1
|
Shen Q, Wu W, Chiew M, Ji Y, Woods JG, Okell TW. Ultra-high temporal resolution 4D angiography using arterial spin labeling with subspace reconstruction. Magn Reson Med 2025; 93:1924-1941. [PMID: 40063716 PMCID: PMC11893029 DOI: 10.1002/mrm.30407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/23/2024] [Accepted: 12/04/2024] [Indexed: 03/14/2025]
Abstract
PURPOSE To achieve ultra-high temporal resolution non-contrast 4D angiography with improved spatiotemporal fidelity. METHODS Continuous data acquisition using 3D golden-angle sampling following an arterial spin labeling preparation allows for flexibly reconstructing 4D dynamic angiograms at arbitrary temporal resolutions. However, k-space data is often temporally "binned" before image reconstruction, negatively affecting spatiotemporal fidelity and limiting temporal resolution. In this work, a subspace was extracted by linearly compressing a dictionary constructed from simulated curves of an angiographic kinetic model. The subspace was used to represent and reconstruct the voxelwise signal timecourse at the same temporal resolution as the data acquisition without temporal binning. Physiological parameters were estimated from the resulting images using a Bayesian fitting approach. A group of eight healthy subjects were scanned and the in vivo results reconstructed by different methods were compared. Because of the difficulty of obtaining ground truth 4D angiograms with ultra-high temporal resolution, the in vivo results were cross-validated with numerical simulations. RESULTS The proposed method enables 4D time-resolved angiography with much higher temporal resolution (14.7 ms) than previously reported (˜50 ms) while maintaining high spatial resolution (1.1 mm isotropic). Blood flow dynamics were depicted in greater detail, thin vessel visibility was improved, and the estimated physiological parameters also exhibited more realistic spatial patterns with the proposed method. CONCLUSION Incorporating a subspace compressed kinetic model into the reconstruction of 4D ASL angiograms notably improved the temporal resolution and spatiotemporal fidelity, which was subsequently beneficial for accurate physiological modeling.
Collapse
Affiliation(s)
- Qijia Shen
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of Oxford
OxfordUK
| | - Wenchuan Wu
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of Oxford
OxfordUK
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of Oxford
OxfordUK
- Physical SciencesSunnybrook Research InstituteTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Yang Ji
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of Oxford
OxfordUK
| | - Joseph G. Woods
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of Oxford
OxfordUK
| | - Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of Oxford
OxfordUK
| |
Collapse
|
2
|
Woods JG, Achten E, Asllani I, Bolar DS, Dai W, Detre JA, Fan AP, Fernández-Seara M, Golay X, Günther M, Guo J, Hernandez-Garcia L, Ho ML, Juttukonda MR, Lu H, MacIntosh BJ, Madhuranthakam AJ, Mutsaerts HJ, Okell TW, Parkes LM, Pinter N, Pinto J, Qin Q, Smits M, Suzuki Y, Thomas DL, Van Osch MJ, Wang DJJ, Warnert EA, Zaharchuk G, Zelaya F, Zhao M, Chappell MA. Recommendations for quantitative cerebral perfusion MRI using multi-timepoint arterial spin labeling: Acquisition, quantification, and clinical applications. Magn Reson Med 2024; 92:469-495. [PMID: 38594906 PMCID: PMC11142882 DOI: 10.1002/mrm.30091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/09/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.
Collapse
Affiliation(s)
- Joseph G. Woods
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Eric Achten
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Iris Asllani
- Department of Neuroscience, University of Sussex, UK and Department of Biomedical Engineering, Rochester Institute of Technology, USA
| | - Divya S. Bolar
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY, USA, 13902
| | - John A. Detre
- Department of Neurology, University of Pennsylvania, 3 Dulles Building, 3400 Spruce Street, Philadelphia, PA 19104 USA
| | - Audrey P. Fan
- Department of Biomedical Engineering, Department of Neurology, University of California Davis, Davis, CA, USA
| | - Maria Fernández-Seara
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Xavier Golay
- UCL Queen Square Institute of Neurology, University College London, London, UK; Gold Standard Phantoms, UK
| | - Matthias Günther
- Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- Departments of Physics and Electrical Engineering, University of Bremen, Bremen, Germany
| | - Jia Guo
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | | | - Mai-Lan Ho
- Department of Radiology, University of Missouri, Columbia, MO, USA. ORCID: 0000-0002-9455-1350
| | - Meher R. Juttukonda
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bradley J. MacIntosh
- Hurvitz Brain Sciences Program, Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Computational Radiology & Artificial Intelligence unit, Oslo University Hospital, Oslo, Norway
| | - Ananth J. Madhuranthakam
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Henk-Jan Mutsaerts
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laura M. Parkes
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, UK
| | - Nandor Pinter
- Dent Neurologic Institute, Buffalo, New York, USA; University at Buffalo Neurosurgery, Buffalo, New York, USA
| | - Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
- Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, NL
| | - Yuriko Suzuki
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David L. Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matthias J.P. Van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Danny JJ Wang
- Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Esther A.H. Warnert
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, NL
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Moss Zhao
- Department of Radiology, Stanford University, Stanford, CA, USA
- Maternal & Child Health Research Institute, Stanford University, Stanford, CA, USA
| | - Michael A. Chappell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
3
|
Okell TW, Chiew M. Optimization of 4D combined angiography and perfusion using radial imaging and arterial spin labeling. Magn Reson Med 2023; 89:1853-1870. [PMID: 36533868 PMCID: PMC10952652 DOI: 10.1002/mrm.29558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE To extend and optimize a non-contrast MRI technique to obtain whole head 4D (time-resolved 3D) qualitative angiographic and perfusion images from a single scan. METHODS 4D combined angiography and perfusion using radial imaging and arterial spin labeling (CAPRIA) uses pseudocontinuous labeling with a 3D golden ratio ("koosh ball") readout to continuously image the blood water as it travels through the arterial system and exchanges into the tissue. High spatial/temporal resolution angiograms and low spatial/temporal resolution perfusion images can be flexibly reconstructed from the same raw k-space data. Constant and variable flip angle (CFA and VFA, respectively) excitation schedules were optimized through simulations and tested in healthy volunteers. A conventional sensitivity encoding (SENSE) reconstruction was compared against a locally low rank (LLR) reconstruction, which leverages spatiotemporal correlations. Comparison was also made with time-matched time-of-flight angiography and multi-delay EPI perfusion images. Differences in image quality were assessed through split-scan repeatability. RESULTS The optimized VFA schedule (2-9°) resulted in a significant (p < 0.001) improvement in image quality (up to 84% vs. CFA), particularly for the lower SNR perfusion images. The LLR reconstruction provided effective denoising without biasing the signal timecourses, significantly improving angiographic and perfusion image quality and repeatability (up to 143%, p < 0.001). 4D CAPRIA performed well compared with time-of-flight angiography and had better perfusion signal repeatability than the EPI-based approach (p < 0.001). CONCLUSION 4D CAPRIA optimized using a VFA schedule and LLR reconstruction can yield high quality whole head 4D angiograms and perfusion images from a single scan.
Collapse
Affiliation(s)
- Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of Oxford
OxfordUK
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of Oxford
OxfordUK
| |
Collapse
|
4
|
Woods JG, Schauman SS, Chiew M, Chappell MA, Okell TW. Time-encoded pseudo-continuous arterial spin labeling: Increasing SNR in ASL dynamic angiography. Magn Reson Med 2023; 89:1323-1341. [PMID: 36255158 PMCID: PMC10091734 DOI: 10.1002/mrm.29491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/28/2022] [Accepted: 09/23/2022] [Indexed: 02/01/2023]
Abstract
PURPOSE Dynamic angiography using arterial spin labeling (ASL) can provide detailed hemodynamic information. However, the long time-resolved readouts require small flip angles to preserve ASL signal for later timepoints, limiting SNR. By using time-encoded ASL to generate temporal information, the readout can be shortened. Here, the SNR improvements from using larger flip angles, made possible by the shorter readout, are quantitatively investigated. METHODS The SNR of a conventional protocol with nine Look-Locker readouts and a 4 × $$ \times $$ 3 time-encoded protocol with three Look-Locker readouts (giving nine matched timepoints) were compared using simulations and in vivo data. Both protocols were compared using readouts with constant flip angles (CFAs) and variable flip angles (VFAs), where the VFA scheme was designed to produce a consistent ASL signal across readouts. Optimization of the background suppression to minimize physiological noise across readouts was also explored. RESULTS The time-encoded protocol increased in vivo SNR by 103% and 96% when using CFAs or VFAs, respectively. Use of VFAs improved SNR compared with CFAs by 25% and 21% for the conventional and time-encoded protocols, respectively. The VFA scheme also removed signal discontinuities in the time-encoded data. Preliminary data suggest that optimizing the background suppression could improve in vivo SNR by a further 16%. CONCLUSIONS Time encoding can be used to generate additional temporal information in ASL angiography. This enables the use of larger flip angles, which can double the SNR compared with a non-time-encoded protocol. The shortened time-encoded readout can also lead to improved background suppression, reducing physiological noise and further improving SNR.
Collapse
Affiliation(s)
- Joseph G Woods
- Wellcome Centre for Integrated Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - S Sophie Schauman
- Wellcome Centre for Integrated Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom.,Department of Radiology, Stanford University, Stanford, California, USA
| | - Mark Chiew
- Wellcome Centre for Integrated Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - Michael A Chappell
- Wellcome Centre for Integrated Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom.,Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Thomas W Okell
- Wellcome Centre for Integrated Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Chakwizira A, Ahlgren A, Knutsson L, Wirestam R. Non-parametric deconvolution using Bézier curves for quantification of cerebral perfusion in dynamic susceptibility contrast MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE 2022; 35:791-804. [PMID: 35025071 PMCID: PMC9463354 DOI: 10.1007/s10334-021-00995-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/03/2022]
Abstract
Objective Deconvolution is an ill-posed inverse problem that tends to yield non-physiological residue functions R(t) in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI). In this study, the use of Bézier curves is proposed for obtaining physiologically reasonable residue functions in perfusion MRI. Materials and methods Cubic Bézier curves were employed, ensuring R(0) = 1, bounded-input, bounded-output stability and a non-negative monotonically decreasing solution, resulting in 5 parameters to be optimized. Bézier deconvolution (BzD), implemented in a Bayesian framework, was tested by simulation under realistic conditions, including effects of arterial delay and dispersion. BzD was also applied to DSC-MRI data from a healthy volunteer. Results Bézier deconvolution showed robustness to different underlying residue function shapes. Accurate perfusion estimates were observed, except for boxcar residue functions at low signal-to-noise ratio. BzD involving corrections for delay, dispersion, and delay with dispersion generally returned accurate results, except for some degree of cerebral blood flow (CBF) overestimation at low levels of each effect. Maps of mean transit time and delay were markedly different between BzD and block-circulant singular value decomposition (oSVD) deconvolution. Discussion A novel DSC-MRI deconvolution method based on Bézier curves was implemented and evaluated. BzD produced physiologically plausible impulse response, without spurious oscillations, with generally less CBF underestimation than oSVD. Supplementary Information The online version contains supplementary material available at 10.1007/s10334-021-00995-0.
Collapse
Affiliation(s)
- Arthur Chakwizira
- Department of Medical Radiation Physics, Skåne University Hospital, Lund University, 22185, Lund, Sweden
| | - André Ahlgren
- Department of Medical Radiation Physics, Skåne University Hospital, Lund University, 22185, Lund, Sweden
- AMRA Medical AB, Linköping, Sweden
| | - Linda Knutsson
- Department of Medical Radiation Physics, Skåne University Hospital, Lund University, 22185, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Ronnie Wirestam
- Department of Medical Radiation Physics, Skåne University Hospital, Lund University, 22185, Lund, Sweden.
| |
Collapse
|
6
|
Phellan R, Lindner T, Helle M, Falcao AX, Yasuda CL, Sokolska M, Jager RH, Forkert ND. Segmentation-Based Blood Flow Parameter Refinement in Cerebrovascular Structures Using 4-D Arterial Spin Labeling MRA. IEEE Trans Biomed Eng 2019; 67:1936-1946. [PMID: 31689181 DOI: 10.1109/tbme.2019.2951082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Cerebrovascular diseases are one of the main global causes of death and disability in the adult population. The preferred imaging modality for the diagnostic routine is digital subtraction angiography, an invasive modality. Time-resolved three-dimensional arterial spin labeling magnetic resonance angiography (4D ASL MRA) is an alternative non-invasive modality, which captures morphological and blood flow data of the cerebrovascular system, with high spatial and temporal resolution. This work proposes advanced medical image processing methods that extract the anatomical and hemodynamic information contained in 4D ASL MRA datasets. METHODS A previously published segmentation method, which uses blood flow data to improve its accuracy, is extended to estimate blood flow parameters by fitting a mathematical model to the measured vascular signal. The estimated values are then refined using regression techniques within the cerebrovascular segmentation. The proposed method was evaluated using fifteen 4D ASL MRA phantoms, with ground-truth morphological and hemodynamic data, fifteen 4D ASL MRA datasets acquired from healthy volunteers, and two 4D ASL MRA datasets from patients with a stenosis. RESULTS The proposed method reached an average Dice similarity coefficient of 0.957 and 0.938 in the phantom and real dataset segmentation evaluations, respectively. The estimated blood flow parameter values are more similar to the ground-truth values after the refinement step, when using phantoms. A qualitative analysis showed that the refined blood flow estimation is more realistic compared to the raw hemodynamic parameters. CONCLUSION The proposed method can provide accurate segmentations and blood flow parameter estimations in the cerebrovascular system using 4D ASL MRA datasets. SIGNIFICANCE The information obtained with the proposed method can help clinicians and researchers to study the cerebrovascular system non-invasively.
Collapse
|
7
|
Schauman SS, Chiew M, Okell TW. Highly accelerated vessel-selective arterial spin labeling angiography using sparsity and smoothness constraints. Magn Reson Med 2019; 83:892-905. [PMID: 31538357 PMCID: PMC6899790 DOI: 10.1002/mrm.27979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/25/2019] [Accepted: 08/10/2019] [Indexed: 11/27/2022]
Abstract
Purpose To demonstrate that vessel selectivity in dynamic arterial spin labeling angiography can be achieved without any scan‐time penalty or noticeable loss of image quality compared with conventional arterial spin labeling angiography. Methods Simulations on a numerical phantom were used to assess whether the increased sparsity of vessel‐encoded angiograms compared with non‐vessel‐encoded angiograms alone can improve reconstruction results in a compressed‐sensing framework. Further simulations were performed to study whether the difference in relative sparsity between nonselective and vessel‐selective dynamic angiograms was sufficient to achieve similar image quality at matched scan times in the presence of noise. Finally, data were acquired from 5 healthy volunteers to validate the technique in vivo. All data, both simulated and in vivo, were sampled in 2D using a golden‐angle radial trajectory and reconstructed by enforcing image domain sparsity and temporal smoothness on the angiograms in a parallel imaging and compressed‐sensing framework. Results Relative sparsity was established as a primary factor governing the reconstruction fidelity. Using the proposed reconstruction scheme, differences between vessel‐selective and nonselective angiography were negligible compared with the dominant factor of total scan time in both simulations and in vivo experiments at acceleration factors up to R = 34. The reconstruction quality was not heavily dependent on hand‐tuning the parameters of the reconstruction. Conclusion The increase in relative sparsity of vessel‐selective angiograms compared with nonselective angiograms can be leveraged to achieve higher acceleration without loss of image quality, resulting in the acquisition of vessel‐selective information at no scan‐time cost.
Collapse
Affiliation(s)
- S Sophie Schauman
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Thomas W Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
The advantages of radial trajectories for vessel-selective dynamic angiography with arterial spin labeling. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 32:643-653. [PMID: 31422519 PMCID: PMC6825642 DOI: 10.1007/s10334-019-00771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/10/2019] [Accepted: 07/27/2019] [Indexed: 10/31/2022]
Abstract
OBJECTIVES To demonstrate the advantages of radial k-space trajectories over conventional Cartesian approaches for accelerating the acquisition of vessel-selective arterial spin labeling (ASL) dynamic angiograms, which are conventionally time consuming to acquire. MATERIALS AND METHODS Vessel-encoded pseudocontinuous ASL was combined with time-resolved balanced steady-state free precession (bSSFP) and spoiled gradient echo (SPGR) readouts to obtain dynamic vessel-selective angiograms arising from the four main brain-feeding arteries. Dynamic 2D protocols with acquisition times of one minute or less were achieved through radial undersampling or a Cartesian parallel imaging approach. For whole-brain dynamic 3D imaging, magnetic field inhomogeneity and the high acceleration factors required rule out the use of bSSFP and Cartesian trajectories, so the feasibility of acquiring 3D radial SPGR angiograms was tested. RESULTS The improved SNR efficiency of bSSFP over SPGR was confirmed for 2D dynamic imaging. Radial trajectories had considerable advantages over a Cartesian approach, including a factor of two improvements in the measured SNR (p < 0.00001, N = 6), improved distal vessel delineation and the lack of a need for calibration data. The 3D radial approach produced good quality angiograms with negligible artifacts despite the high acceleration factor (R = 13). CONCLUSION Radial trajectories outperform conventional Cartesian techniques for accelerated vessel-selective ASL dynamic angiography.
Collapse
|
9
|
Rydhög A, Pasternak O, Ståhlberg F, Ahlgren A, Knutsson L, Wirestam R. Estimation of diffusion, perfusion and fractional volumes using a multi-compartment relaxation-compensated intravoxel incoherent motion (IVIM) signal model. Eur J Radiol Open 2019; 6:198-205. [PMID: 31193664 PMCID: PMC6538803 DOI: 10.1016/j.ejro.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
Compartmental diffusion MRI models that account for intravoxel incoherent motion (IVIM) of blood perfusion allow for estimation of the fractional volume of the microvascular compartment. Conventional IVIM models are known to be biased by not accounting for partial volume effects caused by free water and cerebrospinal fluid (CSF), or for tissue-dependent relaxation effects. In this work, a three-compartment model (tissue, free water and blood) that includes relaxation terms is introduced. To estimate the model parameters, in vivo human data were collected with multiple echo times (TE), inversion times (TI) and b-values, which allowed a direct relaxation estimate alongside estimation of perfusion, diffusion and fractional volume parameters. Compared to conventional two-compartment models (with and without relaxation compensation), the three-compartment model showed less effects of CSF contamination. The proposed model yielded significantly different volume fractions of blood and tissue compared to the non-relaxation-compensated model, as well as to the conventional two-compartment model, suggesting that previously reported parameter ranges, using models that do not account for relaxation, should be reconsidered.
Collapse
Key Words
- CSF, cerebrospinal fluid
- Diffusion
- GM, grey matter
- IR, inversion recovery
- IVIM, intravoxel incoherent motion
- Intravoxel incoherent motion
- PVE, partial volume effect
- Perfusion fraction
- Pseudo-diffusion
- ROI, region of interest
- Relaxation
- SNR, signal-to-noise ratio
- T1, longitudinal relaxation time
- T2, transverse relaxation time
- TE, echo time
- TI, inversion time
- TR, repetition time
- WM, white matter
Collapse
Affiliation(s)
- Anna Rydhög
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Freddy Ståhlberg
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.,Department of Diagnostic Radiology, Lund University, Lund, Sweden.,Lund University Bioimaging Center, Lund University, Lund, Sweden
| | - André Ahlgren
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.,The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ronnie Wirestam
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Okell TW. Combined angiography and perfusion using radial imaging and arterial spin labeling. Magn Reson Med 2019; 81:182-194. [PMID: 30024066 PMCID: PMC6282709 DOI: 10.1002/mrm.27366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/28/2018] [Accepted: 04/25/2018] [Indexed: 11/24/2022]
Abstract
PURPOSE To demonstrate the feasibility of a novel noninvasive MRI technique for the comprehensive evaluation of blood flow to the brain: combined angiography and perfusion using radial imaging and arterial spin labeling (CAPRIA). METHODS In the CAPRIA pulse sequence, blood labeled with a pseudocontinuous arterial spin labeling pulse train is continuously imaged as it flows through the arterial tree and into the brain tissue using a golden ratio radial readout. From a single raw data set, this flexible imaging approach allows the reconstruction of both high spatial/temporal resolution angiographic images with a high undersampling factor and low spatial/temporal resolution perfusion images with a low undersampling factor. The sparse and high SNR nature of angiographic images ensures that radial undersampling artifacts are relatively benign, even when using a simple regridding image reconstruction. Pulse sequence parameters were optimized through sampling efficiency calculations and the numerical evaluation of modified pseudocontinuous arterial spin labeling signal models. A comparison was made against conventional pseudocontinuous arterial spin labeling angiographic and perfusion acquisitions. RESULTS 2D CAPRIA data in healthy volunteers demonstrated the feasibility of this approach, with good vessel visualization in the angiographic images and clear tissue perfusion signal when reconstructed at 108-ms and 252-ms temporal resolution, respectively. Images were qualitatively similar to those from conventional acquisitions, but CAPRIA had significantly higher SNR efficiency (48% improvement on average, P = 0.02). CONCLUSION The CAPRIA technique shows potential for the efficient evaluation of both macrovascular blood flow and tissue perfusion within a single scan, with potential applications in a range of cerebrovascular diseases.
Collapse
Affiliation(s)
- Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
11
|
Jezzard P, Chappell MA, Okell TW. Arterial spin labeling for the measurement of cerebral perfusion and angiography. J Cereb Blood Flow Metab 2018; 38:603-626. [PMID: 29168667 PMCID: PMC5888859 DOI: 10.1177/0271678x17743240] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Arterial spin labeling (ASL) is an MRI technique that was first proposed a quarter of a century ago. It offers the prospect of non-invasive quantitative measurement of cerebral perfusion, making it potentially very useful for research and clinical studies, particularly where multiple longitudinal measurements are required. However, it has suffered from a number of challenges, including a relatively low signal-to-noise ratio, and a confusing number of sequence variants, thus hindering its clinical uptake. Recently, however, there has been a consensus adoption of an accepted acquisition and analysis framework for ASL, and thus a better penetration onto clinical MRI scanners. Here, we review the basic concepts in ASL and describe the current state-of-the-art acquisition and analysis approaches, and the versatility of the method to perform both quantitative cerebral perfusion measurement, along with quantitative cerebral angiographic measurement.
Collapse
Affiliation(s)
- Peter Jezzard
- 1 Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Thomas W Okell
- 1 Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Cong F, Zhuo Y, Yu S, Zhang X, Miao X, An J, Wang S, Cao Y, Zhang Y, Song HK, Wang DJ, Yan L. Noncontrast-enhanced time-resolved 4D dynamic intracranial MR angiography at 7T: A feasibility study. J Magn Reson Imaging 2017; 48:111-120. [PMID: 29232026 DOI: 10.1002/jmri.25923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/28/2017] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Arterial spin labeling (ASL) based-noncontrast-enhanced 4D MR angiography (NCE 4D MRA) shows potential in characterizing cerebrovascular hemodynamics in cerebrovascular disorders. Ultrahigh-field theoretically benefits ASL signal with increased inherent signal-to-noise ratio (SNR) and prolonged blood T1 , which may provide improved delineation of vasculature in 4D MRA. PURPOSE To investigate the feasibility of NCE 4D MRA using 3D Cartesian trajectory and stack-of-stars (SOS) golden angle radial trajectory at 7T. STUDY TYPE A prospective study. SUBJECTS Six normal volunteers and eight patients with arteriovenous malformation (AVM). FIELD STRENGTH/SEQUENCE NCE 4D MRA with Cartesian and radial trajectories were performed at 3T and 7T. ASSESSMENT Subjective image quality of 4D MRA was evaluated using a 4-point scale by two experienced neuroradiologists. The characterization of AVM components with 4D MRA and DSA was also graded using the Spetzler-Martin grading scale. STATISTICAL TESTS Cohen's kappa coefficient was calculated to evaluate the agreement between two readers within each 4D MRA technique (Cartesian and Radial). A Wilcoxon signed-rank test was performed to compare the subjective image quality scores of 4D MRA between Cartesian and radial trajectories, and between 7T and 3T, respectively. RESULTS Good-to-excellent image quality was achieved in 4D MRA with both Cartesian (3.83 ± 0.41) and radial (3.42 ± 0.49) acquisitions in healthy volunteers at 7T. However, markedly reduced scan time was needed with radial acquisition. 4D MRA at 7T (3.31 ± 0.59) shows better delineation of AVM lesion features, especially the vein drainage, compared with that of 3T (2.83 ± 0.75), although no statistical significance was achieved (P = 0.180). DATA CONCLUSION The feasibility of ASL based 4D MRA at 7T with Cartesian and SOS golden angle radial acquisition was demonstrated. The clinical evaluation of 4D MRA in AVMs between 3T and 7T suggested 7T 4D MRA images acquired with radial acquisition demonstrate excellent delineation of AVM features, especially the draining veins. LEVEL OF EVIDENCE 2 Technical Efficacy Stage 2 J. Magn. Reson. Imaging 2017.
Collapse
Affiliation(s)
- Fei Cong
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Songlin Yu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xianchang Zhang
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinyuan Miao
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing An
- Siemens Shenzhen Magnetic Resonance Ltd., Siemens MRI Center, Shenzhen, Guangdong, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hee Kwon Song
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | - Danny Jj Wang
- Laboratory of Functional MRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Lirong Yan
- Laboratory of Functional MRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
13
|
Phellan R, Lindner T, Helle M, Falcao AX, Forkert ND. Automatic Temporal Segmentation of Vessels of the Brain Using 4D ASL MRA Images. IEEE Trans Biomed Eng 2017; 65:1486-1494. [PMID: 28991731 DOI: 10.1109/tbme.2017.2759730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Automatic vessel segmentation can be used to process the considerable amount of data generated by four-dimensional arterial spin labeling magnetic resonance angiography (4D ASL MRA) images. Previous segmentation approaches for dynamic series of images propose either reducing the series to a temporal average (tAIP) or maximum intensity projection (tMIP) prior to vessel segmentation, or a separate segmentation of each image. This paper introduces a method that combines both approaches to overcome the specific drawbacks of each technique. METHODS Vessels in the tAIP are enhanced by using the ranking orientation responses of path operators and multiscale vesselness enhancement filters. Then, tAIP segmentation is performed using a seed-based algorithm. In parallel, this algorithm is also used to segment each frame of the series and identify small vessels, which might have been lost in the tAIP segmentation. The results of each individual time frame segmentation are fused using an or boolean operation. Finally, small vessels found only in the fused segmentation are added to the tAIP segmentation. RESULTS In a quantitative analysis using ten 4D ASL MRA image series from healthy volunteers, the proposed combined approach reached an average Dice coefficient of 0.931, being more accurate than the corresponding tMIP, tAIP, and single time frame segmentation methods with statistical significance. CONCLUSION The novel combined vessel segmentation strategy can be used to obtain improved vessel segmentation results from 4D ASL MRA and other dynamic series of images. SIGNIFICANCE Improved vessel segmentation of 4D ASL MRA allows a fast and accurate assessment of cerebrovascular structures.
Collapse
|
14
|
Okell TW, Schmitt P, Bi X, Chappell MA, Tijssen RHN, Sheerin F, Miller KL, Jezzard P. Optimization of 4D vessel-selective arterial spin labeling angiography using balanced steady-state free precession and vessel-encoding. NMR IN BIOMEDICINE 2016; 29:776-786. [PMID: 27074149 PMCID: PMC4879350 DOI: 10.1002/nbm.3515] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/14/2016] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
Vessel-selective dynamic angiograms provide a wealth of useful information about the anatomical and functional status of arteries, including information about collateral flow and blood supply to lesions. Conventional x-ray techniques are invasive and carry some risks to the patient, so non-invasive alternatives are desirable. Previously, non-contrast dynamic MRI angiograms based on arterial spin labeling (ASL) have been demonstrated using both spoiled gradient echo (SPGR) and balanced steady-state free precession (bSSFP) readout modules, but no direct comparison has been made, and bSSFP optimization over a long readout period has not been fully explored. In this study bSSFP and SPGR are theoretically and experimentally compared for dynamic ASL angiography. Unlike SPGR, bSSFP was found to have a very low ASL signal attenuation rate, even when a relatively large flip angle and short repetition time were used, leading to a threefold improvement in the measured signal-to-noise ratio (SNR) efficiency compared with SPGR. For vessel-selective applications, SNR efficiency can be further improved over single-artery labeling methods by using a vessel-encoded pseudo-continuous ASL (VEPCASL) approach. The combination of a VEPCASL preparation with a time-resolved bSSFP readout allowed the generation of four-dimensional (4D; time-resolved three-dimensional, 3D) vessel-selective cerebral angiograms in healthy volunteers with 59 ms temporal resolution. Good quality 4D angiograms were obtained in all subjects, providing comparable structural information to 3D time-of-flight images, as well as dynamic information and vessel selectivity, which was shown to be high. A rapid 1.5 min dynamic two-dimensional version of the sequence yielded similar image features and would be suitable for a busy clinical protocol. Preliminary experiments with bSSFP that included the extracranial vessels showed signal loss in regions of poor magnetic field homogeneity. However, for intracranial vessel-selective angiography, the proposed bSSFP VEPCASL sequence is highly SNR efficient and could provide useful information in a range of cerebrovascular diseases. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Thomas W. Okell
- FMRIB CentreNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Peter Schmitt
- MR Application and Workflow DevelopmentSiemens AG, Healthcare SectorErlangenGermany
| | | | - Michael A. Chappell
- FMRIB CentreNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
| | - Rob H. N. Tijssen
- FMRIB CentreNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Fintan Sheerin
- NeuroradiologyOxford University Hospitals NHS TrustOxfordUK
| | - Karla L. Miller
- FMRIB CentreNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Peter Jezzard
- FMRIB CentreNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| |
Collapse
|
15
|
Shrestha M, Mildner T, Schlumm T, Robertson SH, Möller H. Three-dimensional echo-planar cine imaging of cerebral blood supply using arterial spin labeling. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:799-810. [PMID: 27225871 PMCID: PMC5124058 DOI: 10.1007/s10334-016-0565-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/23/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Echo-planar imaging (EPI) with CYlindrical Center-out spatiaL Encoding (EPICYCLE) is introduced as a novel hybrid three-dimensional (3D) EPI technique. Its suitability for the tracking of a short bolus created by pseudo-continuous arterial spin labeling (pCASL) through the cerebral vasculature is demonstrated. MATERIALS AND METHODS EPICYCLE acquires two-dimensional planes of k-space along center-out trajectories. These "spokes" are rotated from shot to shot about a common axis to encode a k-space cylinder. To track a bolus of labeled blood, the same subset of evenly distributed spokes is acquired in a cine fashion after a short period of pCASL. This process is repeated for all subsets to fill the whole 3D k-space of each time frame. RESULTS The passage of short pCASL boluses through the vasculature of a 3D imaging slab was successfully imaged using EPICYCLE. By choosing suitable sequence parameters, the impact of slab excitation on the bolus shape could be minimized. Parametric maps of signal amplitude, transit time, and bolus width reflected typical features of blood transport in large vessels. CONCLUSION The EPICYCLE technique was successfully applied to track a short bolus of labeled arterial blood during its passage through the cerebral vasculature.
Collapse
Affiliation(s)
- Manoj Shrestha
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| | - Toralf Mildner
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.
| | - Torsten Schlumm
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| | | | - Harald Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| |
Collapse
|
16
|
Yan L, Salamon N, Wang DJJ. Time-resolved noncontrast enhanced 4-D dynamic magnetic resonance angiography using multibolus TrueFISP-based spin tagging with alternating radiofrequency (TrueSTAR). Magn Reson Med 2016; 71:551-60. [PMID: 23440649 DOI: 10.1002/mrm.24689] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE The goal of this study was to introduce a new noncontrast enhanced 4D dynamic MR angiography (dMRA) technique termed multibolus TrueFISP-based spin tagging with alternating radiofrequency (TrueSTAR). METHODS Multibolus TrueFISP-based spin tagging with alternating radiofrequency was developed by taking advantage of the phenomenon that the steady-state signal of TrueFISP is minimally disturbed by periodically inserted magnetization preparations (e.g., spin tagging) that are sandwiched by two α/2 RF pulses. Both theoretical analysis and experimental studies were carried out to optimize the proposed method which was compared with both pulsed and pseudo-continuous arterial spin labeling-based dMRA in healthy volunteers. Optimized multibolus dMRA was also applied in a patient with arteriovenous malformation to demonstrate its potential clinical utility. RESULTS Multibolus dMRA offered a prolonged tagging bolus compared to the standard single-bolus dMRA, and allowed improved visualization of the draining veins in the arteriovenous malformation patient. Compared to pseudo-continuous arterial spin labeling-based dMRA, multibolus dMRA provided visualization of the full passage of the labeled blood with the flexibility for both static and dynamic magnetic resonance angiography. CONCLUSION By combining the benefits of pulsed and pseudo-continuous arterial spin labeling-based dMRA, multibolus TrueFISP-based spin tagging with alternating radiofrequency can prolong and enhance the tagging bolus without sacrificing imaging speed or temporal resolution.
Collapse
Affiliation(s)
- Lirong Yan
- Department of Neurology, Laboratory of Functional MRI Technology, University of California Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|
17
|
Frost R, Hess AT, Okell TW, Chappell MA, Tisdall MD, van der Kouwe AJW, Jezzard P. Prospective motion correction and selective reacquisition using volumetric navigators for vessel-encoded arterial spin labeling dynamic angiography. Magn Reson Med 2015; 76:1420-1430. [PMID: 26567122 DOI: 10.1002/mrm.26040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/14/2015] [Accepted: 10/17/2015] [Indexed: 11/06/2022]
Abstract
PURPOSE The aim of this study was to improve robustness to motion in a vessel-encoded angiography sequence used for patient scans. The sequence is particularly sensitive to motion between imaging segments, which causes ghosting and blurring that propagates to the final angiogram. METHODS Volumetric echo planar imaging (EPI) navigators acquired in 275 ms were inserted after the imaging readout in a vessel-encoded pseudo-continuous arterial spin labeling (VEPCASL) sequence. The effects of movement between segments on the images were tested with phantom experiments. Deliberate motion experiments with healthy volunteers were performed to compare prospective motion correction (PMC) with reacquisition versus no correction. RESULTS In scans without motion, the addition of the EPI navigator to the sequence did not affect the quality of the angiograms in comparison with the original sequence. PMC and reacquisition improved the visibility of vessels in the angiograms compared with the scans without correction. The reacquisition strategy was shown to be important for complete correction of imaging artifacts. CONCLUSION We have demonstrated an effective method to correct motion in vessel-encoded angiography. For reacquisition of 15 segments, the technique requires approximately 30 s of additional scanning (∼25%). Magn Reson Med 76:1420-1430, 2016. © 2015 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Robert Frost
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - Aaron T Hess
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Thomas W Okell
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Michael A Chappell
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - M Dylan Tisdall
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - André J W van der Kouwe
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Jezzard
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
MacDonald ME, Frayne R. Cerebrovascular MRI: a review of state-of-the-art approaches, methods and techniques. NMR IN BIOMEDICINE 2015; 28:767-791. [PMID: 26010775 DOI: 10.1002/nbm.3322] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
Cerebrovascular imaging is of great interest in the understanding of neurological disease. MRI is a non-invasive technology that can visualize and provide information on: (i) the structure of major blood vessels; (ii) the blood flow velocity in these vessels; and (iii) the microcirculation, including the assessment of brain perfusion. Although other medical imaging modalities can also interrogate the cerebrovascular system, MR provides a comprehensive assessment, as it can acquire many different structural and functional image contrasts whilst maintaining a high level of patient comfort and acceptance. The extent of examination is limited only by the practicalities of patient tolerance or clinical scheduling limitations. Currently, MRI methods can provide a range of metrics related to the cerebral vasculature, including: (i) major vessel anatomy via time-of-flight and contrast-enhanced imaging; (ii) blood flow velocity via phase contrast imaging; (iii) major vessel anatomy and tissue perfusion via arterial spin labeling and dynamic bolus passage approaches; and (iv) venography via susceptibility-based imaging. When designing an MRI protocol for patients with suspected cerebral vascular abnormalities, it is appropriate to have a complete understanding of when to use each of the available techniques in the 'MR angiography toolkit'. In this review article, we: (i) overview the relevant anatomy, common pathologies and alternative imaging modalities; (ii) describe the physical principles and implementations of the above listed methods; (iii) provide guidance on the selection of acquisition parameters; and (iv) describe the existing and potential applications of MRI to the cerebral vasculature and diseases. The focus of this review is on obtaining an understanding through the application of advanced MRI methodology of both normal and abnormal blood flow in the cerebrovascular arteries, capillaries and veins.
Collapse
Affiliation(s)
- Matthew Ethan MacDonald
- Biomedical Engineering, Radiology, and Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Richard Frayne
- Biomedical Engineering, Radiology, and Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Teeuwisse WM, Schmid S, Ghariq E, Veer IM, van Osch MJP. Time-encoded pseudocontinuous arterial spin labeling: basic properties and timing strategies for human applications. Magn Reson Med 2014; 72:1712-22. [PMID: 24395462 DOI: 10.1002/mrm.25083] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 11/10/2022]
Abstract
PURPOSE In this study, the basic properties and requirements of time-encoded pseudocontinuous arterial spin labeling (te-pCASL) are investigated. Also, the extra degree of freedom delivered by changing block durations is explored. METHODS First, the minimal duration of encoding blocks, the influence of cardiac triggering, and the effect of dividing the labeling period into blocks are evaluated. Two new strategies for timing the encoding blocks in te-pCASL are introduced: variable block duration to compensate for T1-decay and the free lunch approach that uses the postlabeling delay time that is idle in standard pCASL to acquire arterial transit time (ATT) information. Simulations are used to probe possible signal losses. RESULTS No signal loss was found when dividing the labeling period into blocks with duration >50 ms. In time-encoded perfusion imaging, no cardiac triggering is required. Summation of results for individual blocks in te-pCASL postprocessing causes severe loss of temporal SNR. Quality of cerebral blood flow (CBF) maps was not affected by the encoding line order. CONCLUSION Adjusting the timing of encoding blocks in te-pCASL allows for tailoring the acquisition to specific applications. With the free lunch setup, te-pCASL delivers CBF and high resolution ATT maps within a single scan, with a small penalty in tSNR.
Collapse
Affiliation(s)
- Wouter M Teeuwisse
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Cerebral blood flow quantification using vessel-encoded arterial spin labeling. J Cereb Blood Flow Metab 2013; 33:1716-24. [PMID: 23921895 PMCID: PMC3824178 DOI: 10.1038/jcbfm.2013.129] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 12/20/2022]
Abstract
Arterial spin labeling (ASL) techniques are gaining popularity for visualizing and quantifying cerebral blood flow (CBF) in a range of patient groups. However, most ASL methods lack vessel-selective information, which is important for the assessment of collateral flow and the arterial supply to lesions. In this study, we explored the use of vessel-encoded pseudocontinuous ASL (VEPCASL) with multiple postlabeling delays to obtain individual quantitative CBF and bolus arrival time maps for each of the four main brain-feeding arteries and compared the results against those obtained with conventional pseudocontinuous ASL (PCASL) using matched scan time. Simulations showed that PCASL systematically underestimated CBF by up to 37% in voxels supplied by two arteries, whereas VEPCASL maintained CBF accuracy since each vascular component is treated separately. Experimental results in healthy volunteers showed that there is no systematic bias in the CBF estimates produced by VEPCASL and that the signal-to-noise ratio of the two techniques is comparable. Although more complex acquisition and image processing is required and the potential for motion sensitivity is increased, VEPCASL provides comparable data to PCASL but with the added benefit of vessel-selective information. This could lead to more accurate CBF estimates in patients with a significant collateral flow.
Collapse
|
21
|
A theoretical framework for quantifying blood volume flow rate from dynamic angiographic data and application to vessel-encoded arterial spin labeling MRI. Med Image Anal 2013; 17:1025-36. [PMID: 23871963 PMCID: PMC3898265 DOI: 10.1016/j.media.2013.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 02/14/2013] [Accepted: 06/19/2013] [Indexed: 11/21/2022]
Abstract
Angiographic methods can provide valuable information on vessel morphology and hemodynamics, but are often qualitative in nature, somewhat limiting their ability for comparison across arteries and subjects. In this work we present a method for quantifying absolute blood volume flow rates within large vessels using dynamic angiographic data. First, a kinetic model incorporating relative blood volume, bolus dispersion and signal attenuation is fitted to the data. A self-calibration method is also described for both 2D and 3D data sets to convert the relative blood volume parameter into absolute units. The parameter values are then used to simulate the signal arising from a very short bolus, in the absence of signal attenuation, which can be readily encompassed within a vessel mask of interest. The volume flow rate can then be determined by calculating the resultant blood volume within the vessel mask divided by the simulated bolus duration. This method is applied to non-contrast magnetic resonance imaging data from a flow phantom and also to the cerebral arteries of healthy volunteers acquired using a 2D vessel-encoded pseudocontinuous arterial spin labeling pulse sequence. This allows the quantitative flow contribution in downstream vessels to be determined from each major brain-feeding artery. Excellent agreement was found between the actual and estimated flow rates in the phantom, particularly below 4.5 ml/s, typical of the cerebral vasculature. Flow rates measured in healthy volunteers were generally consistent with values found in the literature. This method is likely to be of use in patients with a variety of cerebrovascular diseases, such as the assessment of collateral flow in patients with steno-occlusive disease or the evaluation of arteriovenous malformations.
Collapse
|