tested. Similar results from both simulation and experiments were obtained, suggesting substantial improvements of B 1 and MRI homogeneities within the phantom containing 125 mM saline. The overall results demonstrate an efficient B 1 shimming approach for improving high field MRI.
Collapse
Affiliation(s)
- Ye Li
- Department of Radiology and Biomedical Imaging, UC San Francisco, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
49
|
Wu X, Schmitter S, Auerbach EJ, Moeller S, Uğurbil K, Van de Moortele PF. Simultaneous multislice multiband parallel radiofrequency excitation with independent slice-specific transmit B1 homogenization. Magn Reson Med 2013; 70:630-8. [PMID: 23801410 DOI: 10.1002/mrm.24828] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/12/2013] [Accepted: 05/08/2013] [Indexed: 11/10/2022]
Abstract
PURPOSE To develop a new parallel transmit (pTx) pulse design for simultaneous multiband (MB) excitation in order to tackle simultaneously the problems of transmit B1 (B1+) inhomogeneity and total radiofrequency (RF) power, so as to allow for optimal RF excitation when using MB pulses for slice acceleration for high and ultrahigh field MRI. METHODS With the proposed approach, each of the bands that are simultaneously excited is subject to a band-specific set of B1 complex shim weights. The method was validated in the human brain at 7T using a 16-channel pTx system and was compared to conventional MB pulses operating in the circularly polarized (CP) mode. Further numerical simulations based on measured B1 maps were conducted. RESULTS The new method improved B1+ homogeneity by 60% when keeping the total RF power constant and reduced total RF power by 72% when keeping the excitation fidelity constant, as compared to the conventional CP mode. CONCLUSION A new pTx pulse design formalism is introduced targeting slice-specific B1+ homogenization in MB excitation while constraining total RF power. These pulses lead to significantly improved slice-wise B1+ uniformity and/or largely reduced total RF power, as compared to the conventionally employed MB pulses applied in the CP mode.
Collapse
Affiliation(s)
- Xiaoping Wu
- University of Minnesota, Center for Magnetic Resonance Research, Minneapolis, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
50
|
Nielsen JF, Yoon D, Noll DC. Small-tip fast recovery imaging using non-slice-selective tailored tip-up pulses and radiofrequency-spoiling. Magn Reson Med 2013; 69:657-66. [PMID: 22511367 PMCID: PMC3408566 DOI: 10.1002/mrm.24289] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 03/06/2012] [Accepted: 03/16/2012] [Indexed: 11/10/2022]
Abstract
Small-tip fast recovery (STFR) imaging is a new steady-state imaging sequence that is a potential alternative to balanced steady-state free precession. Under ideal imaging conditions, STFR may provide comparable signal-to-noise ratio and image contrast as balanced steady-state free precession, but without signal variations due to resonance offset. STFR relies on a tailored "tip-up," or "fast recovery," radiofrequency pulse to align the spins with the longitudinal axis after each data readout segment. The design of the tip-up pulse is based on the acquisition of a separate off-resonance (B0) map. Unfortunately, the design of fast (a few ms) slice- or slab-selective radiofrequency pulses that accurately tailor the excitation pattern to the local B0 inhomogeneity over the entire imaging volume remains a challenging and unsolved problem. We introduce a novel implementation of STFR imaging based on "non-slice-selective" tip-up pulses, which simplifies the radiofrequency pulse design problem significantly. Out-of-slice magnetization pathways are suppressed using radiofrequency-spoiling. Brain images obtained with this technique show excellent gray/white matter contrast, and point to the possibility of rapid steady-state T(2)/T(1) -weighted imaging with intrinsic suppression of cerebrospinal fluid, through-plane vessel signal, and off-resonance artifacts. In the future, we expect STFR imaging to benefit significantly from parallel excitation hardware and high-order gradient shim systems.
Collapse
Affiliation(s)
- Jon-Fredrik Nielsen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | |
Collapse
|