1
|
Romanin L, Prsa M, Roy CW, Sieber X, Yerly J, Milani B, Rutz T, Si-Mohamed S, Tenisch E, Piccini D, Stuber M. Exploring the limits of scan time reduction for ferumoxytol-enhanced whole-heart angiography in congenital heart disease patients. J Cardiovasc Magn Reson 2025; 27:101854. [PMID: 39920923 PMCID: PMC11889962 DOI: 10.1016/j.jocmr.2025.101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/24/2024] [Accepted: 02/04/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND One major challenge in cardiovascular magnetic resonance is reducing scan times to be more compatible with clinical workflows. In 3D magnetic resonance imaging (MRI), strategies to shorten scan times mostly rely on ECG-triggering or self-navigation for motion management, but are affected by heart rate variabilities or respiratory drifts. A similarity-driven multi-dimensional binning algorithm (SIMBA) was introduced for 3D whole-heart angiography from ferumoxytol-enhanced free-running MRI. This study explores acceleration limits using SIMBA, and its compressed-sensing extension extra-dimensional motion-compensation (XD-MC)-SIMBA, while preserving image quality. METHODS Data from 6-min free-running acquisitions of 30 congenital heart disease (CHD) patients were retrospectively undersampled to simulate 5-, 4-, 3-, 2-, and 1-min datasets. SIMBA and XD-MC-SIMBA reconstructions were applied. and the consistency of the data selection together with sharpness metrics were computed as a function of undersampling. Image quality was rated on a 5-point Likert scale. Shorter 3-minute acquisitions were prospectively acquired in nine CHD patients. RESULTS SIMBA's motion state selection was consistent across undersampling levels, with only 2 of 30 cases showing completely different selections. Image quality metrics decreased with increased undersampling, with SIMBA scoring lower compared to XD-MC-SIMBA. The diagnostic quality was good, with lower scores for 2- and 1-min datasets. Using XD-MC-SIMBA, 43% (31/72) of cases showed improved scores compared to SIMBA and 58% (7/12) of 1-min datasets improved to good or excellent quality. CONCLUSIONS This study demonstrates that ferumoxytol-enhanced free-running MRI can be highly accelerated for 3D angiography in CHD.With the aid of compressed sensing, XD-MC-SIMBA supports the acceleration down to 3 minutes or less.
Collapse
Affiliation(s)
- Ludovica Romanin
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
| | - Milan Prsa
- Division of Pediatric Cardiology, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christopher W Roy
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Xavier Sieber
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Bastien Milani
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tobias Rutz
- Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Salim Si-Mohamed
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; University Lyon, INSA-Lyon, University Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, Villeurbanne, France; Department of Radiology, Louis Pradel Hospital, Bron, France
| | - Estelle Tenisch
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Davide Piccini
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
| | - Matthias Stuber
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.
| |
Collapse
|
2
|
Phair A, Fotaki A, Felsner L, Fletcher TJ, Qi H, Botnar RM, Prieto C. A motion-corrected deep-learning reconstruction framework for accelerating whole-heart magnetic resonance imaging in patients with congenital heart disease. J Cardiovasc Magn Reson 2024; 26:101039. [PMID: 38521391 PMCID: PMC10993190 DOI: 10.1016/j.jocmr.2024.101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) is an important imaging modality for the assessment and management of adult patients with congenital heart disease (CHD). However, conventional techniques for three-dimensional (3D) whole-heart acquisition involve long and unpredictable scan times and methods that accelerate scans via k-space undersampling often rely on long iterative reconstructions. Deep-learning-based reconstruction methods have recently attracted much interest due to their capacity to provide fast reconstructions while often outperforming existing state-of-the-art methods. In this study, we sought to adapt and validate a non-rigid motion-corrected model-based deep learning (MoCo-MoDL) reconstruction framework for 3D whole-heart MRI in a CHD patient cohort. METHODS The previously proposed deep-learning reconstruction framework MoCo-MoDL, which incorporates a non-rigid motion-estimation network and a denoising regularization network within an unrolled iterative reconstruction, was trained in an end-to-end manner using 39 CHD patient datasets. Once trained, the framework was evaluated in eight CHD patient datasets acquired with seven-fold prospective undersampling. Reconstruction quality was compared with the state-of-the-art non-rigid motion-corrected patch-based low-rank reconstruction method (NR-PROST) and against reference images (acquired with three-or-four-fold undersampling and reconstructed with NR-PROST). RESULTS Seven-fold undersampled scan times were 2.1 ± 0.3 minutes and reconstruction times were ∼30 seconds, approximately 240 times faster than an NR-PROST reconstruction. Image quality comparable to the reference images was achieved using the proposed MoCo-MoDL framework, with no statistically significant differences found in any of the assessed quantitative or qualitative image quality measures. Additionally, expert image quality scores indicated the MoCo-MoDL reconstructions were consistently of a higher quality than the NR-PROST reconstructions of the same data, with the differences in 12 of the 22 scores measured for individual vascular structures found to be statistically significant. CONCLUSION The MoCo-MoDL framework was applied to an adult CHD patient cohort, achieving good quality 3D whole-heart images from ∼2-minute scans with reconstruction times of ∼30 seconds.
Collapse
Affiliation(s)
- Andrew Phair
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Anastasia Fotaki
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Lina Felsner
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Thomas J Fletcher
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Haikun Qi
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, China
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Instituto de Ingeniería Biológica y Médica, Pontificia Universidad Católica de Chile, Santiago, Chile; Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile; Technical University of Munich, Institute of Advanced Study, Munich, Germany
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile.
| |
Collapse
|
3
|
Razumov A, Rogov O, Dylov DV. Optimal MRI undersampling patterns for ultimate benefit of medical vision tasks. Magn Reson Imaging 2023; 103:37-47. [PMID: 37423471 DOI: 10.1016/j.mri.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Compressed sensing is commonly concerned with optimizing the image quality after a partial undersampling of the measurable k-space to accelerate MRI. In this article, we propose to change the focus from the quality of the reconstructed image to the quality of the downstream image analysis outcome. Specifically, we propose to optimize the patterns according to how well a sought-after pathology could be detected or localized in the reconstructed images. We find the optimal undersampling patterns in k-space that maximize target value functions of interest in commonplace medical vision problems (reconstruction, segmentation, and classification) and propose a new iterative gradient sampling routine universally suitable for these tasks. We validate the proposed MRI acceleration paradigm on three classical medical datasets, demonstrating a noticeable improvement of the target metrics at the high acceleration factors (for the segmentation problem at ×16 acceleration, we report up to 12% improvement in Dice score over the other undersampling patterns).
Collapse
Affiliation(s)
- Artem Razumov
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Oleg Rogov
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Dmitry V Dylov
- Skolkovo Institute of Science and Technology, Moscow, Russia.
| |
Collapse
|
4
|
Pramanik A, Bhave S, Sajib S, Sharma SD, Jacob M. Adapting model-based deep learning to multiple acquisition conditions: Ada-MoDL. Magn Reson Med 2023; 90:2033-2051. [PMID: 37332189 PMCID: PMC10524947 DOI: 10.1002/mrm.29750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
PURPOSE The aim of this work is to introduce a single model-based deep network that can provide high-quality reconstructions from undersampled parallel MRI data acquired with multiple sequences, acquisition settings, and field strengths. METHODS A single unrolled architecture, which offers good reconstructions for multiple acquisition settings, is introduced. The proposed scheme adapts the model to each setting by scaling the convolutional neural network (CNN) features and the regularization parameter with appropriate weights. The scaling weights and regularization parameter are derived using a multilayer perceptron model from conditional vectors, which represents the specific acquisition setting. The perceptron parameters and the CNN weights are jointly trained using data from multiple acquisition settings, including differences in field strengths, acceleration, and contrasts. The conditional network is validated using datasets acquired with different acquisition settings. RESULTS The comparison of the adaptive framework, which trains a single model using the data from all the settings, shows that it can offer consistently improved performance for each acquisition condition. The comparison of the proposed scheme with networks that are trained independently for each acquisition setting shows that it requires less training data per acquisition setting to offer good performance. CONCLUSION The Ada-MoDL framework enables the use of a single model-based unrolled network for multiple acquisition settings. In addition to eliminating the need to train and store multiple networks for different acquisition settings, this approach reduces the training data needed for each acquisition setting.
Collapse
Affiliation(s)
- Aniket Pramanik
- Department of Electrical and Computer Engineering, University of Iowa, Iowa, USA
| | - Sampada Bhave
- Canon Medical Research USA, Inc., Mayfield Village, Ohio, USA
| | - Saurav Sajib
- Canon Medical Research USA, Inc., Mayfield Village, Ohio, USA
| | - Samir D. Sharma
- Canon Medical Research USA, Inc., Mayfield Village, Ohio, USA
| | - Mathews Jacob
- Department of Electrical and Computer Engineering, University of Iowa, Iowa, USA
| |
Collapse
|
5
|
Wood G, Pedersen AU, Kunze KP, Neji R, Hajhosseiny R, Wetzl J, Yoon SS, Schmidt M, Nørgaard BL, Prieto C, Botnar RM, Kim WY. Automated detection of cardiac rest period for trigger delay calculation for image-based navigator coronary magnetic resonance angiography. J Cardiovasc Magn Reson 2023; 25:52. [PMID: 37779192 PMCID: PMC10544388 DOI: 10.1186/s12968-023-00962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Coronary magnetic resonance angiography (coronary MRA) is increasingly being considered as a clinically viable method to investigate coronary artery disease (CAD). Accurate determination of the trigger delay to place the acquisition window within the quiescent part of the cardiac cycle is critical for coronary MRA in order to reduce cardiac motion. This is currently reliant on operator-led decision making, which can negatively affect consistency of scan acquisition. Recently developed deep learning (DL) derived software may overcome these issues by automation of cardiac rest period detection. METHODS Thirty individuals (female, n = 10) were investigated using a 0.9 mm isotropic image-navigator (iNAV)-based motion-corrected coronary MRA sequence. Each individual was scanned three times utilising different strategies for determination of the optimal trigger delay: (1) the DL software, (2) an experienced operator decision, and (3) a previously utilised formula for determining the trigger delay. Methodologies were compared using custom-made analysis software to assess visible coronary vessel length and coronary vessel sharpness for the entire vessel length and the first 4 cm of each vessel. RESULTS There was no difference in image quality between any of the methodologies for determination of the optimal trigger delay, as assessed by visible coronary vessel length, coronary vessel sharpness for each entire vessel and vessel sharpness for the first 4 cm of the left mainstem, left anterior descending or right coronary arteries. However, vessel length of the left circumflex was slightly greater using the formula method. The time taken to calculate the trigger delay was significantly lower for the DL-method as compared to the operator-led approach (106 ± 38.0 s vs 168 ± 39.2 s, p < 0.01, 95% CI of difference 25.5-98.1 s). CONCLUSIONS Deep learning-derived automated software can effectively and efficiently determine the optimal trigger delay for acquisition of coronary MRA and thus may simplify workflow and improve reproducibility.
Collapse
Affiliation(s)
- Gregory Wood
- Department of Cardiology, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Alexandra Uglebjerg Pedersen
- Department of Cardiology, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karl P Kunze
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Radhouene Neji
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jens Wetzl
- Cardiovascular MR Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Seung Su Yoon
- Cardiovascular MR Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Michaela Schmidt
- Cardiovascular MR Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Bjarne Linde Nørgaard
- Department of Cardiology, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millenium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ingeniería Biológica y Médica, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
- Millenium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - Won Yong Kim
- Department of Cardiology, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Munoz C, Fotaki A, Botnar RM, Prieto C. Latest Advances in Image Acceleration: All Dimensions are Fair Game. J Magn Reson Imaging 2023; 57:387-402. [PMID: 36205716 PMCID: PMC10092100 DOI: 10.1002/jmri.28462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 01/20/2023] Open
Abstract
Magnetic resonance imaging (MRI) is a versatile modality that can generate high-resolution images with a variety of tissue contrasts. However, MRI is a slow technique and requires long acquisition times, which increase with higher temporal and spatial resolution and/or when multiple contrasts and large volumetric coverage is required. In order to speedup MR data acquisition, several approaches have been introduced in the literature. Most of these techniques acquire less data than required and exploit intrinsic redundancies in the MR images to recover the information that was not sampled. This article presents a review of MR acquisition and reconstruction methods that have exploited redundancies in the temporal, spatial, and contrast/parametric dimensions to accelerate image data acquisition, focusing on cardiac and abdominal MR imaging applications. The review describes how each of these dimensions has been separately exploited for speeding up MR acquisition to then discuss more advanced techniques where multiple dimensions are exploited together for further reducing scan times. Finally, future directions for multidimensional image acceleration and remaining technical challenges are discussed. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: 1.
Collapse
Affiliation(s)
- Camila Munoz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Anastasia Fotaki
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millenium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millenium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago, Chile
| |
Collapse
|
7
|
Yaman B, Gu H, Hosseini SAH, Demirel OB, Moeller S, Ellermann J, Uğurbil K, Akçakaya M. Multi-mask self-supervised learning for physics-guided neural networks in highly accelerated magnetic resonance imaging. NMR IN BIOMEDICINE 2022; 35:e4798. [PMID: 35789133 PMCID: PMC9669191 DOI: 10.1002/nbm.4798] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Self-supervised learning has shown great promise because of its ability to train deep learning (DL) magnetic resonance imaging (MRI) reconstruction methods without fully sampled data. Current self-supervised learning methods for physics-guided reconstruction networks split acquired undersampled data into two disjoint sets, where one is used for data consistency (DC) in the unrolled network, while the other is used to define the training loss. In this study, we propose an improved self-supervised learning strategy that more efficiently uses the acquired data to train a physics-guided reconstruction network without a database of fully sampled data. The proposed multi-mask self-supervised learning via data undersampling (SSDU) applies a holdout masking operation on the acquired measurements to split them into multiple pairs of disjoint sets for each training sample, while using one of these pairs for DC units and the other for defining loss, thereby more efficiently using the undersampled data. Multi-mask SSDU is applied on fully sampled 3D knee and prospectively undersampled 3D brain MRI datasets, for various acceleration rates and patterns, and compared with the parallel imaging method, CG-SENSE, and single-mask SSDU DL-MRI, as well as supervised DL-MRI when fully sampled data are available. The results on knee MRI show that the proposed multi-mask SSDU outperforms SSDU and performs as well as supervised DL-MRI. A clinical reader study further ranks the multi-mask SSDU higher than supervised DL-MRI in terms of signal-to-noise ratio and aliasing artifacts. Results on brain MRI show that multi-mask SSDU achieves better reconstruction quality compared with SSDU. The reader study demonstrates that multi-mask SSDU at R = 8 significantly improves reconstruction compared with single-mask SSDU at R = 8, as well as CG-SENSE at R = 2.
Collapse
Affiliation(s)
- Burhaneddin Yaman
- Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Hongyi Gu
- Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Seyed Amir Hossein Hosseini
- Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Omer Burak Demirel
- Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Steen Moeller
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Jutta Ellermann
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Kâmil Uğurbil
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Mehmet Akçakaya
- Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
8
|
Eyre K, Lindsay K, Razzaq S, Chetrit M, Friedrich M. Simultaneous multi-parametric acquisition and reconstruction techniques in cardiac magnetic resonance imaging: Basic concepts and status of clinical development. Front Cardiovasc Med 2022; 9:953823. [PMID: 36277755 PMCID: PMC9582154 DOI: 10.3389/fcvm.2022.953823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Simultaneous multi-parametric acquisition and reconstruction techniques (SMART) are gaining attention for their potential to overcome some of cardiovascular magnetic resonance imaging's (CMR) clinical limitations. The major advantages of SMART lie within their ability to simultaneously capture multiple "features" such as cardiac motion, respiratory motion, T1/T2 relaxation. This review aims to summarize the overarching theory of SMART, describing key concepts that many of these techniques share to produce co-registered, high quality CMR images in less time and with less requirements for specialized personnel. Further, this review provides an overview of the recent developments in the field of SMART by describing how they work, the parameters they can acquire, their status of clinical testing and validation, and by providing examples for how their use can improve the current state of clinical CMR workflows. Many of the SMART are in early phases of development and testing, thus larger scale, controlled trials are needed to evaluate their use in clinical setting and with different cardiac pathologies.
Collapse
Affiliation(s)
- Katerina Eyre
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada,*Correspondence: Katerina Eyre,
| | - Katherine Lindsay
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Saad Razzaq
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Michael Chetrit
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Matthias Friedrich
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Sridi S, Nuñez-Garcia M, Sermesant M, Maillot A, Hamrani DE, Magat J, Naulin J, Laurent F, Montaudon M, Jaïs P, Stuber M, Cochet H, Bustin A. Improved myocardial scar visualization with fast free-breathing motion-compensated black-blood T 1-rho-prepared late gadolinium enhancement MRI. Diagn Interv Imaging 2022; 103:607-617. [PMID: 35961843 DOI: 10.1016/j.diii.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Clinical guidelines recommend the use of bright-blood late gadolinium enhancement (BR-LGE) for the detection and quantification of regional myocardial fibrosis and scar. This technique, however, may suffer from poor contrast at the blood-scar interface, particularly in patients with subendocardial myocardial infarction. The purpose of this study was to assess the clinical performance of a two-dimensional black-blood LGE (BL-LGE) sequence, which combines free-breathing T1-rho-prepared single-shot acquisitions with an advanced non-rigid motion-compensated patch-based reconstruction. MATERIALS AND METHODS Extended phase graph simulations and phantom experiments were performed to investigate the performance of the motion-correction algorithm and to assess the black-blood properties of the proposed sequence. Fifty-one patients (37 men, 14 women; mean age, 55 ± 15 [SD] years; age range: 19-81 years) with known or suspected cardiac disease prospectively underwent free-breathing T1-rho-prepared BL-LGE imaging with inline non-rigid motion-compensated patch-based reconstruction at 1.5T. Conventional breath-held BR-LGE images were acquired for comparison purposes. Acquisition times were recorded. Two readers graded the image quality and relative contrasts were calculated. Presence, location, and extent of LGE were evaluated. RESULTS BL-LGE images were acquired with full ventricular coverage in 115 ± 25 (SD) sec (range: 64-160 sec). Image quality was significantly higher on free-breathing BL-LGE imaging than on its breath-held BR-LGE counterpart (3.6 ± 0.7 [SD] [range: 2-4] vs. 3.9 ± 0.2 [SD] [range: 3-4]) (P <0.01) and was graded as diagnostic for 44/51 (86%) patients. The mean scar-to-myocardium and scar-to-blood relative contrasts were significantly higher on BL-LGE images (P < 0.01 for both). The extent of LGE was larger on BL-LGE (median, 5 segments [IQR: 2, 7 segments] vs. median, 4 segments [IQR: 1, 6 segments]) (P < 0.01), the method being particularly sensitive in segments with LGE involving the subendocardium or papillary muscles. In eight patients (16%), BL-LGE could ascertain or rule out a diagnosis otherwise inconclusive on BR-LGE. CONCLUSION Free-breathing T1-rho-prepared BL-LGE imaging with inline motion compensated reconstruction offers a promising diagnostic technology for the non-invasive assessment of myocardial injuries.
Collapse
Affiliation(s)
- Soumaya Sridi
- Department of Cardiovascular Imaging, Groupe Hospitalier Sud, CHU Bordeaux, 33000, Pessac, France.
| | - Marta Nuñez-Garcia
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM U1045, 33600, Pessac, France
| | - Maxime Sermesant
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM U1045, 33600, Pessac, France; INRIA, Université Côte d'Azur, Sophia Antipolis, 06902, Valbonne, France
| | - Aurélien Maillot
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM U1045, 33600, Pessac, France
| | - Dounia El Hamrani
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM U1045, 33600, Pessac, France
| | - Julie Magat
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM U1045, 33600, Pessac, France
| | - Jérôme Naulin
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM U1045, 33600, Pessac, France
| | - François Laurent
- Department of Cardiovascular Imaging, Groupe Hospitalier Sud, CHU Bordeaux, 33000, Pessac, France
| | - Michel Montaudon
- Department of Cardiovascular Imaging, Groupe Hospitalier Sud, CHU Bordeaux, 33000, Pessac, France
| | - Pierre Jaïs
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM U1045, 33600, Pessac, France; Department of Cardiac Electrophysiologhy, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, 33600, Pessac, France
| | - Matthias Stuber
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM U1045, 33600, Pessac, France; Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), 1015, Lausanne, Switzerland
| | - Hubert Cochet
- Department of Cardiovascular Imaging, Groupe Hospitalier Sud, CHU Bordeaux, 33000, Pessac, France; IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM U1045, 33600, Pessac, France
| | - Aurélien Bustin
- Department of Cardiovascular Imaging, Groupe Hospitalier Sud, CHU Bordeaux, 33000, Pessac, France; IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM U1045, 33600, Pessac, France; Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| |
Collapse
|
10
|
Androulakis E, Mohiaddin R, Bratis K. Magnetic resonance coronary angiography in the era of multimodality imaging. Clin Radiol 2022; 77:e489-e499. [DOI: 10.1016/j.crad.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
|
11
|
Küstner T, Munoz C, Psenicny A, Bustin A, Fuin N, Qi H, Neji R, Kunze K, Hajhosseiny R, Prieto C, Botnar R. Deep-learning based super-resolution for 3D isotropic coronary MR angiography in less than a minute. Magn Reson Med 2021; 86:2837-2852. [PMID: 34240753 DOI: 10.1002/mrm.28911] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 01/21/2023]
Abstract
PURPOSE To develop and evaluate a novel and generalizable super-resolution (SR) deep-learning framework for motion-compensated isotropic 3D coronary MR angiography (CMRA), which allows free-breathing acquisitions in less than a minute. METHODS Undersampled motion-corrected reconstructions have enabled free-breathing isotropic 3D CMRA in ~5-10 min acquisition times. In this work, we propose a deep-learning-based SR framework, combined with non-rigid respiratory motion compensation, to shorten the acquisition time to less than 1 min. A generative adversarial network (GAN) is proposed consisting of two cascaded Enhanced Deep Residual Network generator, a trainable discriminator, and a perceptual loss network. A 16-fold increase in spatial resolution is achieved by reconstructing a high-resolution (HR) isotropic CMRA (0.9 mm3 or 1.2 mm3 ) from a low-resolution (LR) anisotropic CMRA (0.9 × 3.6 × 3.6 mm3 or 1.2 × 4.8 × 4.8 mm3 ). The impact and generalization of the proposed SRGAN approach to different input resolutions and operation on image and patch-level is investigated. SRGAN was evaluated on a retrospective downsampled cohort of 50 patients and on 16 prospective patients that were scanned with LR-CMRA in ~50 s under free-breathing. Vessel sharpness and length of the coronary arteries from the SR-CMRA is compared against the HR-CMRA. RESULTS SR-CMRA showed statistically significant (P < .001) improved vessel sharpness 34.1% ± 12.3% and length 41.5% ± 8.1% compared with LR-CMRA. Good generalization to input resolution and image/patch-level processing was found. SR-CMRA enabled recovery of coronary stenosis similar to HR-CMRA with comparable qualitative performance. CONCLUSION The proposed SR-CMRA provides a 16-fold increase in spatial resolution with comparable image quality to HR-CMRA while reducing the predictable scan time to <1 min.
Collapse
Affiliation(s)
- Thomas Küstner
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
- Medical Image and Data Analysis, Department of Interventional and Diagnostic Radiology, University Hospital of Tübingen, Tübingen, Germany
| | - Camila Munoz
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Alina Psenicny
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Aurelien Bustin
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
- Centre de recherche Cardio-Thoracique de Bordeaux, IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, Bordeaux, France
| | - Niccolo Fuin
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Haikun Qi
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Karl Kunze
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - René Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
12
|
Hajhosseiny R, Munoz C, Cruz G, Khamis R, Kim WY, Prieto C, Botnar RM. Coronary Magnetic Resonance Angiography in Chronic Coronary Syndromes. Front Cardiovasc Med 2021; 8:682924. [PMID: 34485397 PMCID: PMC8416045 DOI: 10.3389/fcvm.2021.682924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/23/2021] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide, with atherosclerotic coronary artery disease (CAD) accounting for the majority of cases. X-ray coronary angiography and computed tomography coronary angiography (CCTA) are the imaging modalities of choice for the assessment of CAD. However, the use of ionising radiation and iodinated contrast agents remain drawbacks. There is therefore a clinical need for an alternative modality for the early identification and longitudinal monitoring of CAD without these associated drawbacks. Coronary magnetic resonance angiography (CMRA) could be a potential alternative for the detection and monitoring of coronary arterial stenosis, without exposing patients to ionising radiation or iodinated contrast agents. Further advantages include its versatility, excellent soft tissue characterisation and suitability for repeat imaging. Despite the early promise of CMRA, widespread clinical utilisation remains limited due to long and unpredictable scan times, onerous scan planning, lower spatial resolution, as well as motion related image quality degradation. The past decade has brought about a resurgence in CMRA technology, with significant leaps in image acceleration, respiratory and cardiac motion estimation and advanced motion corrected or motion-resolved image reconstruction. With the advent of artificial intelligence, great advances are also seen in deep learning-based motion estimation, undersampled and super-resolution reconstruction promising further improvements of CMRA. This has enabled high spatial resolution (1 mm isotropic), 3D whole heart CMRA in a clinically feasible and reliable acquisition time of under 10 min. Furthermore, latest super-resolution image reconstruction approaches which are currently under evaluation promise acquisitions as short as 1 min. In this review, we will explore the recent technological advances that are designed to bring CMRA closer to clinical reality.
Collapse
Affiliation(s)
- Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Camila Munoz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Gastao Cruz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Ramzi Khamis
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Won Yong Kim
- Department of Cardiology and Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Denmark
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Escuela de Ingeniería, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - René M. Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Escuela de Ingeniería, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Instituto de Ingeniería Biologica y Medica, Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Liu J, Jin S, Li Q, Zhang K, Yu J, Mo Y, Bian Z, Gao Y, Zhang H. Motion compensation combining with local low rank regularization for low dose dynamic CT myocardial perfusion reconstruction. Phys Med Biol 2021; 66. [PMID: 34181588 DOI: 10.1088/1361-6560/ac0f2f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/28/2021] [Indexed: 11/11/2022]
Abstract
Dynamic CT myocardial perfusion imaging (DCT-MPI) is a reliable examination tool for the assessment of myocardium and vascular, while its special scan protocol may result in excessive radiation exposure to patients and inevitable inter-frame motion. Lowering the tube current is a simple way to reduce radiation exposure. However, low mAs will certainly cause severe image noise, thus may further impact the accuracy of functional hemodynamic parameters, which are used for the assessment of blood supply. In this work, we present a novel scheme applying motion compensation and local low rank regularization (MC-LLR) for obtaining high quality motion compensated DCT-MPI images. Specifically, motion compensation by using robust data decomposition registration (RDDR) was introduced. Robust principal component analysis coupled with optical flow-based registration algorithm were used in RDDR. Then, the local low rank constraint on the motion compensated time series images was applied for the DCT-MPI reconstruction. One healthy mini pig and two patient datasets were used to evaluate the proposed MC-LLR algorithm. Results show that the present method achieved satisfactory image quality with higher CNRs, smaller rRMSEs, and more accurate hemodynamic parameter maps.
Collapse
Affiliation(s)
- Jia Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, People's Republic of China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, People's Republic of China
| | - Shuang Jin
- School of Biomedical Engineering, Southern Medical University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, People's Republic of China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, People's Republic of China
| | - Qian Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, People's Republic of China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, People's Republic of China
| | - Kunpeng Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, People's Republic of China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, People's Republic of China
| | - Jiahong Yu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, People's Republic of China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, People's Republic of China
| | - Ying Mo
- School of Biomedical Engineering, Southern Medical University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, People's Republic of China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, People's Republic of China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, People's Republic of China
| | - Yang Gao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, People's Republic of China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, People's Republic of China
| | - Hua Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, People's Republic of China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
14
|
Fok WYR, Chan YCI, Romanowicz J, Jang J, Powell AJ, Moghari MH. Accelerated free-breathing 3D whole-heart magnetic resonance angiography with a radial phyllotaxis trajectory, compressed sensing, and curvelet transform. Magn Reson Imaging 2021; 83:57-67. [PMID: 34147592 DOI: 10.1016/j.mri.2021.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/22/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To develop and validate an accelerated free-breathing 3D whole-heart magnetic resonance angiography (MRA) technique using a radial k-space trajectory with compressed sensing and curvelet transform. METHOD A 3D radial phyllotaxis trajectory was implemented to traverse the centerline of k-space immediately before the segmented whole-heart MRA data acquisition at each cardiac cycle. The k-space centerlines were used to correct the respiratory-induced heart motion in the acquired MRA data. The corrected MRA data were then reconstructed by a novel compressed sensing algorithm using curvelets as the sparsifying domain. The proposed 3D whole-heart MRA technique (radial CS curvelet) was then prospectively validated against compressed sensing with a conventional wavelet transform (radial CS wavelet) and a standard Cartesian acquisition in terms of scan time and border sharpness. RESULTS Fifteen patients (females 10, median age 34-year-old) underwent 3D whole-heart MRA imaging using a standard Cartesian trajectory and our proposed radial phyllotaxis trajectory. Scan time for radial phyllotaxis was significantly shorter than Cartesian (4.88 ± 0.86 min. vs. 6.84 ± 1.79 min., P-value = 0.004). Radial CS curvelet border sharpness was slightly lower than Cartesian and, for the majority of vessels, was significantly better than radial CS wavelet (P-value < 0.050). CONCLUSION The proposed technique of 3D whole-heart MRA acquisition with a radial CS curvelet has a shorter scan time and slightly lower vessel sharpness compared to the Cartesian acquisition with radial profile ordering, and has slightly better sharpness than radial CS wavelet. Future work on this technique includes additional clinical trials and extending this technique to 3D cine imaging.
Collapse
Affiliation(s)
- Wai Yan Ryana Fok
- Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Computer Science, Technical University of Munich, Garching, Germany.
| | - Yan Chi Ivy Chan
- Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Computer Science, Technical University of Munich, Garching, Germany
| | - Jennifer Romanowicz
- Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jihye Jang
- Philips Healthcare, Gainesville, FL, USA
| | - Andrew J Powell
- Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Mehdi H Moghari
- Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Mandava S, Keerthivasan MB, Martin DR, Altbach MI, Bilgin A. Improving subspace constrained radial fast spin echo MRI using block matching driven non-local low rank regularization. Phys Med Biol 2021; 66:04NT03. [PMID: 33333497 PMCID: PMC8321599 DOI: 10.1088/1361-6560/abd4b8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Subspace-constrained reconstruction methods restrict the relaxation signals (of size M) in the scene to a pre-determined subspace (of size K≪M) and allow multi-contrast imaging and parameter mapping from accelerated acquisitions. However, these constraints yield poor image quality at some imaging contrasts, which can impact the parameter mapping performance. Additional regularization such as the use of joint-sparse (JS) or locally-low-rank (LLR) constraints can help improve the recovery of these images but are not sufficient when operating at high acceleration rates. We propose a method, non-local rank 3D (NLR3D), that is built on block matching and transform domain low rank constraints to allow high quality recovery of subspace-coefficient images (SCI) and subsequent multi-contrast imaging and parameter mapping. The performance of NLR3D was evaluated using Monte-Carlo (MC) simulations and compared against the JS and LLR methods. In vivo T 2 mapping results are presented on brain and knee datasets. MC results demonstrate improved bias, variance, and MSE behavior in both the multi-contrast images and parameter maps when compared to the JS and LLR methods. In vivo brain and knee results at moderate and high acceleration rates demonstrate improved recovery of high SNR early TE images as well as parameter maps. No significant difference was found in the T2 values measured in ROIs between the NLR3D reconstructions and the reference images (Wilcoxon signed rank test). The proposed method, NLR3D, enables recovery of high-quality SCI and, consequently, the associated multi-contrast images and parameter maps.
Collapse
Affiliation(s)
- Sagar Mandava
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| | - Mahesh B. Keerthivasan
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| | - Diego R. Martin
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| | - Maria I. Altbach
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - Ali Bilgin
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
16
|
Lv J, Wang C, Yang G. PIC-GAN: A Parallel Imaging Coupled Generative Adversarial Network for Accelerated Multi-Channel MRI Reconstruction. Diagnostics (Basel) 2021; 11:61. [PMID: 33401777 PMCID: PMC7824530 DOI: 10.3390/diagnostics11010061] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
In this study, we proposed a model combing parallel imaging (PI) with generative adversarial network (GAN) architecture (PIC-GAN) for accelerated multi-channel magnetic resonance imaging (MRI) reconstruction. This model integrated data fidelity and regularization terms into the generator to benefit from multi-coils information and provide an "end-to-end" reconstruction. Besides, to better preserve image details during reconstruction, we combined the adversarial loss with pixel-wise loss in both image and frequency domains. The proposed PIC-GAN framework was evaluated on abdominal and knee MRI images using 2, 4 and 6-fold accelerations with different undersampling patterns. The performance of the PIC-GAN was compared to the sparsity-based parallel imaging (L1-ESPIRiT), the variational network (VN), and conventional GAN with single-channel images as input (zero-filled (ZF)-GAN). Experimental results show that our PIC-GAN can effectively reconstruct multi-channel MR images at a low noise level and improved structure similarity of the reconstructed images. PIC-GAN has yielded the lowest Normalized Mean Square Error (in ×10-5) (PIC-GAN: 0.58 ± 0.37, ZF-GAN: 1.93 ± 1.41, VN: 1.87 ± 1.28, L1-ESPIRiT: 2.49 ± 1.04 for abdominal MRI data and PIC-GAN: 0.80 ± 0.26, ZF-GAN: 0.93 ± 0.29, VN:1.18 ± 0.31, L1-ESPIRiT: 1.28 ± 0.24 for knee MRI data) and the highest Peak Signal to Noise Ratio (PIC-GAN: 34.43 ± 1.92, ZF-GAN: 31.45 ± 4.0, VN: 29.26 ± 2.98, L1-ESPIRiT: 25.40 ± 1.88 for abdominal MRI data and PIC-GAN: 34.10 ± 1.09, ZF-GAN: 31.47 ± 1.05, VN: 30.01 ± 1.01, L1-ESPIRiT: 28.01 ± 0.98 for knee MRI data) compared to ZF-GAN, VN and L1-ESPIRiT with an under-sampling factor of 6. The proposed PIC-GAN framework has shown superior reconstruction performance in terms of reducing aliasing artifacts and restoring tissue structures as compared to other conventional and state-of-the-art reconstruction methods.
Collapse
Affiliation(s)
- Jun Lv
- School of Computer and Control Engineering, Yantai University, Yantai 264005, China;
| | - Chengyan Wang
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Guang Yang
- Cardiovascular Research Centre, Royal Brompton Hospital, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
17
|
Hajhosseiny R, Bustin A, Munoz C, Rashid I, Cruz G, Manning WJ, Prieto C, Botnar RM. Coronary Magnetic Resonance Angiography: Technical Innovations Leading Us to the Promised Land? JACC Cardiovasc Imaging 2020; 13:2653-2672. [PMID: 32199836 DOI: 10.1016/j.jcmg.2020.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Coronary artery disease remains the leading cause of cardiovascular morbidity and mortality. Invasive X-ray angiography and coronary computed tomography angiography are established gold standards for coronary luminography. However, they expose patients to invasive complications, ionizing radiation, and iodinated contrast agents. Among a number of imaging modalities, coronary cardiovascular magnetic resonance (CMR) angiography may be used in some cases as an alternative for the detection and monitoring of coronary arterial stenosis, with advantages including its versatility, excellent soft tissue characterization, and avoidance of ionizing radiation and iodinated contrast agents. In this review, we explore the recent advances in motion correction, image acceleration, and reconstruction technologies that are bringing coronary CMR angiography closer to widespread clinical implementation.
Collapse
Affiliation(s)
- Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Aurelien Bustin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Camila Munoz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Imran Rashid
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Gastao Cruz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Warren J Manning
- Department of Medicine (Cardiovascular Division) and Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Escuela de Ingeniería, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Escuela de Ingeniería, Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Yaman B, Hosseini SAH, Moeller S, Ellermann J, Uğurbil K, Akçakaya M. Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data. Magn Reson Med 2020; 84:3172-3191. [PMID: 32614100 PMCID: PMC7811359 DOI: 10.1002/mrm.28378] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE To develop a strategy for training a physics-guided MRI reconstruction neural network without a database of fully sampled data sets. METHODS Self-supervised learning via data undersampling (SSDU) for physics-guided deep learning reconstruction partitions available measurements into two disjoint sets, one of which is used in the data consistency (DC) units in the unrolled network and the other is used to define the loss for training. The proposed training without fully sampled data is compared with fully supervised training with ground-truth data, as well as conventional compressed-sensing and parallel imaging methods using the publicly available fastMRI knee database. The same physics-guided neural network is used for both proposed SSDU and supervised training. The SSDU training is also applied to prospectively two-fold accelerated high-resolution brain data sets at different acceleration rates, and compared with parallel imaging. RESULTS Results on five different knee sequences at an acceleration rate of 4 shows that the proposed self-supervised approach performs closely with supervised learning, while significantly outperforming conventional compressed-sensing and parallel imaging, as characterized by quantitative metrics and a clinical reader study. The results on prospectively subsampled brain data sets, in which supervised learning cannot be used due to lack of ground-truth reference, show that the proposed self-supervised approach successfully performs reconstruction at high acceleration rates (4, 6, and 8). Image readings indicate improved visual reconstruction quality with the proposed approach compared with parallel imaging at acquisition acceleration. CONCLUSION The proposed SSDU approach allows training of physics-guided deep learning MRI reconstruction without fully sampled data, while achieving comparable results with supervised deep learning MRI trained on fully sampled data.
Collapse
Affiliation(s)
- Burhaneddin Yaman
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Seyed Amir Hossein Hosseini
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Jutta Ellermann
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Mehmet Akçakaya
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| |
Collapse
|
19
|
Kato Y, Ambale-Venkatesh B, Kassai Y, Kasuboski L, Schuijf J, Kapoor K, Caruthers S, Lima JAC. Non-contrast coronary magnetic resonance angiography: current frontiers and future horizons. MAGMA (NEW YORK, N.Y.) 2020; 33:591-612. [PMID: 32242282 PMCID: PMC7502041 DOI: 10.1007/s10334-020-00834-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Coronary magnetic resonance angiography (coronary MRA) is advantageous in its ability to assess coronary artery morphology and function without ionizing radiation or contrast media. However, technical limitations including reduced spatial resolution, long acquisition times, and low signal-to-noise ratios prevent it from clinical routine utilization. Nonetheless, each of these limitations can be specifically addressed by a combination of novel technologies including super-resolution imaging, compressed sensing, and deep-learning reconstruction. In this paper, we first review the current clinical use and motivations for non-contrast coronary MRA, discuss currently available coronary MRA techniques, and highlight current technical developments that hold unique potential to optimize coronary MRA image acquisition and post-processing. In the final section, we examine the various research-based coronary MRA methods and metrics that can be leveraged to assess coronary stenosis severity, physiological function, and atherosclerotic plaque characterization. We specifically discuss how such technologies may contribute to the clinical translation of coronary MRA into a robust modality for routine clinical use.
Collapse
Affiliation(s)
- Yoko Kato
- Division of Cardiology, Johns Hopkins University School of Medicine, 600 N Wolfe St, Blalock 524, Baltimore, MD, 21287-0409, USA
| | | | | | | | | | - Karan Kapoor
- Division of Cardiology, Johns Hopkins University School of Medicine, 600 N Wolfe St, Blalock 524, Baltimore, MD, 21287-0409, USA
| | | | - Joao A C Lima
- Division of Cardiology, Johns Hopkins University School of Medicine, 600 N Wolfe St, Blalock 524, Baltimore, MD, 21287-0409, USA.
| |
Collapse
|
20
|
Hosseini SAH, Yaman B, Moeller S, Hong M, Akçakaya M. Dense Recurrent Neural Networks for Accelerated MRI: History-Cognizant Unrolling of Optimization Algorithms. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 2020; 14:1280-1291. [PMID: 33747334 PMCID: PMC7978039 DOI: 10.1109/jstsp.2020.3003170] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inverse problems for accelerated MRI typically incorporate domain-specific knowledge about the forward encoding operator in a regularized reconstruction framework. Recently physics-driven deep learning (DL) methods have been proposed to use neural networks for data-driven regularization. These methods unroll iterative optimization algorithms to solve the inverse problem objective function, by alternating between domain-specific data consistency and data-driven regularization via neural networks. The whole unrolled network is then trained end-to-end to learn the parameters of the network. Due to simplicity of data consistency updates with gradient descent steps, proximal gradient descent (PGD) is a common approach to unroll physics-driven DL reconstruction methods. However, PGD methods have slow convergence rates, necessitating a higher number of unrolled iterations, leading to memory issues in training and slower reconstruction times in testing. Inspired by efficient variants of PGD methods that use a history of the previous iterates, we propose a history-cognizant unrolling of the optimization algorithm with dense connections across iterations for improved performance. In our approach, the gradient descent steps are calculated at a trainable combination of the outputs of all the previous regularization units. We also apply this idea to unrolling variable splitting methods with quadratic relaxation. Our results in reconstruction of the fastMRI knee dataset show that the proposed history-cognizant approach reduces residual aliasing artifacts compared to its conventional unrolled counterpart without requiring extra computational power or increasing reconstruction time.
Collapse
Affiliation(s)
- Seyed Amir Hossein Hosseini
- Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455
| | - Burhaneddin Yaman
- Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455
| | - Mingyi Hong
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455
| | - Mehmet Akçakaya
- Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455
| |
Collapse
|
21
|
Utzschneider M, Müller M, Gast LV, Lachner S, Behl NGR, Maier A, Uder M, Nagel AM. Towards accelerated quantitative sodium MRI at 7 T in the skeletal muscle: Comparison of anisotropic acquisition- and compressed sensing techniques. Magn Reson Imaging 2020; 75:72-88. [PMID: 32979516 DOI: 10.1016/j.mri.2020.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To compare three anisotropic acquisition schemes and three compressed sensing (CS) approaches for accelerated tissue sodium concentration (TSC) quantification using 23Na MRI at 7 T. MATERIALS AND METHODS Three anisotropic 3D-radial acquisition sequences were evaluated using simulations, phantom- and in vivo TSC measurements: An anisotropic density-adapted 3D-radial sequence (3DPR-C), a 3D acquisition-weighted density-adapted stack-of-stars sampling scheme (SOS) and a SOS approach with golden-ratio rotation (SOS-GR). Eight healthy volunteers were examined at a 7 Tesla MRI system. TSC measurements of the calf were conducted with a nominal spatial resolution of Δx = (3.0 × 3.0 × 15.0) mm3 and a field of view of (156.0 × 156.0 × 240.0) mm3 for multiple undersampling factors (USF). Three CS reconstructions were evaluated: Total variation CS (TV-CS), 3D dictionary-learning compressed sensing (3D-DLCS) and TV-CS with a block matching prior (TV-BL-CS). Results of the simulations and measurements were compared to a simulated ground truth (GT) or a fully sampled reference measurement (FS), respectively. The deviation of the mean TSC evaluated in multiple ROI (mEGT/FS) and the normalized root-mean-squared error (NRMSE) for simulations were evaluated for CS and NUFFT reconstructions. RESULTS In simulations, the SOS-GR yielded the lowest NRMSE and mEGT (< 4%) with NUFFT for an acquisition time (TA) of less than 2 min. CS further improved the results. In simulations and measurements, the best TSC quantification results were obtained with 3D-DLCS and SOS-GR (lowest NRMSE, mEGT < 2.6% in simulations, mEGT < 10.7% for phantom measurements and mEFS < 6% in vivo) with an USF = 4.1 (TA < 2 min). TV-CS showed no or only slight improvements to NUFFT. The results of TV-BL-CS were similar to 3D-DLCS. DISCUSSION The TA for TSC measurements could be reduced to less than 2 min by using adapted sequences such as SOS-GR and CS reconstruction approaches such as 3D-DLCS or TV-BL-CS, while the quantitative accuracy stays comparable to a fully sampled NUFFT reconstruction (approx. 8 min TA). In future, the lower TA could improve clinical applicability of TSC measurements.
Collapse
Affiliation(s)
- Matthias Utzschneider
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Max Müller
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sebastian Lachner
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nicolas G R Behl
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Maier
- Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
22
|
Steeden JA, Quail M, Gotschy A, Mortensen KH, Hauptmann A, Arridge S, Jones R, Muthurangu V. Rapid whole-heart CMR with single volume super-resolution. J Cardiovasc Magn Reson 2020; 22:56. [PMID: 32753047 PMCID: PMC7405461 DOI: 10.1186/s12968-020-00651-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/17/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Three-dimensional, whole heart, balanced steady state free precession (WH-bSSFP) sequences provide delineation of intra-cardiac and vascular anatomy. However, they have long acquisition times. Here, we propose significant speed-ups using a deep-learning single volume super-resolution reconstruction, to recover high-resolution features from rapidly acquired low-resolution WH-bSSFP images. METHODS A 3D residual U-Net was trained using synthetic data, created from a library of 500 high-resolution WH-bSSFP images by simulating 50% slice resolution and 50% phase resolution. The trained network was validated with 25 synthetic test data sets. Additionally, prospective low-resolution data and high-resolution data were acquired in 40 patients. In the prospective data, vessel diameters, quantitative and qualitative image quality, and diagnostic scoring was compared between the low-resolution, super-resolution and reference high-resolution WH-bSSFP data. RESULTS The synthetic test data showed a significant increase in image quality of the low-resolution images after super-resolution reconstruction. Prospectively acquired low-resolution data was acquired ~× 3 faster than the prospective high-resolution data (173 s vs 488 s). Super-resolution reconstruction of the low-resolution data took < 1 s per volume. Qualitative image scores showed super-resolved images had better edge sharpness, fewer residual artefacts and less image distortion than low-resolution images, with similar scores to high-resolution data. Quantitative image scores showed super-resolved images had significantly better edge sharpness than low-resolution or high-resolution images, with significantly better signal-to-noise ratio than high-resolution data. Vessel diameters measurements showed over-estimation in the low-resolution measurements, compared to the high-resolution data. No significant differences and no bias was found in the super-resolution measurements in any of the great vessels. However, a small but significant for the underestimation was found in the proximal left coronary artery diameter measurement from super-resolution data. Diagnostic scoring showed that although super-resolution did not improve accuracy of diagnosis, it did improve diagnostic confidence compared to low-resolution imaging. CONCLUSION This paper demonstrates the potential of using a residual U-Net for super-resolution reconstruction of rapidly acquired low-resolution whole heart bSSFP data within a clinical setting. We were able to train the network using synthetic training data from retrospective high-resolution whole heart data. The resulting network can be applied very quickly, making these techniques particularly appealing within busy clinical workflow. Thus, we believe that this technique may help speed up whole heart CMR in clinical practice.
Collapse
Affiliation(s)
- Jennifer A Steeden
- UCL Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London, 30 Guildford Street, London, WC1N 1EH, UK.
| | - Michael Quail
- UCL Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London, 30 Guildford Street, London, WC1N 1EH, UK
- Great Ormond Street Hospital, London, WC1N 3JH, UK
| | - Alexander Gotschy
- Great Ormond Street Hospital, London, WC1N 3JH, UK
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | | | - Andreas Hauptmann
- Department of Computer Science, University College London, London, WC1E 6BT, UK
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
| | - Simon Arridge
- Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Rodney Jones
- UCL Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London, 30 Guildford Street, London, WC1N 1EH, UK
| | - Vivek Muthurangu
- UCL Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London, 30 Guildford Street, London, WC1N 1EH, UK
| |
Collapse
|
23
|
El-Rewaidy H, Neisius U, Mancio J, Kucukseymen S, Rodriguez J, Paskavitz A, Menze B, Nezafat R. Deep complex convolutional network for fast reconstruction of 3D late gadolinium enhancement cardiac MRI. NMR IN BIOMEDICINE 2020; 33:e4312. [PMID: 32352197 DOI: 10.1002/nbm.4312] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Several deep-learning models have been proposed to shorten MRI scan time. Prior deep-learning models that utilize real-valued kernels have limited capability to learn rich representations of complex MRI data. In this work, we utilize a complex-valued convolutional network (ℂNet) for fast reconstruction of highly under-sampled MRI data and evaluate its ability to rapidly reconstruct 3D late gadolinium enhancement (LGE) data. ℂNet preserves the complex nature and optimal combination of real and imaginary components of MRI data throughout the reconstruction process by utilizing complex-valued convolution, novel radial batch normalization, and complex activation function layers in a U-Net architecture. A prospectively under-sampled 3D LGE cardiac MRI dataset of 219 patients (17 003 images) at acceleration rates R = 3 through R = 5 was used to evaluate ℂNet. The dataset was further retrospectively under-sampled to a maximum of R = 8 to simulate higher acceleration rates. We created three reconstructions of the 3D LGE dataset using (1) ℂNet, (2) a compressed-sensing-based low-dimensional-structure self-learning and thresholding algorithm (LOST), and (3) a real-valued U-Net (realNet) with the same number of parameters as ℂNet. LOST-reconstructed data were considered the reference for training and evaluation of all models. The reconstructed images were quantitatively evaluated using mean-squared error (MSE) and the structural similarity index measure (SSIM), and subjectively evaluated by three independent readers. Quantitatively, ℂNet-reconstructed images had significantly improved MSE and SSIM values compared with realNet (MSE, 0.077 versus 0.091; SSIM, 0.876 versus 0.733, respectively; p < 0.01). Subjective quality assessment showed that ℂNet-reconstructed image quality was similar to that of compressed sensing and significantly better than that of realNet. ℂNet reconstruction was also more than 300 times faster than compressed sensing. Retrospective under-sampled images demonstrate the potential of ℂNet at higher acceleration rates. ℂNet enables fast reconstruction of highly accelerated 3D MRI with superior performance to real-valued networks, and achieves faster reconstruction than compressed sensing.
Collapse
Affiliation(s)
- Hossam El-Rewaidy
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
- Department of Computer Science, Technical University of Munich, Munich, Germany
| | - Ulf Neisius
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Jennifer Mancio
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Selcuk Kucukseymen
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Jennifer Rodriguez
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Amanda Paskavitz
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Bjoern Menze
- Department of Computer Science, Technical University of Munich, Munich, Germany
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
A multi-scale variational neural network for accelerating motion-compensated whole-heart 3D coronary MR angiography. Magn Reson Imaging 2020; 70:155-167. [DOI: 10.1016/j.mri.2020.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/03/2020] [Accepted: 04/12/2020] [Indexed: 11/22/2022]
|
25
|
Bustin A, Rashid I, Cruz G, Hajhosseiny R, Correia T, Neji R, Rajani R, Ismail TF, Botnar RM, Prieto C. 3D whole-heart isotropic sub-millimeter resolution coronary magnetic resonance angiography with non-rigid motion-compensated PROST. J Cardiovasc Magn Reson 2020; 22:24. [PMID: 32299445 PMCID: PMC7161114 DOI: 10.1186/s12968-020-00611-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/19/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND To enable free-breathing whole-heart sub-millimeter resolution coronary magnetic resonance angiography (CMRA) in a clinically feasible scan time by combining low-rank patch-based undersampled reconstruction (3D-PROST) with a highly accelerated non-rigid motion correction framework. METHODS Non-rigid motion corrected CMRA combined with 2D image-based navigators has been previously proposed to enable 100% respiratory scan efficiency in modestly undersampled acquisitions. Achieving sub-millimeter isotropic resolution with such techniques still requires prohibitively long acquisition times. We propose to combine 3D-PROST reconstruction with a highly accelerated non-rigid motion correction framework to achieve sub-millimeter resolution CMRA in less than 10 min. Ten healthy subjects and eight patients with suspected coronary artery disease underwent 4-5-fold accelerated free-breathing whole-heart CMRA with 0.9 mm3 isotropic resolution. Vessel sharpness, vessel length and image quality obtained with the proposed non-rigid (NR) PROST approach were compared against translational correction only (TC-PROST) and a previously proposed NR motion-compensated technique (non-rigid SENSE) in healthy subjects. For the patient study, image quality scoring and visual comparison with coronary computed tomography angiography (CCTA) were performed. RESULTS Average scan times [min:s] were 6:01 ± 0:59 (healthy subjects) and 8:29 ± 1:41 (patients). In healthy subjects, vessel sharpness of the left anterior descending (LAD) and right (RCA) coronary arteries were improved with the proposed non-rigid PROST (LAD: 51.2 ± 8.8%, RCA: 61.2 ± 9.1%) in comparison to TC-PROST (LAD: 43.8 ± 5.1%, P = 0.051, RCA: 54.3 ± 8.3%, P = 0.218) and non-rigid SENSE (LAD: 46.1 ± 5.8%, P = 0.223, RCA: 56.7 ± 9.6%, P = 0.50), although differences were not statistically significant. The average visual image quality score was significantly higher for NR-PROST (LAD: 3.2 ± 0.6, RCA: 3.3 ± 0.7) compared with TC-PROST (LAD: 2.1 ± 0.6, P = 0.018, RCA: 2.0 ± 0.7, P = 0.014) and non-rigid SENSE (LAD: 2.3 ± 0.5, P = 0.008, RCA: 2.5 ± 0.7, P = 0.016). In patients, the proposed approach showed good delineation of the coronaries, in agreement with CCTA, with image quality scores and vessel sharpness similar to that of healthy subjects. CONCLUSIONS We demonstrate the feasibility of combining high undersampling factors with non-rigid motion-compensated reconstruction to obtain high-quality sub-millimeter isotropic CMRA images in ~ 8 min. Validation in a larger cohort of patients with coronary artery disease is now warranted.
Collapse
Affiliation(s)
- Aurélien Bustin
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Imran Rashid
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Gastao Cruz
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Reza Hajhosseiny
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Teresa Correia
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Radhouene Neji
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - Ronak Rajani
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
- Department of Cardiology, Guy's & St Thomas' Hospitals, London, UK
| | - Tevfik F Ismail
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
| | - René M Botnar
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK.
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Claudia Prieto
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
26
|
Bustin A, Fuin N, Botnar RM, Prieto C. From Compressed-Sensing to Artificial Intelligence-Based Cardiac MRI Reconstruction. Front Cardiovasc Med 2020; 7:17. [PMID: 32158767 PMCID: PMC7051921 DOI: 10.3389/fcvm.2020.00017] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/31/2020] [Indexed: 12/28/2022] Open
Abstract
Cardiac magnetic resonance (CMR) imaging is an important tool for the non-invasive assessment of cardiovascular disease. However, CMR suffers from long acquisition times due to the need of obtaining images with high temporal and spatial resolution, different contrasts, and/or whole-heart coverage. In addition, both cardiac and respiratory-induced motion of the heart during the acquisition need to be accounted for, further increasing the scan time. Several undersampling reconstruction techniques have been proposed during the last decades to speed up CMR acquisition. These techniques rely on acquiring less data than needed and estimating the non-acquired data exploiting some sort of prior information. Parallel imaging and compressed sensing undersampling reconstruction techniques have revolutionized the field, enabling 2- to 3-fold scan time accelerations to become standard in clinical practice. Recent scientific advances in CMR reconstruction hinge on the thriving field of artificial intelligence. Machine learning reconstruction approaches have been recently proposed to learn the non-linear optimization process employed in CMR reconstruction. Unlike analytical methods for which the reconstruction problem is explicitly defined into the optimization process, machine learning techniques make use of large data sets to learn the key reconstruction parameters and priors. In particular, deep learning techniques promise to use deep neural networks (DNN) to learn the reconstruction process from existing datasets in advance, providing a fast and efficient reconstruction that can be applied to all newly acquired data. However, before machine learning and DNN can realize their full potentials and enter widespread clinical routine for CMR image reconstruction, there are several technical hurdles that need to be addressed. In this article, we provide an overview of the recent developments in the area of artificial intelligence for CMR image reconstruction. The underlying assumptions of established techniques such as compressed sensing and low-rank reconstruction are briefly summarized, while a greater focus is given to recent advances in dictionary learning and deep learning based CMR reconstruction. In particular, approaches that exploit neural networks as implicit or explicit priors are discussed for 2D dynamic cardiac imaging and 3D whole-heart CMR imaging. Current limitations, challenges, and potential future directions of these techniques are also discussed.
Collapse
Affiliation(s)
- Aurélien Bustin
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Niccolo Fuin
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - René M. Botnar
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Prieto
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
27
|
Hosseini SAH, Zhang C, Weingärtner S, Moeller S, Stuber M, Ugurbil K, Akçakaya M. Accelerated coronary MRI with sRAKI: A database-free self-consistent neural network k-space reconstruction for arbitrary undersampling. PLoS One 2020; 15:e0229418. [PMID: 32084235 PMCID: PMC7034900 DOI: 10.1371/journal.pone.0229418] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/05/2020] [Indexed: 02/01/2023] Open
Abstract
Purpose To accelerate coronary MRI acquisitions with arbitrary undersampling patterns by using a novel reconstruction algorithm that applies coil self-consistency using subject-specific neural networks. Methods Self-consistent robust artificial-neural-networks for k-space interpolation (sRAKI) performs iterative parallel imaging reconstruction by enforcing self-consistency among coils. The approach bears similarity to SPIRiT, but extends the linear convolutions in SPIRiT to nonlinear interpolation using convolutional neural networks (CNNs). These CNNs are trained individually for each scan using the scan-specific autocalibrating signal (ACS) data. Reconstruction is performed by imposing the learned self-consistency and data-consistency, which enables sRAKI to support random undersampling patterns. Fully-sampled targeted right coronary artery MRI was acquired in six healthy subjects. The data were retrospectively undersampled, and reconstructed using SPIRiT, l1-SPIRiT and sRAKI for acceleration rates of 2 to 5. Additionally, prospectively undersampled whole-heart coronary MRI was acquired to further evaluate reconstruction performance. Results sRAKI reduces noise amplification and blurring artifacts compared with SPIRiT and l1-SPIRiT, especially at high acceleration rates in targeted coronary MRI. Quantitative analysis shows that sRAKI outperforms these techniques in terms of normalized mean-squared-error (~44% and ~21% over SPIRiT and l1-SPIRiT at rate 5) and vessel sharpness (~10% and ~20% over SPIRiT and l1-SPIRiT at rate 5). Whole-heart data shows the sharpest coronary arteries when resolved using sRAKI, with 11% and 15% improvement in vessel sharpness over SPIRiT and l1-SPIRiT, respectively. Conclusion sRAKI is a database-free neural network-based reconstruction technique that may further accelerate coronary MRI with arbitrary undersampling patterns, while improving noise resilience over linear parallel imaging and image sharpness over l1 regularization techniques.
Collapse
Affiliation(s)
- Seyed Amir Hossein Hosseini
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States of America
| | - Chi Zhang
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States of America
| | - Sebastian Weingärtner
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States of America
- Department of Imaging Physics, Delft University of Technology, Delft, Netherlands
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States of America
| | - Matthias Stuber
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States of America
| | - Mehmet Akçakaya
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States of America
- * E-mail:
| |
Collapse
|
28
|
Jaubert O, Cruz G, Bustin A, Schneider T, Koken P, Doneva M, Rueckert D, Botnar RM, Prieto C. Free-running cardiac magnetic resonance fingerprinting: Joint T1/T2 map and Cine imaging. Magn Reson Imaging 2020; 68:173-182. [PMID: 32061964 PMCID: PMC7677167 DOI: 10.1016/j.mri.2020.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/21/2020] [Accepted: 02/09/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE To develop and evaluate a novel non-ECG triggered 2D magnetic resonance fingerprinting (MRF) sequence allowing for simultaneous myocardial T1 and T2 mapping and cardiac Cine imaging. METHODS Cardiac MRF (cMRF) has been recently proposed to provide joint T1/T2 myocardial mapping by triggering the acquisition to mid-diastole and relying on a subject-dependent dictionary of MR signal evolutions to generate the maps. In this work, we propose a novel "free-running" (non-ECG triggered) cMRF framework for simultaneous myocardial T1 and T2 mapping and cardiac Cine imaging in a single scan. Free-running cMRF is based on a transient state bSSFP acquisition with tiny golden angle radial readouts, varying flip angle and multiple adiabatic inversion pulses. The acquired data is retrospectively gated into several cardiac phases, which are reconstructed with an approach that combines parallel imaging, low rank modelling and patch-based high-order tensor regularization. Free-running cMRF was evaluated in a standardized phantom and ten healthy subjects. Comparison with reference spin-echo, MOLLI, SASHA, T2-GRASE and Cine was performed. RESULTS T1 and T2 values obtained with the proposed approach were in good agreement with reference phantom values (ICC(A,1) > 0.99). Reported values for myocardium septum T1 were 1043 ± 48 ms, 1150 ± 100 ms and 1160 ± 79 ms for MOLLI, SASHA and free-running cMRF respectively and for T2 of 51.7 ± 4.1 ms and 44.6 ± 4.1 ms for T2-GRASE and free-running cMRF respectively. Good agreement was observed between free-running cMRF and conventional Cine 2D ejection fraction (bias = -0.83%). CONCLUSION The proposed free-running cardiac MRF approach allows for simultaneous assessment of myocardial T1 and T2 and Cine imaging in a single scan.
Collapse
Affiliation(s)
- O Jaubert
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| | - G Cruz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - A Bustin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - T Schneider
- Philips Healthcare, Guilford, United Kingdom
| | - P Koken
- Philips Research Europe, Hamburg, Germany
| | - M Doneva
- Philips Research Europe, Hamburg, Germany
| | - D Rueckert
- Department of Computing, Imperial College London, London, United Kingdom
| | - R M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - C Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
29
|
Ravishankar S, Ye JC, Fessler JA. Image Reconstruction: From Sparsity to Data-adaptive Methods and Machine Learning. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2020; 108:86-109. [PMID: 32095024 PMCID: PMC7039447 DOI: 10.1109/jproc.2019.2936204] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The field of medical image reconstruction has seen roughly four types of methods. The first type tended to be analytical methods, such as filtered back-projection (FBP) for X-ray computed tomography (CT) and the inverse Fourier transform for magnetic resonance imaging (MRI), based on simple mathematical models for the imaging systems. These methods are typically fast, but have suboptimal properties such as poor resolution-noise trade-off for CT. A second type is iterative reconstruction methods based on more complete models for the imaging system physics and, where appropriate, models for the sensor statistics. These iterative methods improved image quality by reducing noise and artifacts. The FDA-approved methods among these have been based on relatively simple regularization models. A third type of methods has been designed to accommodate modified data acquisition methods, such as reduced sampling in MRI and CT to reduce scan time or radiation dose. These methods typically involve mathematical image models involving assumptions such as sparsity or low-rank. A fourth type of methods replaces mathematically designed models of signals and systems with data-driven or adaptive models inspired by the field of machine learning. This paper focuses on the two most recent trends in medical image reconstruction: methods based on sparsity or low-rank models, and data-driven methods based on machine learning techniques.
Collapse
Affiliation(s)
- Saiprasad Ravishankar
- Departments of Computational Mathematics, Science and Engineering, and Biomedical Engineering at Michigan State University, East Lansing, MI, 48824 USA
| | - Jong Chul Ye
- Department of Bio and Brain Engineering and Department of Mathematical Sciences at the Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea
| | - Jeffrey A Fessler
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109 USA
| |
Collapse
|
30
|
Knoll F, Hammernik K, Zhang C, Moeller S, Pock T, Sodickson DK, Akçakaya M. Deep-Learning Methods for Parallel Magnetic Resonance Imaging Reconstruction: A Survey of the Current Approaches, Trends, and Issues. IEEE SIGNAL PROCESSING MAGAZINE 2020; 37:128-140. [PMID: 33758487 PMCID: PMC7982984 DOI: 10.1109/msp.2019.2950640] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Following the success of deep learning in a wide range of applications, neural network-based machine learning techniques have received interest as a means of accelerating magnetic resonance imaging (MRI). A number of ideas inspired by deep learning techniques from computer vision and image processing have been successfully applied to non-linear image reconstruction in the spirit of compressed sensing for both low dose computed tomography and accelerated MRI. The additional integration of multi-coil information to recover missing k-space lines in the MRI reconstruction process, is still studied less frequently, even though it is the de-facto standard for currently used accelerated MR acquisitions. This manuscript provides an overview of the recent machine learning approaches that have been proposed specifically for improving parallel imaging. A general background introduction to parallel MRI is given that is structured around the classical view of image space and k-space based methods. Both linear and non-linear methods are covered, followed by a discussion of recent efforts to further improve parallel imaging using machine learning, and specifically using artificial neural networks. Image-domain based techniques that introduce improved regularizers are covered as well as k-space based methods, where the focus is on better interpolation strategies using neural networks. Issues and open problems are discussed as well as recent efforts for producing open datasets and benchmarks for the community.
Collapse
Affiliation(s)
- Florian Knoll
- F. Knoll and D. K. Sodickson are with the Center for Biomedical Imaging, Department of Radiology, New York University. K. Hammernik is with the Department of Computing, Imperial College London. T. Pock is with the Institute of Computer Graphics and Vision, Graz University of Technology. C. Zhang and M. Akçakaya are with the Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN. S. Moeller is with the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Kerstin Hammernik
- F. Knoll and D. K. Sodickson are with the Center for Biomedical Imaging, Department of Radiology, New York University. K. Hammernik is with the Department of Computing, Imperial College London. T. Pock is with the Institute of Computer Graphics and Vision, Graz University of Technology. C. Zhang and M. Akçakaya are with the Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN. S. Moeller is with the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Chi Zhang
- F. Knoll and D. K. Sodickson are with the Center for Biomedical Imaging, Department of Radiology, New York University. K. Hammernik is with the Department of Computing, Imperial College London. T. Pock is with the Institute of Computer Graphics and Vision, Graz University of Technology. C. Zhang and M. Akçakaya are with the Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN. S. Moeller is with the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Steen Moeller
- F. Knoll and D. K. Sodickson are with the Center for Biomedical Imaging, Department of Radiology, New York University. K. Hammernik is with the Department of Computing, Imperial College London. T. Pock is with the Institute of Computer Graphics and Vision, Graz University of Technology. C. Zhang and M. Akçakaya are with the Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN. S. Moeller is with the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Thomas Pock
- F. Knoll and D. K. Sodickson are with the Center for Biomedical Imaging, Department of Radiology, New York University. K. Hammernik is with the Department of Computing, Imperial College London. T. Pock is with the Institute of Computer Graphics and Vision, Graz University of Technology. C. Zhang and M. Akçakaya are with the Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN. S. Moeller is with the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Daniel K Sodickson
- F. Knoll and D. K. Sodickson are with the Center for Biomedical Imaging, Department of Radiology, New York University. K. Hammernik is with the Department of Computing, Imperial College London. T. Pock is with the Institute of Computer Graphics and Vision, Graz University of Technology. C. Zhang and M. Akçakaya are with the Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN. S. Moeller is with the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Mehmet Akçakaya
- F. Knoll and D. K. Sodickson are with the Center for Biomedical Imaging, Department of Radiology, New York University. K. Hammernik is with the Department of Computing, Imperial College London. T. Pock is with the Institute of Computer Graphics and Vision, Graz University of Technology. C. Zhang and M. Akçakaya are with the Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN. S. Moeller is with the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| |
Collapse
|
31
|
Leiner T, Rueckert D, Suinesiaputra A, Baeßler B, Nezafat R, Išgum I, Young AA. Machine learning in cardiovascular magnetic resonance: basic concepts and applications. J Cardiovasc Magn Reson 2019; 21:61. [PMID: 31590664 PMCID: PMC6778980 DOI: 10.1186/s12968-019-0575-y] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 09/02/2019] [Indexed: 12/18/2022] Open
Abstract
Machine learning (ML) is making a dramatic impact on cardiovascular magnetic resonance (CMR) in many ways. This review seeks to highlight the major areas in CMR where ML, and deep learning in particular, can assist clinicians and engineers in improving imaging efficiency, quality, image analysis and interpretation, as well as patient evaluation. We discuss recent developments in the field of ML relevant to CMR in the areas of image acquisition & reconstruction, image analysis, diagnostic evaluation and derivation of prognostic information. To date, the main impact of ML in CMR has been to significantly reduce the time required for image segmentation and analysis. Accurate and reproducible fully automated quantification of left and right ventricular mass and volume is now available in commercial products. Active research areas include reduction of image acquisition and reconstruction time, improving spatial and temporal resolution, and analysis of perfusion and myocardial mapping. Although large cohort studies are providing valuable data sets for ML training, care must be taken in extending applications to specific patient groups. Since ML algorithms can fail in unpredictable ways, it is important to mitigate this by open source publication of computational processes and datasets. Furthermore, controlled trials are needed to evaluate methods across multiple centers and patient groups.
Collapse
Affiliation(s)
- Tim Leiner
- Department of Radiology | E.01.132, Utrecht University Medical Center, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College, London, UK
| | - Avan Suinesiaputra
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Bettina Baeßler
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA USA
| | - Ivana Išgum
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Alistair A. Young
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Department of Biomedical Engineering, King’s College London, London, UK
| |
Collapse
|
32
|
Yaman B, Weingärtner S, Kargas N, Sidiropoulos ND, Akçakaya M. Low-Rank Tensor Models for Improved Multi-Dimensional MRI: Application to Dynamic Cardiac T 1 Mapping. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2019; 6:194-207. [PMID: 32206691 PMCID: PMC7087548 DOI: 10.1109/tci.2019.2940916] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Multi-dimensional, multi-contrast magnetic resonance imaging (MRI) has become increasingly available for comprehensive and time-efficient evaluation of various pathologies, providing large amounts of data and offering new opportunities for improved image reconstructions. Recently, a cardiac phase-resolved myocardial T 1 mapping method has been introduced to provide dynamic information on tissue viability. Improved spatio-temporal resolution in clinically acceptable scan times is highly desirable but requires high acceleration factors. Tensors are well-suited to describe inter-dimensional hidden structures in such multi-dimensional datasets. In this study, we sought to utilize and compare different tensor decomposition methods, without the use of auxiliary navigator data. We explored multiple processing approaches in order to enable high-resolution cardiac phase-resolved myocardial T 1 mapping. Eight different low-rank tensor approximation and processing approaches were evaluated using quantitative analysis of accuracy and precision in T 1 maps acquired in six healthy volunteers. All methods provided comparable T 1 values. However, the precision was significantly improved using local processing, as well as a direct tensor rank approximation. Low-rank tensor approximation approaches are well-suited to enable dynamic T 1 mapping at high spatio-temporal resolutions.
Collapse
Affiliation(s)
- Burhaneddin Yaman
- Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455
| | - Sebastian Weingärtner
- Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455
| | - Nikolaos Kargas
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455
| | - Nicholas D Sidiropoulos
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904
| | - Mehmet Akçakaya
- Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455
| |
Collapse
|
33
|
Hossein Hosseini SA, Moeller S, Weingärtner S, Uǧurbil K, Akçakaya M. ACCELERATED CORONARY MRI USING 3D SPIRIT-RAKI WITH SPARSITY REGULARIZATION. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2019; 2019:1692-1695. [PMID: 31893013 DOI: 10.1109/isbi.2019.8759459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Coronary MRI is a non-invasive radiation-free imaging tool for the diagnosis of coronary artery disease. One of its limitations is the long scan time, due to the need for high resolution imaging in the presence of respiratory and cardiac motions. Machine learning (ML) methods have been recently utilized to accelerate MRI. In particular, a scan-specific ML technique, called Robust Artifical-neural-network for k-space Interpolation (RAKI) has shown promise in cardiac MRI. However, it requires uniform undersampling. In this study, we sought to extend this approach to arbitrary sampling patterns, using coil self-consistency. This technique, called SPIRiT-RAKI, utilizes scan-specific convolutional neural networks to nonlinearly enforce coil self-consistency. Additionally, regularization terms can also be incorporated. SPIRiT-RAKI was used to accelerate right coronary MRI. Reconstructions were compared to SPIRiT for different undersampling patterns and acceleration rates. Results show SPIRiT-RAKI reduces residual aliasing and blurring artifacts compared to SPIRiT.
Collapse
Affiliation(s)
- Seyed Amir Hossein Hosseini
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Sebastian Weingärtner
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Kȃmil Uǧurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Mehmet Akçakaya
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
34
|
Bustin A, Lima da Cruz G, Jaubert O, Lopez K, Botnar RM, Prieto C. High-dimensionality undersampled patch-based reconstruction (HD-PROST) for accelerated multi-contrast MRI. Magn Reson Med 2019; 81:3705-3719. [PMID: 30834594 PMCID: PMC6646908 DOI: 10.1002/mrm.27694] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE To develop a new high-dimensionality undersampled patch-based reconstruction (HD-PROST) for highly accelerated 2D and 3D multi-contrast MRI. METHODS HD-PROST jointly reconstructs multi-contrast MR images by exploiting the highly redundant information, on a local and non-local scale, and the strong correlation shared between the multiple contrast images. This is achieved by enforcing multi-dimensional low-rank in the undersampled images. 2D magnetic resonance fingerprinting (MRF) phantom and in vivo brain acquisitions were performed to evaluate the performance of HD-PROST for highly accelerated simultaneous T1 and T2 mapping. Additional in vivo experiments for reconstructing multiple undersampled 3D magnetization transfer (MT)-weighted images were conducted to illustrate the impact of HD-PROST for high-resolution multi-contrast 3D imaging. RESULTS In the 2D MRF phantom study, HD-PROST provided accurate and precise estimation of the T1 and T2 values in comparison to gold standard spin echo acquisitions. HD-PROST achieved good quality maps for the in vivo 2D MRF experiments in comparison to conventional low-rank inversion reconstruction. T1 and T2 values of white matter and gray matter were in good agreement with those reported in the literature for MRF acquisitions with reduced number of time point images (500 time point images, ~2.5 s scan time). For in vivo MT-weighted 3D acquisitions (6 different contrasts), HD-PROST achieved similar image quality than the fully sampled reference image for an undersampling factor of 6.5-fold. CONCLUSION HD-PROST enables multi-contrast 2D and 3D MR images in a short acquisition time without compromising image quality. Ultimately, this technique may increase the potential of conventional parameter mapping.
Collapse
Affiliation(s)
- Aurélien Bustin
- Department of Biomedical Engineering, School of Imaging Sciences & Biomedical EngineeringKing’s College London, King’s Health PartnersLondonUnited Kingdom
| | - Gastão Lima da Cruz
- Department of Biomedical Engineering, School of Imaging Sciences & Biomedical EngineeringKing’s College London, King’s Health PartnersLondonUnited Kingdom
| | - Olivier Jaubert
- Department of Biomedical Engineering, School of Imaging Sciences & Biomedical EngineeringKing’s College London, King’s Health PartnersLondonUnited Kingdom
| | - Karina Lopez
- Department of Biomedical Engineering, School of Imaging Sciences & Biomedical EngineeringKing’s College London, King’s Health PartnersLondonUnited Kingdom
| | - René M. Botnar
- Department of Biomedical Engineering, School of Imaging Sciences & Biomedical EngineeringKing’s College London, King’s Health PartnersLondonUnited Kingdom
- Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
| | - Claudia Prieto
- Department of Biomedical Engineering, School of Imaging Sciences & Biomedical EngineeringKing’s College London, King’s Health PartnersLondonUnited Kingdom
- Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
35
|
Ye JC. Compressed sensing MRI: a review from signal processing perspective. BMC Biomed Eng 2019; 1:8. [PMID: 32903346 PMCID: PMC7412677 DOI: 10.1186/s42490-019-0006-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/04/2019] [Indexed: 11/27/2022] Open
Abstract
Magnetic resonance imaging (MRI) is an inherently slow imaging modality, since it acquires multi-dimensional k-space data through 1-D free induction decay or echo signals. This often limits the use of MRI, especially for high resolution or dynamic imaging. Accordingly, many investigators has developed various acceleration techniques to allow fast MR imaging. For the last two decades, one of the most important breakthroughs in this direction is the introduction of compressed sensing (CS) that allows accurate reconstruction from sparsely sampled k-space data. The recent FDA approval of compressed sensing products for clinical scans clearly reflect the maturity of this technology. Therefore, this paper reviews the basic idea of CS and how this technology have been evolved for various MR imaging problems.
Collapse
Affiliation(s)
- Jong Chul Ye
- Department of Bio and Brain Engineering, Korea Adv. Inst. of Science & Technology (KAIST), 291 Daehak-ro, Daejeon, Korea
| |
Collapse
|
36
|
Akçakaya M, Moeller S, Weingärtner S, Uğurbil K. Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging. Magn Reson Med 2019; 81:439-453. [PMID: 30277269 PMCID: PMC6258345 DOI: 10.1002/mrm.27420] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 04/27/2018] [Accepted: 06/02/2018] [Indexed: 01/07/2023]
Abstract
PURPOSE To develop an improved k-space reconstruction method using scan-specific deep learning that is trained on autocalibration signal (ACS) data. THEORY Robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction trains convolutional neural networks on ACS data. This enables nonlinear estimation of missing k-space lines from acquired k-space data with improved noise resilience, as opposed to conventional linear k-space interpolation-based methods, such as GRAPPA, which are based on linear convolutional kernels. METHODS The training algorithm is implemented using a mean square error loss function over the target points in the ACS region, using a gradient descent algorithm. The neural network contains 3 layers of convolutional operators, with 2 of these including nonlinear activation functions. The noise performance and reconstruction quality of the RAKI method was compared with GRAPPA in phantom, as well as in neurological and cardiac in vivo data sets. RESULTS Phantom imaging shows that the proposed RAKI method outperforms GRAPPA at high (≥4) acceleration rates, both visually and quantitatively. Quantitative cardiac imaging shows improved noise resilience at high acceleration rates (rate 4:23% and rate 5:48%) over GRAPPA. The same trend of improved noise resilience is also observed in high-resolution brain imaging at high acceleration rates. CONCLUSION The RAKI method offers a training database-free deep learning approach for MRI reconstruction, with the potential to improve many existing reconstruction approaches, and is compatible with conventional data acquisition protocols.
Collapse
Affiliation(s)
- Mehmet Akçakaya
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Sebastian Weingärtner
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
- Computer Assisted Clinical Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| |
Collapse
|
37
|
Zhu Y, Kang J, Duan C, Nezafat M, Neisius U, Jang J, Nezafat R. Integrated motion correction and dictionary learning for free‐breathing myocardial T
1
mapping. Magn Reson Med 2018; 81:2644-2654. [DOI: 10.1002/mrm.27579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Yanjie Zhu
- Department of Medicine (Cardiovascular Division)Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen China
| | - Jinkyu Kang
- Department of Medicine (Cardiovascular Division)Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts
| | - Chong Duan
- Department of Medicine (Cardiovascular Division)Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts
| | - Maryam Nezafat
- Department of Medicine (Cardiovascular Division)Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts
| | - Ulf Neisius
- Department of Medicine (Cardiovascular Division)Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts
| | - Jihye Jang
- Department of Medicine (Cardiovascular Division)Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts
- Department of Computer ScienceTechnical University of Munich Munich Germany
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division)Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts
| |
Collapse
|
38
|
Jang J, Tschabrunn CM, Barkagan M, Anter E, Menze B, Nezafat R. Three-dimensional holographic visualization of high-resolution myocardial scar on HoloLens. PLoS One 2018; 13:e0205188. [PMID: 30296291 PMCID: PMC6175509 DOI: 10.1371/journal.pone.0205188] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/28/2018] [Indexed: 11/18/2022] Open
Abstract
Visualization of the complex 3D architecture of myocardial scar could improve guidance of radio-frequency ablation in the treatment of ventricular tachycardia (VT). In this study, we sought to develop a framework for 3D holographic visualization of myocardial scar, imaged using late gadolinium enhancement (LGE), on the augmented reality HoloLens. 3D holographic LGE model was built using the high-resolution 3D LGE image. Smooth endo/epicardial surface meshes were generated using Poisson surface reconstruction. For voxel-wise 3D scar model, every scarred voxel was rendered into a cube which carries the actual resolution of the LGE sequence. For surface scar model, scar information was projected on the endocardial surface mesh. Rendered layers were blended with different transparency and color, and visualized on HoloLens. A pilot animal study was performed where 3D holographic visualization of the scar was performed in 5 swines who underwent controlled infarction and electroanatomic mapping to identify VT substrate. 3D holographic visualization enabled assessment of the complex 3D scar architecture with touchless interaction in a sterile environment. Endoscopic view allowed visualization of scar from the ventricular chambers. Upon completion of the animal study, operator and mapping specialist independently completed the perceived usefulness questionnaire in the six-item usefulness scale. Operator and mapping specialist found it useful (usefulness rating: operator, 5.8; mapping specialist, 5.5; 1–7 scale) to have scar information during the intervention. HoloLens 3D LGE provides a true 3D perception of the complex scar architecture with immersive experience to visualize scar in an interactive and interpretable 3D approach, which may facilitate MR-guided VT ablation.
Collapse
Affiliation(s)
- Jihye Jang
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America
- Department of Computer Science, Technical University of Munich, Munich, Germany
| | - Cory M. Tschabrunn
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Michael Barkagan
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America
| | - Elad Anter
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America
| | - Bjoern Menze
- Department of Computer Science, Technical University of Munich, Munich, Germany
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
39
|
Weller DS, Salerno M, Meyer CH. Content-aware compressive magnetic resonance image reconstruction. Magn Reson Imaging 2018; 52:118-130. [PMID: 29935257 PMCID: PMC6102097 DOI: 10.1016/j.mri.2018.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 11/25/2022]
Abstract
This paper describes an adaptive approach to regularizing model-based reconstructions in magnetic resonance imaging to account for local structure or image content. In conjunction with common models like wavelet and total variation sparsity, this content-aware regularization avoids oversmoothing or compromising image features while suppressing noise and incoherent aliasing from accelerated imaging. To evaluate this regularization approach, the experiments reconstruct images from single- and multi-channel, Cartesian and non-Cartesian, brain and cardiac data. These reconstructions combine common analysis-form regularizers and autocalibrating parallel imaging (when applicable). In most cases, the results show widespread improvement in structural similarity and peak-signal-to-error ratio relative to the fully sampled images. These results suggest that this content-aware regularization can preserve local image structures such as edges while providing denoising power superior to sparsity-promoting or sparsity-reweighted regularization.
Collapse
Affiliation(s)
| | - Michael Salerno
- University of Virginia, Charlottesville, VA 22904, USA; University of Virginia Health System, Charlottesville, VA 22908, USA.
| | - Craig H Meyer
- University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
40
|
Bustin A, Voilliot D, Menini A, Felblinger J, de Chillou C, Burschka D, Bonnemains L, Odille F. Isotropic Reconstruction of MR Images Using 3D Patch-Based Self-Similarity Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1932-1942. [PMID: 29994581 DOI: 10.1109/tmi.2018.2807451] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Isotropic three-dimensional (3D) acquisition is a challenging task in magnetic resonance imaging (MRI). Particularly in cardiac MRI, due to hardware and time limitations, current 3D acquisitions are limited by low-resolution, especially in the through-plane direction, leading to poor image quality in that dimension. To overcome this problem, super-resolution (SR) techniques have been proposed to reconstruct a single isotropic 3D volume from multiple anisotropic acquisitions. Previously, local regularization techniques such as total variation have been applied to limit noise amplification while preserving sharp edges and small features in the images. In this paper, inspired by the recent progress in patch-based reconstruction, we propose a novel isotropic 3D reconstruction scheme that integrates non-local and self-similarity information from 3D patch neighborhoods. By grouping 3D patches with similar structures, we enforce the natural sparsity of MR images, which can be expressed by a low-rank structure, leading to robust image reconstruction with high signal-to-noise ratio efficiency. An Augmented Lagrangian formulation of the problem is proposed to efficiently decompose the optimization into a low-rank volume denoising and a SR reconstruction. Experimental results in simulations, brain imaging and clinical cardiac MRI, demonstrate that the proposed joint SR and self-similarity learning framework outperforms current state-of-the-art methods. The proposed reconstruction of isotropic 3D volumes may be particularly useful for cardiac applications, such as myocardial infarction scar assessment by late gadolinium enhancement MRI.
Collapse
|
41
|
Moeller S, Weingartner S, Akcakaya M. Multi-scale locally low-rank noise reduction for high-resolution dynamic quantitative cardiac MRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:1473-1476. [PMID: 29060157 DOI: 10.1109/embc.2017.8037113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Evaluation of myocardial T1 times is conventionally limited to a single temporal snapshot of the cardiac cycle, leaving the dependence between functional and tissue characterization unexplored. We recently proposed a technique that alleviates this limitation by acquiring dynamic quantitative myocardial T1 maps. However, tradeoffs between temporal resolution, scan duration and SNR limit the spatial resolution. In this work, we propose a multi-scale locally low rank noise reduction approach without parameter-tuning to enable high acceleration rates in the acquisition, facilitating superior spatial and temporal resolutions in dynamic myocardial T1 mapping.
Collapse
|
42
|
Bustin A, Ginami G, Cruz G, Correia T, Ismail TF, Rashid I, Neji R, Botnar RM, Prieto C. Five-minute whole-heart coronary MRA with sub-millimeter isotropic resolution, 100% respiratory scan efficiency, and 3D-PROST reconstruction. Magn Reson Med 2018; 81:102-115. [PMID: 30058252 PMCID: PMC6617822 DOI: 10.1002/mrm.27354] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/23/2018] [Accepted: 04/19/2018] [Indexed: 01/08/2023]
Abstract
Purpose To enable whole‐heart 3D coronary magnetic resonance angiography (CMRA) with isotropic sub‐millimeter resolution in a clinically feasible scan time by combining respiratory motion correction with highly accelerated variable density sampling in concert with a novel 3D patch‐based undersampled reconstruction (3D‐PROST). Methods An undersampled variable density spiral‐like Cartesian trajectory was combined with 2D image‐based navigators to achieve 100% respiratory efficiency and predictable scan time. 3D‐PROST reconstruction integrates structural information from 3D patch neighborhoods through sparse representation, thereby exploiting the redundancy of the 3D anatomy of the coronary arteries in an efficient low‐rank formulation. The proposed framework was evaluated in a static resolution phantom and in 10 healthy subjects with isotropic resolutions of 1.2 mm3 and 0.9 mm3 and undersampling factors of ×5 and ×9. 3D‐PROST was compared against fully sampled (1.2 mm3 only), conventional parallel imaging, and compressed sensing reconstructions. Results Phantom and in vivo (1.2 mm3) reconstructions were in excellent agreement with the reference fully sampled image. In vivo average acquisition times (min:s) were 7:57 ± 1:18 (×5) and 4:35 ± 0:44 (×9) for 0.9 mm3 resolution. Sub‐millimeter 3D‐PROST resulted in excellent depiction of the left and right coronary arteries including small branch vessels, leading to further improvements in vessel sharpness and visible vessel length in comparison with conventional reconstruction techniques. Image quality rated by 2 experts demonstrated that 3D‐PROST provides good image quality and is robust even at high acceleration factors. Conclusion The proposed approach enables free‐breathing whole‐heart 3D CMRA with isotropic sub‐millimeter resolution in <5 min and achieves improved coronary artery visualization in a short and predictable scan time.
Collapse
Affiliation(s)
- Aurélien Bustin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Giulia Ginami
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Gastão Cruz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Teresa Correia
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Tevfik F Ismail
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Imran Rashid
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
43
|
Eo T, Jun Y, Kim T, Jang J, Lee H, Hwang D. KIKI
‐net: cross‐domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn Reson Med 2018; 80:2188-2201. [PMID: 29624729 DOI: 10.1002/mrm.27201] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Taejoon Eo
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul Korea
| | - Yohan Jun
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul Korea
| | - Taeseong Kim
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul Korea
| | - Jinseong Jang
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul Korea
| | - Ho‐Joon Lee
- Department of Radiology and Research Institute of Radiological ScienceSeverance Hospital, Yonsei University College of MedicineSeoul Republic of Korea
| | - Dosik Hwang
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul Korea
| |
Collapse
|
44
|
Fahmy AS, Neisius U, Tsao CW, Berg S, Goddu E, Pierce P, Basha TA, Ngo L, Manning WJ, Nezafat R. Gray blood late gadolinium enhancement cardiovascular magnetic resonance for improved detection of myocardial scar. J Cardiovasc Magn Reson 2018; 20:22. [PMID: 29562921 PMCID: PMC5863465 DOI: 10.1186/s12968-018-0442-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/02/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Low scar-to-blood contrast in late gadolinium enhanced (LGE) MRI limits the visualization of scars adjacent to the blood pool. Nulling the blood signal improves scar detection but results in lack of contrast between myocardium and blood, which makes clinical evaluation of LGE images more difficult. METHODS GB-LGE contrast is achieved through partial suppression of the blood signal using T2 magnetization preparation between the inversion pulse and acquisition. The timing parameters of GB-LGE sequence are determined by optimizing a cost-function representing the desired tissue contrast. The proposed 3D GB-LGE sequence was evaluated using phantoms, human subjects (n = 45) and a swine model of myocardial infarction (n = 5). Two independent readers subjectively evaluated the image quality and ability to identify and localize scarring in GB-LGE compared to black-blood LGE (BB-LGE) (i.e., with complete blood nulling) and conventional (bright-blood) LGE. RESULTS GB-LGE contrast was successfully generated in phantoms and all in-vivo scans. The scar-to-blood contrast was improved in GB-LGE compared to conventional LGE in humans (1.1 ± 0.5 vs. 0.6 ± 0.4, P < 0.001) and in animals (1.5 ± 0.2 vs. -0.03 ± 0.2). In patients, GB-LGE detected more tissue scarring compared to BB-LGE and conventional LGE. The subjective scores of the GB-LGE ability for localizing LV scar and detecting papillary scar were improved as compared with both BB-LGE (P < 0.024) and conventional LGE (P < 0.001). In the swine infarction model, GB-LGE scores for the ability to localize LV scar scores were consistently higher than those of both BB-LGE and conventional-LGE. CONCLUSION GB-LGE imaging improves the ability to identify and localize myocardial scarring compared to both BB-LGE and conventional LGE. Further studies are warranted to histologically validate GB-LGE.
Collapse
Affiliation(s)
- Ahmed S. Fahmy
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
- Biomedical Engineering Department, School of Engineering, Cairo University, Giza, Egypt
| | - Ulf Neisius
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Connie W. Tsao
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Sophie Berg
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Elizabeth Goddu
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Patrick Pierce
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Tamer A. Basha
- Biomedical Engineering Department, School of Engineering, Cairo University, Giza, Egypt
| | - Long Ngo
- Department of Medicine (Division of General Medicine and Primary Care), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA USA
| | - Warren J. Manning
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA USA
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| |
Collapse
|
45
|
Nakamori S, Bui AH, Jang J, El-Rewaidy HA, Kato S, Ngo LH, Josephson ME, Manning WJ, Nezafat R. Increased myocardial native T 1 relaxation time in patients with nonischemic dilated cardiomyopathy with complex ventricular arrhythmia. J Magn Reson Imaging 2018; 47:779-786. [PMID: 28737018 PMCID: PMC5967630 DOI: 10.1002/jmri.25811] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/21/2017] [Indexed: 02/01/2023] Open
Abstract
PURPOSE To study the relationship between diffuse myocardial fibrosis and complex ventricular arrhythmias (ComVA) in patients with nonischemic dilated cardiomyopathy (NICM). We hypothesized that NICM patients with ComVA would have a higher native myocardial T1 time, suggesting more extensive myocardial diffuse fibrosis. MATERIALS AND METHODS We prospectively enrolled NICM patients with a history of ComVA (n = 50) and age-matched NICM patients without ComVA (n = 57). Imaging was performed at 1.5T with a protocol that included cine magnetic resonance imaging (MRI) for left ventricular (LV) function, late gadolinium enhancement (LGE) for focal scar, and native T1 mapping for diffuse fibrosis assessment. RESULTS Global native T1 time was significantly higher in patients with NICM with ComVA when compared to patients with NICM without ComVA (1131 ± 42 vs. 1107 ± 45 msec, P = 0.006), and this finding remained after excluding segments with scar on LGE (1124 ± 36 vs. 1102 ± 44 msec, P = 0.006). Native T1 was similar in NICM patients with and without the presence of LGE (1121 ± 39 vs. 1117 ± 48 msec, P = 0.68) and mildly correlated with LV end-diastolic volume index (r = 0.27, P = 0.005), LV end-systolic volume index (r = 0.24, P = 0.01), and LV ejection fraction (r = -0.28, P = 0.003). Native T1 value for each 10-msec increment was an independent predictor of ComVA (odds ratio 1.14, 95% confidence interval 1.03-1.25; P = 0.008) beyond LV function and LGE. CONCLUSION NICM patients with ComVA have higher native T1 compared to NICM without any documented ComVA. Native myocardial T1 is independently associated with ComVA, after adjusting for LV function and LGE. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:779-786. In memoriam: The authors are grateful for Dr. Josephson's inspiring guidance and contributions to this study.
Collapse
Affiliation(s)
- Shiro Nakamori
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - An H. Bui
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Harvard-Thorndike Electrophysiology Institute, Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jihye Jang
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Hossam A. El-Rewaidy
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Shingo Kato
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Long H. Ngo
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Mark E. Josephson
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Harvard-Thorndike Electrophysiology Institute, Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Warren J. Manning
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Reza Nezafat
- Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
46
|
|
47
|
Liu Y, Tao X, Ma J, Bian Z, Zeng D, Feng Q, Chen W, Zhang H. Motion guided Spatiotemporal Sparsity for high quality 4D-CBCT reconstruction. Sci Rep 2017; 7:17461. [PMID: 29234074 PMCID: PMC5727071 DOI: 10.1038/s41598-017-17668-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/29/2017] [Indexed: 11/25/2022] Open
Abstract
Conventional cone-beam computed tomography is often deteriorated by respiratory motion blur, which negatively affects target delineation. On the other side, the four dimensional cone-beam computed tomography (4D-CBCT) can be considered to describe tumor and organ motion. But for current on-board CBCT imaging system, the slow rotation speed limits the projection number at each phase, and the associated reconstructions are contaminated by noise and streak artifacts using the conventional algorithm. To address the problem, we propose a novel framework to reconstruct 4D-CBCT from the under-sampled measurements—Motion guided Spatiotemporal Sparsity (MgSS). In this algorithm, we try to divide the CBCT images at each phase into cubes (3D blocks) and track the cubes with estimated motion field vectors through phase, then apply regional spatiotemporal sparsity on the tracked cubes. Specifically, we recast the tracked cubes into four-dimensional matrix, and use the higher order singular value decomposition (HOSVD) technique to analyze the regional spatiotemporal sparsity. Subsequently, the blocky spatiotemporal sparsity is incorporated into a cost function for the image reconstruction. The phantom simulation and real patient data are used to evaluate this algorithm. Results show that the MgSS algorithm achieved improved 4D-CBCT image quality with less noise and artifacts compared to the conventional algorithms.
Collapse
Affiliation(s)
- Yang Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xi Tao
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianhua Ma
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhaoying Bian
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Dong Zeng
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qianjin Feng
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wufan Chen
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Hua Zhang
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
48
|
A review of GPU-based medical image reconstruction. Phys Med 2017; 42:76-92. [PMID: 29173924 DOI: 10.1016/j.ejmp.2017.07.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/06/2017] [Accepted: 07/30/2017] [Indexed: 11/20/2022] Open
Abstract
Tomographic image reconstruction is a computationally demanding task, even more so when advanced models are used to describe a more complete and accurate picture of the image formation process. Such advanced modeling and reconstruction algorithms can lead to better images, often with less dose, but at the price of long calculation times that are hardly compatible with clinical workflows. Fortunately, reconstruction tasks can often be executed advantageously on Graphics Processing Units (GPUs), which are exploited as massively parallel computational engines. This review paper focuses on recent developments made in GPU-based medical image reconstruction, from a CT, PET, SPECT, MRI and US perspective. Strategies and approaches to get the most out of GPUs in image reconstruction are presented as well as innovative applications arising from an increased computing capacity. The future of GPU-based image reconstruction is also envisioned, based on current trends in high-performance computing.
Collapse
|
49
|
Basha TA, Akçakaya M, Liew C, Tsao CW, Delling FN, Addae G, Ngo L, Manning WJ, Nezafat R. Clinical performance of high-resolution late gadolinium enhancement imaging with compressed sensing. J Magn Reson Imaging 2017; 46:1829-1838. [PMID: 28301075 DOI: 10.1002/jmri.25695] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 02/15/2017] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To evaluate diagnostic image quality of 3D late gadolinium enhancement (LGE) with high isotropic spatial resolution (∼1.4 mm3 ) images reconstructed from randomly undersampled k-space using LOw-dimensional-structure Self-learning and Thresholding (LOST). MATERIALS AND METHODS We prospectively enrolled 270 patients (181 men; 55 ± 14 years) referred for myocardial viability assessment. 3D LGE with isotropic spatial resolution of 1.4 ± 0.1 mm3 was acquired at 1.5T using a LOST acceleration rate of 3 to 5. In a subset of 121 patients, 3D LGE or phase-sensitive LGE were acquired with parallel imaging with an acceleration rate of 2 for comparison. Two readers evaluated image quality using a scale of 1 (poor) to 4 (excellent) and assessed for scar presence. The McNemar test statistic was used to compare the proportion of detected scar between the two sequences. We assessed the association between image quality and characteristics (age, gender, torso dimension, weight, heart rate), using generalized linear models. RESULTS Overall, LGE detection proportions for 3D LGE with LOST were similar between readers 1 and 2 (16.30% vs. 18.15%). For image quality, readers gave 85.9% and 80.0%, respectively, for images categorized as good or excellent. Overall proportion of scar presence was not statistically different from conventional 3D LGE (28% vs. 33% [P = 0.17] for reader 1 and 26% vs. 31% [P = 0.37] for reader 2). Increasing subject heart rate was associated with lower image quality (estimated slope = -0.009 (P = 0.001)). CONCLUSION High-resolution 3D LGE with LOST yields good to excellent image quality in >80% of patients and identifies patients with LV scar at the same rate as conventional 3D LGE. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1829-1838.
Collapse
Affiliation(s)
- Tamer A Basha
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Systems and Biomedical Engineering Department, University of Cairo, Cairo, Egypt
| | - Mehmet Akçakaya
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, USA.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Charlene Liew
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Connie W Tsao
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Francesca N Delling
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Gifty Addae
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Long Ngo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Warren J Manning
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Nezafat
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
50
|
Leshem E, Tschabrunn CM, Jang J, Whitaker J, Zilberman I, Beeckler C, Govari A, Kautzner J, Peichl P, Nezafat R, Anter E. High-Resolution Mapping of Ventricular Scar. JACC Clin Electrophysiol 2017; 3:220-231. [DOI: 10.1016/j.jacep.2016.12.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/17/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
|