1
|
Radunsky D, Solomon C, Stern N, Blumenfeld-Katzir T, Filo S, Mezer A, Karsa A, Shmueli K, Soustelle L, Duhamel G, Girard OM, Kepler G, Shrot S, Hoffmann C, Ben-Eliezer N. A comprehensive protocol for quantitative magnetic resonance imaging of the brain at 3 Tesla. PLoS One 2024; 19:e0297244. [PMID: 38820354 PMCID: PMC11142522 DOI: 10.1371/journal.pone.0297244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/01/2024] [Indexed: 06/02/2024] Open
Abstract
Quantitative MRI (qMRI) has been shown to be clinically useful for numerous applications in the brain and body. The development of rapid, accurate, and reproducible qMRI techniques offers access to new multiparametric data, which can provide a comprehensive view of tissue pathology. This work introduces a multiparametric qMRI protocol along with full postprocessing pipelines, optimized for brain imaging at 3 Tesla and using state-of-the-art qMRI tools. The total scan time is under 50 minutes and includes eight pulse-sequences, which produce range of quantitative maps including T1, T2, and T2* relaxation times, magnetic susceptibility, water and macromolecular tissue fractions, mean diffusivity and fractional anisotropy, magnetization transfer ratio (MTR), and inhomogeneous MTR. Practical tips and limitations of using the protocol are also provided and discussed. Application of the protocol is presented on a cohort of 28 healthy volunteers and 12 brain regions-of-interest (ROIs). Quantitative values agreed with previously reported values. Statistical analysis revealed low variability of qMRI parameters across subjects, which, compared to intra-ROI variability, was x4.1 ± 0.9 times higher on average. Significant and positive linear relationship was found between right and left hemispheres' values for all parameters and ROIs with Pearson correlation coefficients of r>0.89 (P<0.001), and mean slope of 0.95 ± 0.04. Finally, scan-rescan stability demonstrated high reproducibility of the measured parameters across ROIs and volunteers, with close-to-zero mean difference and without correlation between the mean and difference values (across map types, mean P value was 0.48 ± 0.27). The entire quantitative data and postprocessing scripts described in the manuscript are publicly available under dedicated GitHub and Figshare repositories. The quantitative maps produced by the presented protocol can promote longitudinal and multi-center studies, and improve the biological interpretability of qMRI by integrating multiple metrics that can reveal information, which is not apparent when examined using only a single contrast mechanism.
Collapse
Affiliation(s)
- Dvir Radunsky
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | - Chen Solomon
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | - Neta Stern
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | | | - Shir Filo
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv Mezer
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anita Karsa
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | | | | | | | - Gal Kepler
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Shai Shrot
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel
| | - Chen Hoffmann
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel
| | - Noam Ben-Eliezer
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Center for Advanced Imaging Innovation and Research (CAI2R), New-York University Langone Medical Center, New York, NY, United States of America
| |
Collapse
|
2
|
Ayala C, Luo H, Godines K, Alghuraibawi W, Ahn S, Rehwald W, Grissom WA, Vandsburger MH. Individually tailored spatial-spectral pulsed CEST MRI for ratiometric mapping of myocardial energetic species at 3T. Magn Reson Med 2023; 90:2321-2333. [PMID: 37526176 DOI: 10.1002/mrm.29801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE CEST MRI has been used to probe changes in cardiac metabolism via assessment of CEST contrast from Cr. However, B1 variation across the myocardium leads to spatially variable Cr CEST contrast in healthy myocardium. METHODS We developed a spatial-spectral (SPSP) saturation pulsed CEST protocol to compensate for B1 variation. Flip angle maps were used to individually tailor SPSP pulses comprised of a train of one-dimensional spatially selective subpulses selective along the principal B1 gradient dimension. Complete Z-spectra in the hearts of (n = 10) healthy individuals were acquired using conventional Gaussian saturation and SPSP schemes and supported by phantom studies. RESULTS In simulations, the use of SPSP pulses reduced the average SD of the effective saturation B1 values within the myocardium (n = 10) from 0.12 ± 0.02 μT to 0.05 ± 0.01 μT (p < 0.01) and reduced the average SD of Cr CEST contrast in vivo from 10.0 ± 4.3% to 6.1 ± 3.5% (p < 0.05). Results from the hearts of human subjects showed a significant reduction of CEST contrast distribution at 2 ppm, as well as amplitude, when using SPSP saturation. Corresponding phantom experiments revealed PCr-specific contrast generation at body temperature when SPSP saturation was used but combined PCr and Cr contrast generation when Gaussian saturation was used. CONCLUSION The use of SPSP saturation pulsed CEST resulted in PCr-specific contrast generation and enabled ratiometric mapping of PCr to total Cr CEST contrast in the human heart at 3T.
Collapse
Affiliation(s)
- Cindy Ayala
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Huiwen Luo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Kevin Godines
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Wissam Alghuraibawi
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Sinyeob Ahn
- MR R&D Collaborations, Siemens Medical Solutions, San Francisco, California, USA
| | - Wolfgang Rehwald
- MR R&D Collaborations, Siemens Medical Solutions, Durham, North Carolina, USA
| | - William A Grissom
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Moriel H Vandsburger
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
3
|
Bachrata B, Strasser B, Bogner W, Schmid AI, Korinek R, Krššák M, Trattnig S, Robinson SD. Simultaneous Multiple Resonance Frequency imaging (SMURF): Fat-water imaging using multi-band principles. Magn Reson Med 2021; 85:1379-1396. [PMID: 32981114 PMCID: PMC7756227 DOI: 10.1002/mrm.28519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE To develop a fat-water imaging method that allows reliable separation of the two tissues, uses established robust reconstruction methods, and requires only one single-echo acquisition. THEORY AND METHODS The proposed method uses spectrally selective dual-band excitation in combination with CAIPIRINHA to generate separate images of fat and water simultaneously. Spatially selective excitation without cross-contamination is made possible by the use of spatial-spectral pulses. Fat and water images can either be visualized separately, or the fat images can be corrected for chemical shift displacement and, in gradient echo imaging, for chemical shift-related phase discrepancy, and recombined with water images, generating fat-water images free of chemical shift effects. Gradient echo and turbo spin echo sequences were developed based on this Simultaneous Multiple Resonance Frequency imaging (SMURF) approach and their performance was assessed at 3Tesla in imaging of the knee, breasts, and abdomen. RESULTS The proposed method generated well-separated fat and water images with minimal unaliasing artefacts or cross-excitation, evidenced by the near absence of water signal attributed to the fat image and vice versa. The separation achieved was similar to or better than that using separate acquisitions with water- and fat-saturation or Dixon methods. The recombined fat-water images provided similar image contrast to conventional images, but the chemical shift effects were eliminated. CONCLUSION Simultaneous Multiple Resonance Frequency imaging is a robust fat-water imaging technique that offers a solution to imaging of body regions with significant amounts of fat.
Collapse
Affiliation(s)
- Beata Bachrata
- High Field MR Centre, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria,Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria
| | - Bernhard Strasser
- High Field MR Centre, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria,Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Wolfgang Bogner
- High Field MR Centre, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Albrecht Ingo Schmid
- High Field MR Centre, Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Radim Korinek
- Institute of Scientific Instruments of the CASBrnoCzech Republic
| | - Martin Krššák
- High Field MR Centre, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria,Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria,Department of Internal Medicine III, Division of Endocrinology and MetabolismMedical University of ViennaViennaAustria
| | - Siegfried Trattnig
- High Field MR Centre, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria,Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria
| | - Simon Daniel Robinson
- High Field MR Centre, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria,Centre of Advanced ImagingUniversity of QueenslandBrisbaneQLDAustralia,Department of NeurologyMedical University of GrazGrazAustria
| |
Collapse
|
4
|
Cui L, Xu F, Wu K, Li L, Qiao T, Li Z, Chen T, Sun C. Anticancer effects and possible mechanisms of lycopene intervention on N-methylbenzylnitrosamine induced esophageal cancer in F344 rats based on PPARγ 1. Eur J Pharmacol 2020; 881:173230. [PMID: 32553810 DOI: 10.1016/j.ejphar.2020.173230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022]
Abstract
Lycopene, a natural carotenoid, has potential chemopreventive effects in many cancers. This study aimed to examine the effects of lycopene on regulating the inflammation and apoptosis of N-nitrosomethylbenzylamine(NMBzA) induced esophageal cancer in F344 rats. After the rats were fed normal diets containing different concentrations of lycopene for 25 weeks (10, 25, 50 mg/kg·d of lycopene, respectively), the incidence of tumors in the rats treated with lycopene was significantly lower than that in the simple exposed group (P < 0.05). The antioxidant activity of lycopene was exerted by measuring the levels of GSH-PX, SOD and MDA activity by oxidative stress kits. Furthermore, through western blotting analysis lycopene intervention was found to have significantly improved apoptosis cytokines by increasing the protein expression levels of PPARγ and caspase-3, and also significantly reduced inflammatory cytokines by decreasing the protein expression of NF-κB and COX-2 in the esophagus tissue, especially in the 25 mg/kg of lycopene intervention group (all P < 0.05). These results demonstrated that appropriate dose of lycopene intervention could inhibit the carcinogenesis of esophageal in F344 rats through the possible mechanisms of anti-inflammatory and pro-apoptosis.
Collapse
Affiliation(s)
- Lingling Cui
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Fan Xu
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Kai Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Li Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Tianyi Qiao
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Zhonglei Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Tingting Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Changqing Sun
- Department of Social Medicine and Health Management, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
5
|
Development of Correction for Signal-to-Noise Ratio Using a T2* With Improved Phase Method. J Comput Assist Tomogr 2018; 42:117-123. [DOI: 10.1097/rct.0000000000000644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Fernandez B, Leuchs L, Sämann PG, Czisch M, Spoormaker VI. Multi-echo EPI of human fear conditioning reveals improved BOLD detection in ventromedial prefrontal cortex. Neuroimage 2017; 156:65-77. [PMID: 28483719 DOI: 10.1016/j.neuroimage.2017.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/24/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022] Open
Abstract
Standard T2* weighted functional magnetic resonance imaging (fMRI) performed with echo-planar imaging (EPI) suffers from signal loss in the ventromedial prefrontal cortex (vmPFC) due to macroscopic field inhomogeneity. However, this region is of special interest to affective neuroscience and psychiatry. The Multi-echo EPI (MEPI) approach has several advantages over EPI but its performance against EPI in the vmPFC has not yet been examined in a study with sufficient statistical power using a task specifically eliciting activity in this region. We used a fear conditioning task with MEPI to compare the performance of MEPI and EPI in vmPFC and control regions in 32 healthy young subjects. We analyzed activity associated with short (12ms), standard (29ms) and long (46ms) echo times, and a voxel-wise combination of these three echo times. Behavioral data revealed successful differentiation of the conditioned versus safety stimulus; activity in the vmPFC was shown by the contrast "safety stimulus > conditioned stimulus" as in previous research and proved significantly stronger with the combined MEPI than standard single-echo EPI. Then, we aimed to demonstrate that the additional cluster extent (ventral extension) detected in the vmPFC with MEPI reflects activation in a relevant cluster (i.e., not just non-neuronal noise). To do this, we used resting state data from the same subjects to show that the time-course of this region was both connected to bilateral amygdala and the default mode network. Overall, we demonstrate that MEPI (by means of the weighted sum combination approach) outperforms standard EPI in vmPFC; MEPI performs always at least as good as the best echo time for a given brain region but provides all necessary echo times for an optimal BOLD sensitivity for the whole brain. This is relevant for affective neuroscience and psychiatry given the critical role of the vmPFC in emotion regulation.
Collapse
Affiliation(s)
- Brice Fernandez
- Applications & Workflow, GE Healthcare, Oskar-Schlemmer-Str. 11, 80807 Munich, Germany.
| | - Laura Leuchs
- Neuroimaging Unit, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Philipp G Sämann
- Neuroimaging Unit, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Michael Czisch
- Neuroimaging Unit, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Victor I Spoormaker
- Neuroimaging Unit, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| |
Collapse
|
7
|
Schneider R, Boada F, Haueisen J, Pfeuffer J. Automated slice-specific simultaneous z-shim method for reducing B1 inhomogeneity and susceptibility-induced signal loss with parallel transmission at 3T. Magn Reson Med 2015; 74:934-44. [PMID: 25291423 PMCID: PMC4469625 DOI: 10.1002/mrm.25461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/02/2014] [Accepted: 08/25/2014] [Indexed: 11/07/2022]
Abstract
PURPOSE Through-plane susceptibility-induced signal loss in gradient recalled echo (GRE)-based sequences can considerably impair both the clinical diagnosis and functional analysis of certain brain areas. In this work, a fully automated simultaneous z-shim approach is proposed on the basis of parallel transmit (pTX) to reduce those signal dropouts at 3T. THEORY AND METHODS The approach uses coil-specific time-delayed excitations to impose a z-shim phase. It was extended toward B1 inhomogeneity mitigation and adequate slice-specific signal-dephasing cancellation on the basis of the prevailing B0 and B1 spatial information. Local signal recovery level and image quality preservation were analyzed using multi-slice FLASH experiments in humans and compared to the standard excitation. Spatial blood-oxygen-level-dependent (BOLD) activation coverage was further compared in breath-hold functional MRI. RESULTS The pTX z-shim approach recovered approximately 47% of brain areas affected by signal loss in standard excitation images across all subjects. At the same time, B1 shading effects could be substantially reduced. In these areas, BOLD activation coverage could be also increased by approximately 57%. CONCLUSION The proposed fully automated pTX z-shim method enables time-efficient and robust signal recovery in GRE-based sequences on a clinical scanner using two standard whole-body transmit coils.
Collapse
Affiliation(s)
- Rainer Schneider
- MR Application Development, Siemens Healthcare, Erlangen, Germany
- Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, Ilmenau, Germany
| | - Fernando Boada
- New York University Medical Center, Center for Advanced Imaging Innovation and Research, New York, New York, USA
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, Ilmenau, Germany
| | - Josef Pfeuffer
- MR Application Development, Siemens Healthcare, Erlangen, Germany
| |
Collapse
|
8
|
Anderson RJ, Poser BA, Stenger VA. Simultaneous multislice spectral-spatial excitations for reduced signal loss susceptibility artifact in BOLD functional MRI. Magn Reson Med 2014; 72:1342-52. [PMID: 24338863 PMCID: PMC4058096 DOI: 10.1002/mrm.25050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 11/08/2022]
Abstract
PURPOSE Simultaneous multislice (SMS) imaging can significantly increase image acquisition rates and improve temporal resolution and contrast in gradient-echo blood oxygen level-dependent (BOLD) functional MRI (fMRI) experiments. Through-plane signal loss due to B(0) inhomogeneities at air-tissue interfaces limits fMRI of structures near the nasal cavity and ear canals. This study implemented spectral-spatial (SPSP) radiofrequency pulses for reduced through-plane signal loss across multiple simultaneously excited slices. THEORY AND METHODS Multiband (MB) and power independent of number of slices (PINS) methods are combined with SPSP excitation for signal loss compensation in slice-accelerated human brain imaging. Nine simultaneous slices of 5-mm thickness and 20 mm apart were excited using standard MB radiofrequency pulses and the proposed SPSP-SMS pulses, yielding coverage of 36 slices in four shots with 350-ms volume pulse repetition time. The pulses were compared in breath-hold fMRI at 3T. RESULTS The SPSP-SMS pulses recovered ∼45% of voxels with signal loss in standard SMS images. Activation in areas of signal recovery increased by 26.4% using a 12.6-ms SPSP-MB pulse and 20.3% using a 12.1-ms SPSP-PINS pulse. CONCLUSIONS It is demonstrated that SPSP-SMS pulses can improve BOLD sensitivity in areas of signal loss across simultaneous multiple slices.
Collapse
Affiliation(s)
- Robert J. Anderson
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Benedikt A. Poser
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - V. Andrew Stenger
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
9
|
Uwano I, Kudo K, Yamashita F, Goodwin J, Higuchi S, Ito K, Harada T, Ogawa A, Sasaki M. Intensity inhomogeneity correction for magnetic resonance imaging of human brain at 7T. Med Phys 2014; 41:022302. [DOI: 10.1118/1.4860954] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
10
|
Yang C, Poser B, Deng W, Stenger VA. Spectral decomposition of susceptibility artifacts for spectral-spatial radiofrequency pulse design. Magn Reson Med 2012; 68:1905-10. [PMID: 22334396 PMCID: PMC3355209 DOI: 10.1002/mrm.24208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/14/2011] [Accepted: 01/19/2012] [Indexed: 11/08/2022]
Abstract
Susceptibility induced signal loss is a limitation in gradient echo functional MRI. The through-plane artifact in axial slices is particularly problematic due to the inferior position of air cavities in the brain. Spectral-spatial radiofrequency pulses have recently been shown to reduce signal loss in a single excitation. The pulses were successfully demonstrated assuming a linear relationship between susceptibility gradient and frequency, however, the exact frequency and spatial distribution of the susceptibility gradient in the brain is unknown. We present a spiral spectroscopic imaging sequence with a time-shifted radiofrequency pulse that can spectrally decompose the through-plane susceptibility gradient for spectral-spatial radiofrequency pulse design. Maps of the through-plane susceptibility gradient as a function of frequency were generated for the human brain at 3T. We found that the linear relationship holds well for the whole brain with an optimal slope of -1.0 μT/m/Hz.
Collapse
Affiliation(s)
- Cungeng Yang
- Department of Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii
| | - Benedikt Poser
- Department of Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii
| | - Weiran Deng
- Department of Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii
| | - V. Andrew Stenger
- Department of Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii
| |
Collapse
|
11
|
YOON DAEHYUN, FESSLER JEFFREYA, GILBERT ANNAC, NOLL DOUGLASC. Fast joint design method for parallel excitation radiofrequency pulse and gradient waveforms considering off-resonance. Magn Reson Med 2012; 68:278-85. [PMID: 22555857 PMCID: PMC3939078 DOI: 10.1002/mrm.24311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/28/2012] [Accepted: 04/03/2012] [Indexed: 11/06/2022]
Abstract
A fast parallel excitation pulse design algorithm to select and to order phase-encoding (PE) locations (also known as "spokes") of an Echo-Volumar excitation k-space trajectory considering B(0) field inhomogeneity is presented. Recently, other groups have conducted research to choose optimal PE locations, but the potential benefit of considering B(0) field inhomogeneity during PE location selection or their ordering has not been fully investigated. This article introduces a novel fast greedy algorithm to determine PE locations and their order that takes into account the off-resonance effects. Computer simulations of the proposed algorithm for B(1) field inhomogeneity correction demonstrate that it not only improves excitation accuracy but also provides an effective ordering of the PE locations.
Collapse
Affiliation(s)
- DAEHYUN YOON
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - JEFFREY A. FESSLER
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - ANNA C. GILBERT
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| | - DOUGLAS C. NOLL
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Johnson JE, McIff TE, Lee P, Toby EB, Fischer KJ. Validation of radiocarpal joint contact models based on images from a clinical MRI scanner. Comput Methods Biomech Biomed Engin 2012; 17:378-87. [PMID: 22631873 DOI: 10.1080/10255842.2012.684446] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This study was undertaken to assess magnetic resonance imaging (MRI)-based radiocarpal surface contact models of functional loading in a clinical MRI scanner for future in vivo studies, by comparison with experimental measures from three cadaver forearm specimens. Experimental data were acquired using a Tekscan sensor during simulated light grasp. Magnetic resonance (MR) images were used to obtain model geometry and kinematics (image registration). Peak contact pressures (PPs) and average contact pressures (APs), contact forces and contact areas were determined in the radiolunate and radioscaphoid joints. Contact area was also measured directly from MR images acquired with load and compared with model data. Based on the validation criteria (within 25% of experimental data), out of the six articulations (three specimens with two articulations each), two met the criterion for AP (0%, 14%); one for peak pressure (20%); one for contact force (5%); four for contact area with respect to experiment (8%, 13%, 19% and 23%), and three contact areas met the criterion with respect to direct measurements (14%, 21% and 21%). Absolute differences between model and experimental PPs were reasonably low (within 2.5 MPa). Overall, the results indicate that MRI-based models generated from 3T clinical MR scanner appear sufficient to obtain clinically relevant data.
Collapse
Affiliation(s)
- Joshua E Johnson
- a Department of Mechanical Engineering , University of Kansas , 1530 W. 15th Street, 3138 Learned Hall, Lawrence , KS 66045 , USA
| | | | | | | | | |
Collapse
|
13
|
Wu B, Li W, Avram AV, Gho SM, Liu C. Fast and tissue-optimized mapping of magnetic susceptibility and T2* with multi-echo and multi-shot spirals. Neuroimage 2011; 59:297-305. [PMID: 21784162 DOI: 10.1016/j.neuroimage.2011.07.019] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/08/2011] [Accepted: 07/07/2011] [Indexed: 10/17/2022] Open
Abstract
Gradient-echo MRI of resonance-frequency shift and T2* values exhibit unique tissue contrast and offer relevant physiological information. However, acquiring 3D-phase images and T2* maps with the standard spoiled gradient echo (SPGR) sequence is lengthy for routine imaging at high-spatial resolution and whole-brain coverage. In addition, with the standard SPGR sequence, optimal signal-to-noise ratio (SNR) cannot be achieved for every tissue type given their distributed resonance frequency and T2* value. To address these two issues, a SNR optimized multi-echo sequence with a stack-of-spiral acquisition is proposed and implemented for achieving fast and simultaneous acquisition of image phase and T2* maps. The analytical behavior of the phase SNR is derived as a function of resonance frequency, T2* and echo time. This relationship is utilized to achieve tissue optimized SNR by combining phase images with different echo times. Simulations and in vivo experiments were designed to verify the theoretical predictions. Using the multi-echo spiral acquisition, whole-brain coverage with 1 mm isotropic resolution can be achieved within 2.5 min, shortening the scan time by a factor of 8. The resulting multi-echo phase map shows similar SNR to that of the standard SPGR. The acquisition can be further accelerated with non-Cartesian parallel imaging. The technique can be readily extended to other multi-shot readout trajectories besides spiral. It may provide a practical acquisition strategy for high resolution and simultaneous 3D mapping of magnetic susceptibility and T2*.
Collapse
Affiliation(s)
- Bing Wu
- Brain Imaging and Analysis Center, Duke University, Durham NC 27705, USA
| | | | | | | | | |
Collapse
|