1
|
Martin S, André R, Trabelsi A, Michel CP, Fortanier E, Attarian S, Guye M, Dubois M, Abdeddaim R, Bendahan D. Importance of neural network complexity for the automatic segmentation of individual thigh muscles in MRI images from patients with neuromuscular diseases. MAGMA (NEW YORK, N.Y.) 2025; 38:175-189. [PMID: 39798067 DOI: 10.1007/s10334-024-01221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025]
Abstract
OBJECTIVE Segmentation of individual thigh muscles in MRI images is essential for monitoring neuromuscular diseases and quantifying relevant biomarkers such as fat fraction (FF). Deep learning approaches such as U-Net have demonstrated effectiveness in this field. However, the impact of reducing neural network complexity remains unexplored in the FF quantification in individual muscles. MATERIAL AND METHODS U-Net architectures with different complexities have been compared for the quantification of the fat fraction in each muscle group selected in the central part of the thigh region. The corresponding performance has been assessed in terms of Dice score (DSC) and FF quantification error. The database contained 1450 thigh images from 59 patients and 14 healthy subjects (age: 47 ± 17 years, sex: 36F, 37M). Ten individual muscles were segmented in each image. The performance of each model was compared to nnU-Net, a complex architecture with 4.35 × 107 parameters, 12.8 Gigabytes of peak memory usage and 167 h of training time. RESULTS As expected, nnU-Net achieved the highest DSC (94.77 ± 0.13%). A simpler U-Net (5.81 × 105 parameters, 2.37 Gigabytes, 14 h of training time) achieved a lower DSC but still above 90%. Surprisingly, both models achieved a comparable FF estimation. DISCUSSION The poor correlation between observed DSC and FF indicates that less complex architectures, reducing GPU memory utilization and training time, can still accurately quantify FF.
Collapse
Affiliation(s)
- Sandra Martin
- Multiwave Technologies, Marseille, France.
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.
- Aix Marseille Univ, CNRS, Centrale Med, Institut Fresnel, Marseille, France.
| | - Rémi André
- Aix Marseille Univ, CNRS, Centrale Med, Institut Fresnel, Marseille, France
| | | | | | | | - Shahram Attarian
- Aix Marseille Univ, APHM, Service de Neurologie, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Marc Dubois
- Aix Marseille Univ, CNRS, Centrale Med, Institut Fresnel, Marseille, France
| | - Redha Abdeddaim
- Aix Marseille Univ, CNRS, Centrale Med, Institut Fresnel, Marseille, France
| | | |
Collapse
|
2
|
Paik JJ, Christopher-Stine L, Boesen M, Carrino JA, Eggleton SP, Denis D, Kubassova O. The utility of muscle magnetic resonance imaging in idiopathic inflammatory myopathies: a scoping review. Front Immunol 2025; 16:1455867. [PMID: 39931069 PMCID: PMC11808160 DOI: 10.3389/fimmu.2025.1455867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are muscle disorders characterized by proximal weakness of the skeletal muscles, inflammation in muscle, and autoimmunity. The classic subgroups in IIMs include dermatomyositis, inclusion body myositis, immune-mediated necrotizing myopathy, and polymyositis (PM). PM is increasingly recognized as a rare subtype and often included in overlap myositis, the antisynthetase syndrome when no rash is present, or misdiagnosed inclusion body myositis. Magnetic resonance imaging (MRI) has played an increasingly important role in IIM diagnosis and assessment. Although conventional MRI provides qualitative information that is helpful for diagnosis, its application for the quantitative assessment of disease activity is challenging. Therefore, advanced quantitative MRI techniques have been implemented in the past 10 years to highlight potential new applications of disease monitoring in IIM. The aim of this review is to examine the role of quantitative MRI techniques in evaluating the key imaging features of IIM, mainly muscle edema and muscle damage (fatty replacement and/or muscle atrophy).
Collapse
Affiliation(s)
- Julie J. Paik
- Department of Myositis, Johns Hopkins University, Baltimore, MD, United States
| | | | - Mikael Boesen
- IAG, Image Analysis Group, London, United Kingdom
- Department of Radiology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - John A. Carrino
- Department of Radiology and Imaging, Weill Cornell Medicine, Hospital for Special Surgery, New York, NY, United States
| | - S. Peter Eggleton
- Global Clinical Development, Merck Serono Ltd.,
Feltham, United Kingdom, an affiliate of the healthcare business of Merck KGaA
| | - Deborah Denis
- Global Clinical Development, EMD Serono Research & Development Institute,
Inc., Billerica, MA, United States, an affiliate of the healthcare business of Merck KGaA
| | | |
Collapse
|
3
|
Froeling M, Heskamp L. The effect of fat model variation on muscle fat fraction quantification in a cross-sectional cohort. NMR IN BIOMEDICINE 2024; 37:e5217. [PMID: 39077882 DOI: 10.1002/nbm.5217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Spectroscopic imaging, rooted in Dixon's two-echo spin sequence to distinguish water and fat, has evolved significantly in acquisition and processing. Yet precise fat quantification remains a persistent challenge in ongoing research. With adequate phase characterization and correction, the fat composition models will impact measurements of fatty tissue. However, the effect of the used fat model in low-fat regions such as healthy muscle is unknown. In this study, we investigate the effect of assumed fat composition, in terms of chain length and double bond count, on fat fraction quantification in healthy muscle, while addressing phase and relaxometry confounders. For this purpose, we acquired bilateral thigh datasets from 38 healthy volunteers. Fat fractions were estimated using the IDEAL algorithm employing three different fat models fitted with and without the initial phase constrained. After data processing and model fitting, we used a convolutional neural net to automatically segment all thigh muscles and subcutaneous fat to evaluate the fitted parameters. The fat composition was compared with those reported in the literature. Overall, all the observed estimated fat composition values fall within the range of previously reported fatty acid composition based on gas chromatography measurements. All methods and models revealed different estimates of the muscle fat fractions in various evaluated muscle groups. Lateral differences changed from 0.5% to 5.3% in the hamstring muscle groups depending on the chosen method. The lowest observed left-right differences in each muscle group were all for the fat model estimating the number of double bonds with the initial phase unconstrained. With this model, the left-right differences were 0.64% ± 0.31%, 0.50% ± 0.27%, and 0.50% ± 0.40% for the quadriceps, hamstrings, and adductors muscle groups, respectively. Our findings suggest that a fat model estimating double bond numbers while allowing separate phases for each chemical species, given some assumptions, yields the best fat fraction estimate for our dataset.
Collapse
Affiliation(s)
- Martijn Froeling
- Center for Image Sciences, Precision Imaging Group, Division Imaging & Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Linda Heskamp
- Center for Image Sciences, Precision Imaging Group, Division Imaging & Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Willis AB, Zelikovich AS, Sufit R, Ajroud-Driss S, Vandenborne K, Demonbreun AR, Batra A, Walter GA, McNally EM. Serum protein and imaging biomarkers after intermittent steroid treatment in muscular dystrophy. Sci Rep 2024; 14:28745. [PMID: 39567576 PMCID: PMC11579281 DOI: 10.1038/s41598-024-79024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Weekly Steroids in Muscular Dystrophy (WSiMD) was a pilot study to evaluate once weekly prednisone in patients with Limb Girdle and Becker muscular dystrophy (LGMD and BMD, respectively). At study endpoint, there were trends towards increased lean mass, reduced fat mass, reduced creatine kinase and improved motor function. The investigation was motivated by studies in mouse muscular dystrophy models in which once weekly glucocorticoid exposure enhanced muscle strength and reduced fibrosis. WSiMD participants provided blood samples for aptamer serum profiling at baseline and after 6 months of weekly steroids. A subset completed magnetic resonance (MR) evaluation of muscle at study onset and endpoint. At baseline compared to age and sex-matched healthy controls, the aggregate serum protein profile in the WSiMD cohort was dominated by muscle proteins, reflecting leak of muscle proteins into serum. Disease status produced more proteins differentially present in serum compared to steroid-treatment effect. Nonetheless, a response to prednisone was discernable in the WSiMD cohort, even at this low dose. Glucocorticoids decreased muscle proteins and increased certain immune process- and matrix-associated proteins. Muscle MR fat fraction showed trends with functional status. The prednisone-responsive markers could be used in larger trial of prednisone efficacy.
Collapse
Affiliation(s)
- Alexander B Willis
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 303 E Superior SQ 5-516, Chicago, IL, 60611, USA
| | - Aaron S Zelikovich
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 303 E Superior SQ 5-516, Chicago, IL, 60611, USA
| | - Robert Sufit
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Senda Ajroud-Driss
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 303 E Superior SQ 5-516, Chicago, IL, 60611, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Abhinandan Batra
- Department of Physical Therapy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Glenn A Walter
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, 303 E Superior SQ 5-516, Chicago, IL, 60611, USA.
| |
Collapse
|
5
|
Jenkins BM, Dixon LD, Kokesh KJ, Zingariello CD, Vandenborne K, Walter GA, Barnard AM. Skeletal muscle symptoms and quantitative MRI in females with dystrophinopathy. Muscle Nerve 2024; 70:988-999. [PMID: 39221574 PMCID: PMC11493146 DOI: 10.1002/mus.28235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION/AIMS The dystrophinopathies primarily affect males; however, female carriers of pathogenic dystrophin variants can develop skeletal muscle symptoms. This study aimed to evaluate muscle involvement and symptoms in females with dystrophinopathy using quantitative magnetic resonance imaging (MRI), functional assessments, and patient-reported outcomes. METHODS Controls and females with dystrophinopathy with muscle symptoms of pain, weakness, fatigue, or excessive tightness were enrolled in this cross-sectional study. Participants underwent lower extremity MRI to quantify muscle inflammation, replacement by fat, and disease asymmetry. Cardiac MRI, functional ability, muscle symptoms, and serum creatine kinase levels were also evaluated. RESULTS Six pediatric females with dystrophinopathy (mean age: 11.7 years), 11 adult females with dystrophinopathy (mean age: 41.3 years), and seven controls enrolled. The mean fat fraction was increased in females with dystrophinopathy compared to controls in the soleus (0.11 vs. 0.03, p = .0272) and vastus lateralis (0.16 vs. 0.03, p = .004). Magnetic resonance spectroscopy water T2, indicative of muscle inflammation, was elevated in the soleus and/or vastus lateralis in 11 of 17 individuals. North Star Ambulatory Assessment score was lower in the dystrophinopathy group compared to controls (29 vs. 34 points, p = .0428). From cardiac MRI, left ventricle T1 relaxation times were elevated in females with dystrophinopathy compared to controls (1311 ± 55 vs. 1263 ± 25 ms, p < .05), but ejection fraction and circumferential strain did not differ. DISCUSSION Symptomatic females with dystrophinopathy quantitatively demonstrate muscle replacement by fat and inflammation, along with impairments in functional ability and cardiac function. Additional research is needed to evaluate how symptoms and muscle involvement change longitudinally.
Collapse
Affiliation(s)
| | | | - Kevin J Kokesh
- Department of Pediatrics, Division of Pulmonology; University of Florida
| | - Carla D Zingariello
- Department of Pediatrics, Division of Pediatric Neurology; University of Florida
| | | | - Glenn A Walter
- Department of Physiology and Aging; University of Florida
| | | |
Collapse
|
6
|
Peng F, Tang D, Qing W, Chen W, Li S, Guo Y, Luo G, Zhao H. Utilization of Multi-Parametric Quantitative Magnetic Resonance Imaging in the Early Diagnosis of Duchenne Muscular Dystrophy. J Magn Reson Imaging 2024; 60:1402-1413. [PMID: 38095338 DOI: 10.1002/jmri.29182] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND It is challenging to diagnose suspected Duchenne muscular dystrophy (DMD) patients in the very early stage of the disease. More evidence is needed to demonstrate the potential of quantitative MRI (qMRI) in precisely identifying patients before substantial physical decline occurs. PURPOSE To assess the early diagnostic performance of multi-parametric qMRI for DMD patients, and the ability to identify DMD patients with mild functional decline. STUDY TYPE Prospective. SUBJECTS One hundred and forty DMD subjects (9.0 ± 2.2 years old), 24 male healthy controls (HCs) (9.2 ± 2.5 years old). FIELD STRENGTH/SEQUENCE 3.0 T/3-point Dixon, T1-mapping, and T2-mapping. ASSESSMENT qMRI measurements (fat fraction [FF], T1, and T2) of 11 thigh muscles (rectus femoris [RF], vastus lateralis [VL], vastus intermedius, vastus medialis, gracilis, sartorius, adductor longus, adductor magnus [AM], semitendinosus, semimembranosus, biceps femoris long head [BFLH]) on the right side were conducted. NorthStar ambulatory assessment (NSAA) score used to evaluate the function of DMD patients and divided them into three subgroups: mild (76-100 score), moderate (51-75 score), and severe (0-50 score) functional decline. STATISTICAL TESTS Independent t-test, ANOVA analysis, and receiver operating characteristic (ROC) curves. A P-value <0.05 was considered statistically significant. RESULTS Compared with HCs, FF and T2 were significantly higher in the group of all DMD patients, while T1 was significantly lower. The combination of T1 and T2 in RF, VL, AM, and BFLH achieved excellent area under curve (AUCs) (0.967-0.992) in differentiating five DMD patients without abnormal fat infiltration from HCs. Overall, T2 reached higher AUCs than FF and T1 in distinguishing DMD with mild functional decline from HCs, whereas FF achieved higher AUCs than T1 and T2 in distinguishing three DMD subgroups with functional decline. DATA CONCLUSION Multi-parametric qMRI demonstrate effective diagnostic capabilities for DMD patients in the early stage of the disease, and can identify patients with mild physical decline. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Fei Peng
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Medical Imaging center, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Deqiu Tang
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Weipeng Qing
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wei Chen
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuhao Li
- Department of Medical Imaging center, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Guanghua Luo
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Heng Zhao
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
7
|
Hooijmans MT, Schlaffke L, Bolsterlee B, Schlaeger S, Marty B, Mazzoli V. Compositional and Functional MRI of Skeletal Muscle: A Review. J Magn Reson Imaging 2024; 60:860-877. [PMID: 37929681 PMCID: PMC11070452 DOI: 10.1002/jmri.29091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Due to its exceptional sensitivity to soft tissues, MRI has been extensively utilized to assess anatomical muscle parameters such as muscle volume and cross-sectional area. Quantitative Magnetic Resonance Imaging (qMRI) adds to the capabilities of MRI, by providing information on muscle composition such as fat content, water content, microstructure, hypertrophy, atrophy, as well as muscle architecture. In addition to compositional changes, qMRI can also be used to assess function for example by measuring muscle quality or through characterization of muscle deformation during passive lengthening/shortening and active contractions. The overall aim of this review is to provide an updated overview of qMRI techniques that can quantitatively evaluate muscle structure and composition, provide insights into the underlying biological basis of the qMRI signal, and illustrate how qMRI biomarkers of muscle health relate to function in healthy and diseased/injured muscles. While some applications still require systematic clinical validation, qMRI is now established as a comprehensive technique, that can be used to characterize a wide variety of structural and compositional changes in healthy and diseased skeletal muscle. Taken together, multiparametric muscle MRI holds great potential in the diagnosis and monitoring of muscle conditions in research and clinical applications. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Melissa T Hooijmans
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Lara Schlaffke
- Department of Neurology BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Bart Bolsterlee
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sarah Schlaeger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Benjamin Marty
- Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Paris, France
| | - Valentina Mazzoli
- Department of Radiology, Stanford University, Stanford, California, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, New York, USA
| |
Collapse
|
8
|
Willcocks RJ, Barnard AM, Daniels MJ, Forbes SC, Triplett WT, Brandsema JF, Finanger EL, Rooney WD, Kim S, Wang D, Lott DJ, Senesac CR, Walter GA, Sweeney HL, Vandenborne K. Clinical importance of changes in magnetic resonance biomarkers for Duchenne muscular dystrophy. Ann Clin Transl Neurol 2024; 11:67-78. [PMID: 37932907 PMCID: PMC10791017 DOI: 10.1002/acn3.51933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 11/08/2023] Open
Abstract
OBJECTIVE Magnetic resonance (MR) measures of muscle quality are highly sensitive to disease progression and predictive of meaningful functional milestones in Duchenne muscular dystrophy (DMD). This investigation aimed to establish the reproducibility, responsiveness to disease progression, and minimum clinically important difference (MCID) for multiple MR biomarkers at different disease stages in DMD using a large natural history dataset. METHODS Longitudinal MR imaging and spectroscopy outcomes and ambulatory function were measured in 180 individuals with DMD at three sites, including repeated measurements on two separate days (within 1 week) in 111 participants. These data were used to calculate day-to-day reproducibility, responsiveness (standardized response mean, SRM), minimum detectable change, and MCID. A survey of experts was also performed. RESULTS MR spectroscopy fat fraction (FF), as well as MR imaging transverse relaxation time (MRI-T2 ), measures performed in multiple leg muscles, and had high reproducibility (Pearson's R > 0.95). Responsiveness to disease progression varied by disease stage across muscles. The average FF from upper and lower leg muscles was highly responsive (SRM > 0.9) in both ambulatory and nonambulatory individuals. MCID estimated from the distribution of scores, by anchoring to function, and via expert opinion was between 0.01 and 0.05 for FF and between 0.8 and 3.7 ms for MRI-T2 . INTERPRETATION MR measures of FF and MRI T2 are reliable and highly responsive to disease progression. The MCID for MR measures is less than or equal to the typical annualized change. These results confirm the suitability of these measures for use in DMD and potentially other muscular dystrophies.
Collapse
Affiliation(s)
- Rebecca J. Willcocks
- Department of Physical Therapy, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
| | - Alison M. Barnard
- Department of Physical Therapy, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
| | | | - Sean C. Forbes
- Department of Physical Therapy, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
| | - William T. Triplett
- Department of Physical Therapy, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
| | - John F. Brandsema
- Division of NeurologyThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Erika L. Finanger
- Department of Pediatrics and NeurologyOregon Health & Science UniversityPortlandOregonUSA
| | - William D. Rooney
- Advanced Imaging Research CenterOregon Health & Science UniversityPortlandOregonUSA
| | - Sarah Kim
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Dah‐Jyuu Wang
- Department of RadiologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Donovan J. Lott
- Department of Physical Therapy, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
| | - Claudia R. Senesac
- Department of Physical Therapy, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
| | - Glenn A. Walter
- Department of Physiology and Functional Genomics, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - H. Lee Sweeney
- Department of Pharmacology and Therapeutics, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Krista Vandenborne
- Department of Physical Therapy, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
9
|
McDonald C, Camino E, Escandon R, Finkel RS, Fischer R, Flanigan K, Furlong P, Juhasz R, Martin AS, Villa C, Sweeney HL. Draft Guidance for Industry Duchenne Muscular Dystrophy, Becker Muscular Dystrophy, and Related Dystrophinopathies - Developing Potential Treatments for the Entire Spectrum of Disease. J Neuromuscul Dis 2024; 11:499-523. [PMID: 38363616 DOI: 10.3233/jnd-230219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background Duchenne muscular dystrophy (DMD) and related dystrophinopathies are neuromuscular conditions with great unmet medical needs that require the development of effective medical treatments. Objective To aid sponsors in clinical development of drugs and therapeutic biological products for treating DMD across the disease spectrum by integrating advancements, patient registries, natural history studies, and more into a comprehensive guidance. Methods This guidance emerged from collaboration between the FDA, the Duchenne community, and industry stakeholders. It entailed a structured approach, involving multiple committees and boards. From its inception in 2014, the guidance underwent revisions incorporating insights from gene therapy studies, cardiac function research, and innovative clinical trial designs. Results The guidance provides a deeper understanding of DMD and its variants, focusing on patient engagement, diagnostic criteria, natural history, biomarkers, and clinical trials. It underscores patient-focused drug development, the significance of dystrophin as a biomarker, and the pivotal role of magnetic resonance imaging in assessing disease progression. Additionally, the guidance addresses cardiomyopathy's prominence in DMD and the burgeoning field of gene therapy. Conclusions The updated guidance offers a comprehensive understanding of DMD, emphasizing patient-centric approaches, innovative trial designs, and the importance of biomarkers. The focus on cardiomyopathy and gene therapy signifies the evolving realm of DMD research. It acts as a crucial roadmap for sponsors, potentially leading to improved treatments for DMD.
Collapse
Affiliation(s)
| | - Eric Camino
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Rafael Escandon
- DGBI Consulting, LLC, Bainbridge Island, Washington, DC, USA
| | | | - Ryan Fischer
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Kevin Flanigan
- Center for Experimental Neurotherapeutics, Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pat Furlong
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Rose Juhasz
- Nationwide Children's Hospital, Columbus, OH, USA
| | - Ann S Martin
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Chet Villa
- Trinity Health Michigan, Grand Rapids, MI, USA
| | - H Lee Sweeney
- Cincinnati Children's Hospital Medical Center within the UC Department of Pediatrics, Cincinnati, OH, USA
| |
Collapse
|
10
|
Reyngoudt H, Baudin PY, Carlier PG, Lopez Kolkovsky AL, de Almeida Araujo EC, Marty B. New Insights into the Spread of MRS-Based Water T2 Values Observed in Highly Fatty Replaced Muscles. J Magn Reson Imaging 2023; 58:1557-1568. [PMID: 36877200 DOI: 10.1002/jmri.28669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND The reference standard for assessing water T2 (T2,H2O ) at high fat fraction (FF) is 1 H MRS. T2,H2O (T2,H2O,MRS ) dependence on FF (FFMRS ) has recently been demonstrated in muscle at high FF (i.e. ≥60%). PURPOSE To investigate the relationship between T2,H2O,MRS and FFMRS in the thigh/leg muscles of patients with neuromuscular diseases and to compare with quantitative MRI. STUDY TYPE Retrospective case-control study. POPULATION A total of 151 patients with neuromuscular disorders (mean age ± standard deviation = 52.5 ± 22.6 years, 54% male), 44 healthy volunteers (26.5 ± 13.0 years, 57% male). FIELD STRENGTH/SEQUENCE A 3-T; single-voxel stimulated echo acquisition mode (STEAM) MRS, multispin echo (MSE) imaging (for T2 mapping, T2,H2O,MRI ), three-point Dixon imaging (for FFMRI andR 2 * mapping). ASSESSMENT Mono-exponential and bi-exponential models were fitted to water T2 decay curves to extract T2,H2O,MRS and FFMRS . Water resonance full-width-at-half-maximum (FWHM) and B0 spread (∆B0 ) values were calculated. T2,H2O,MRI (mean), FFMRI (mean, kurtosis, and skewness), andR 2 * (mean) values were estimated in the MRS voxel. STATISTICAL TESTS Mann-Whitney U tests, Kruskal-Wallis tests. A P-value <0.05 was considered statistically significant. RESULTS Normal T2,H2O,MRS threshold was defined as the 90th percentile in healthy controls: 30.3 msec. T2,H2O,MRS was significantly higher in all patients with FFMRS < 60% compared to healthy controls. We discovered two subgroups in patients with FFMRS ≥ 60%: one with T2,H2O,MRS ≥ 30.3 msec and one with T2,H2O,MRS < 30.3 msec including abnormally low T2,H2O,MRS . The latter subgroup had significantly higher water resonance FWHM, ∆B0 , FFMRI kurtosis, and skewness values but nonsignificantly differentR 2 * (P = 1.00) and long T2,H2O,MRS component and its fraction (P > 0.11) based on the bi-exponential analysis. DATA CONCLUSION The findings suggest that the cause for (abnormally) T2,H2O,MRS at high FFMRS is biophysical, due to differences in susceptibility between muscle and fat (increased FWHM and ∆B0 ), rather than pathophysiological such as compartmentation changes, which would be reflected by the bi-exponential analysis. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Pierre-Yves Baudin
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Pierre G Carlier
- Université Paris Saclay, CEA, Service Hospitalier Frédéric Joliot, Orsay, France
| | | | | | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| |
Collapse
|
11
|
Xu T, Xu K, Song Y, Zhou Z, Fu H, Xu R, Cai X, Guo Y, Ye P, Xu H. High-Speed T 2 -Corrected Multiecho Magnetic Resonance Spectroscopy for Quantitatively Detecting Skeletal Muscle Fatty Infiltration and Predicting the Loss of Ambulation in Patients With Duchenne Muscular Dystrophy. J Magn Reson Imaging 2023; 58:1270-1278. [PMID: 36773028 DOI: 10.1002/jmri.28641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND High-speed T2 -corrected multiecho MRS (HISTO-MRS) is emerging as a quantitative modality for detecting muscle fat infiltration (MFF). However, the predictive value of HISTO-MRS for the loss of ambulation (LoA) in Duchenne muscular dystrophy (DMD) is unknown. PURPOSE To determine the feasibility of HISTO-MRS for assessing MFF in DMD and further identify the predictive value of HISTO-MRS for the LoA. STUDY TYPE Prospective. SUBJECTS A total of 134 DMD boys (9.20 ± 2.43 years old) and 21 healthy boys (9.25 ± 2.10 years old). FIELD STRENGTH/SEQUENCE A 3 T, fast spin echo T1 -weighted imaging (T1 WI), two-point-Dixon gradient echo sequence (2-pt-Dixon) and HISTO-MRS. ASSESSMENT Subjective T1 WI fat grades by three radiologists, ROI analysis for MFF on 2 pt-Dixon (Dixon MFF) and MFF on HISTO-MRS (HISTO MFF) by two radiologists. Clinical motor function: North Star Ambulatory Assessment, 10-m run/walk time, Gowers maneuver, and time to four-stairs climb and descend. STATISTICAL TESTS Spearman rank correlation was used to assess the relation of fat filtration assessments and motor ability. Bland-Altman plots was performed to determine the agreement of HISTO MFF and Dixon MFF. Receiver operating characteristic (ROC) curves were analyzed to determine the discriminating ability of above MRI modalities for ambulatory and nonambulatory DMD. Logistic regression was used to identify the predictor of LoA. Variables with P < 0.05 in univariate logistic regression analysis were entered into the multivariate logistic regression model. RESULTS HISTO MFF was significantly correlated with Dixon MFF. Bland-Altman plots show good agreement of HISTO MFF and Dixon MFF. ROC curves indicated that HISTO MFF show similar discrimination of LoA for DMD with Dixon MFF but better value than T1WI fat grades. Logistic regression showed that HISTO MFF was an independent predictor for LoA. DATA CONCLUSION HISTO-MRS is a potential quantitative method for assessing fat infiltration and shows predictive value for LoA in DMD patients. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY Stage 5.
Collapse
Affiliation(s)
- Ting Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Ke Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Yu Song
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Ziqi Zhou
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Hang Fu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Rong Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Xiaotang Cai
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Pengfei Ye
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Huayan Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| |
Collapse
|
12
|
Nassar J, Trabelsi A, Amer R, Le Fur Y, Attarian S, Radunsky D, Blumenfeld-Katzir T, Greenspan H, Bendahan D, Ben-Eliezer N. Estimation of subvoxel fat infiltration in neurodegenerative muscle disorders using quantitative multi-T 2 analysis. NMR IN BIOMEDICINE 2023:e4947. [PMID: 37021657 DOI: 10.1002/nbm.4947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 02/13/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
MRI's T2 relaxation time is a valuable biomarker for neuromuscular disorders and muscle dystrophies. One of the hallmarks of these pathologies is the infiltration of adipose tissue and a loss of muscle volume. This leads to a mixture of two signal components, from fat and from water, to appear in each imaged voxel, each having a specific T2 relaxation time. In this proof-of-concept work, we present a technique that can separate the signals from water and from fat within each voxel, measure their separate T2 values, and calculate their relative fractions. The echo modulation curve (EMC) algorithm is a dictionary-based technique that offers accurate and reproducible mapping of T2 relaxation times. We present an extension of the EMC algorithm for estimating subvoxel fat and water fractions, alongside the T2 and proton-density values of each component. To facilitate data processing, calf and thigh anatomy were automatically segmented using a fully convolutional neural network and FSLeyes software. The preprocessing included creating two signal dictionaries, for water and for fat, using Bloch simulations of the prospective protocol. Postprocessing included voxelwise fitting for two components, by matching the experimental decay curve to a linear combination of the two simulated dictionaries. Subvoxel fat and water fractions and relaxation times were generated and used to calculate a new quantitative biomarker, termed viable muscle index, and reflecting disease severity. This biomarker indicates the fraction of remaining muscle out of the entire muscle region. The results were compared with those using the conventional Dixon technique, showing high agreement (R = 0.98, p < 0.001). It was concluded that the new extension of the EMC algorithm can be used to quantify abnormal fat infiltration as well as identify early inflammatory processes corresponding to elevation in the T2 value of the water (muscle) component. This new ability may improve the diagnostic accuracy of neuromuscular diseases, help stratification of patients according to disease severity, and offer an efficient tool for tracking disease progression.
Collapse
Affiliation(s)
- Jannette Nassar
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Rula Amer
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Shahram Attarian
- Reference Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France
- Inserm, GMGF, Aix Marseille University, Marseille, France
| | - Dvir Radunsky
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Hayit Greenspan
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Noam Ben-Eliezer
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Center for Advanced Imaging Innovation and Research, New York University Langone Medical Center, New York, New York, USA
| |
Collapse
|
13
|
Khattri RB, Batra A, Matheny M, Hart C, Henley-Beasley SC, Hammers D, Zeng H, White Z, Ryan TE, Barton E, Pascal B, Walter GA. Magnetic resonance quantification of skeletal muscle lipid infiltration in a humanized mouse model of Duchenne muscular dystrophy. NMR IN BIOMEDICINE 2023; 36:e4869. [PMID: 36331178 PMCID: PMC10308798 DOI: 10.1002/nbm.4869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Rodent models of Duchenne muscular dystrophy (DMD) often do not recapitulate the severity of muscle wasting and resultant fibro-fatty infiltration observed in DMD patients. Having recently documented severe muscle wasting and fatty deposition in two preclinical models of muscular dystrophy (Dysferlin-null and mdx mice) through apolipoprotein E (ApoE) gene deletion without and with cholesterol-, triglyceride-rich Western diet supplementation, we sought to determine whether magnetic resonance imaging and spectroscopy (MRI and MRS, respectively) could be used to detect, characterize, and compare lipid deposition in mdx-ApoE knockout with mdx mice in a diet-dependent manner. MRI revealed that both mdx and mdx-ApoE mice exhibited elevated proton relaxation time constants (T2 ) in their lower hindlimbs irrespective of diet, indicating both chronic muscle damage and fatty tissue deposition. The mdx-ApoE mice on a Western diet (mdx-ApoEW ) presented with greatest fatty tissue infiltration in the posterior compartment of the hindlimb compared with other groups, as detected by MRI/MRS. High-resolution magic angle spinning confirmed elevated lipid deposition in the posterior compartments of mdx-ApoEW mice in vivo and ex vivo, respectively. In conclusion, the mdx-ApoEW model recapitulates some of the extreme fatty tissue deposition observed clinically in DMD muscle but typically absent in mdx mice. This preclinical model will help facilitate the development of new imaging modalities directly relevant to the image contrast generated in DMD, and help to refine MR-based biomarkers and their relationship to tissue structure and disease progression.
Collapse
Affiliation(s)
- Ram B. Khattri
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Abhinandan Batra
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Michael Matheny
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
| | - Cora Hart
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
| | | | - David Hammers
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
| | - Huadong Zeng
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility, University of Florida, Gainesville, FL, USA
| | - Zoe White
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Canada
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
- Center of Exercise Science, University of Florida, Gainesville, FL, United States
| | - Elisabeth Barton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Bernatchez Pascal
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Canada
| | - Glenn A. Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
Barnard AM, Hammers DW, Triplett WT, Kim S, Forbes SC, Willcocks RJ, Daniels MJ, Senesac CR, Lott DJ, Arpan I, Rooney WD, Wang RT, Nelson SF, Sweeney HL, Vandenborne K, Walter GA. Evaluating Genetic Modifiers of Duchenne Muscular Dystrophy Disease Progression Using Modeling and MRI. Neurology 2022; 99:e2406-e2416. [PMID: 36240102 PMCID: PMC9687406 DOI: 10.1212/wnl.0000000000201163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Duchenne muscular dystrophy (DMD) is a progressive muscle degenerative disorder with a well-characterized disease phenotype but considerable interindividual heterogeneity that is not well understood. The aim of this study was to evaluate the effects of dystrophin variations and genetic modifiers of DMD on rate and age of muscle replacement by fat. METHODS One hundred seventy-five corticosteroid treated participants from the ImagingDMD natural history study underwent repeated magnetic resonance spectroscopy (MRS) of the vastus lateralis (VL) and soleus (SOL) to determine muscle fat fraction (FF). MRS was performed annually in most instances; however, some individuals had additional visits at 3 or 6 monthss intervals. FF changes over time were modeled using nonlinear mixed effects to estimate disease trajectories based on the age that the VL or SOL reached half-maximum change in FF (mu) and the time required for FF change (sigma). Computed mu and sigma values were evaluated for dystrophin variations that have demonstrated the ability to lead to a mild phenotype as well as compared between different genetic polymorphism groups. RESULTS Participants with dystrophin gene deletions amenable to exon 8 skipping (n = 4) had minimal increases in SOL FF and had an increase in VL mu value by 4.4 years compared with a reference cohort (p = 0.039). Participants with nonsense variations within exons that may produce milder phenotypes (n = 11) also had minimal increases in SOL and VL FFs. No differences in estimated FF trajectories were seen for individuals amenable to exon 44 skipping (n = 10). Modeling of the SPP1, LTBP4, and thrombospondin-1 (THBS1) genetic modifiers did not result in significant differences in muscle FF trajectories between genotype groups (p > 0.05); however, trends were noted for the polymorphisms associated with long-range regulation of LTBP4 and THBS1 that deserve further follow-up. DISCUSSION The results of this study link the historically mild phenotypes seen in individuals amenable to exon 8 skipping and with certain nonsense variations with alterations in trajectories of lower extremity muscle replacement by fat.
Collapse
Affiliation(s)
- Alison M Barnard
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - David W Hammers
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - William T Triplett
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Sarah Kim
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Sean C Forbes
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Rebecca J Willcocks
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Michael J Daniels
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Claudia R Senesac
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Donovan J Lott
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Ishu Arpan
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - William D Rooney
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Richard T Wang
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Stanley F Nelson
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - H Lee Sweeney
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Krista Vandenborne
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville
| | - Glenn A Walter
- From the Department of Physical Therapy (A.M.B., W.T.T., S.C.F., R.J.W., C.R.S., D.J.L., K.V.) Pharmacology and Therapeutics (D.W.H., H.L.S.), University of Florida, Gainesville; Center for Pharmacometrics and Systems Pharmacology (S.K.), Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando; Department of Statistics (M.J.D.), University of Florida, Gainesville; Department of Neurology (I.A.), Oregon Health & Science University, Portland; Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; Department of Human Genetics (R.T.W., S.F.N.), University of California Los Angeles, CA; and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville.
| |
Collapse
|
15
|
Peng F, Xu H, Song Y, Xu K, Li S, Cai X, Guo Y, Gong L. Utilization of T1-Mapping for the pelvic and thigh muscles in Duchenne Muscular Dystrophy: a quantitative biomarker for disease involvement and correlation with clinical assessments. BMC Musculoskelet Disord 2022; 23:681. [PMID: 35842609 PMCID: PMC9288085 DOI: 10.1186/s12891-022-05640-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about the disease distribution and severity detected by T1-mapping in Duchenne muscular dystrophy (DMD). Furthermore, the correlation between skeletal muscle T1-values and clinical assessments is less studied. Hence, the purposes of our study are to investigate quantitative T1-mapping in detecting the degree of disease involvement by detailed analyzing the hip and thigh muscle, future exploring the predicting value of T1-mapping for the clinical status of DMD. METHODS Ninety-two DMD patients were included. Grading fat infiltration and measuring the T1-values of 19 pelvic and thigh muscles (right side) in axial T1-weighted images (T1WI) and T1-maps, respectively, the disease distribution and severity were evaluated and compared. Clinical assessments included age, height, weight, BMI, wheelchair use, timed functional tests, NorthStar ambulatory assessment (NSAA) score, serum creatine kinase (CK) level. Correlation analysis were performed between the muscle T1-value and clinical assessments. Multiple linear regression analysis was conducted for the independent association of T1-value and motor function. RESULTS The gluteus maximus had the lowest T1-value, and the gracilis had the highest T1-value. T1-value decreased as the grade of fat infiltration increased scored by T1WI (P < 0.001). The decreasing of T1-values was correlated with the increase of age, height, weight, wheelchair use, and timed functional tests (P < 0.05). T1-value correlated with NSAA (r = 0.232-0.721, P < 0.05) and CK (r = 0.208-0.491, P < 0.05) positively. T1-value of gluteus maximus, tensor fascia, vastus lateralis, vastus intermedius, vastus medialis, and adductor magnus was independently associated with the clinical motor function tests (P < 0.05). Interclass correlation coefficient (ICC) analysis and Bland-Altman plots showed excellent inter-rater reliability of T1-value region of interest (ROI) measurements. CONCLUSION T1-mapping can be used as a quantitative biomarker for disease involvement, further assessing the disease severity and predicting motor function in DMD.
Collapse
Affiliation(s)
- Fei Peng
- Department of Medical Imaging center, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi Province, China
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Huayan Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Yu Song
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Ke Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Shuhao Li
- Department of Medical Imaging center, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi Province, China
| | - Xiaotang Cai
- Department of Pediatrics Neurology, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| | - Lianggeng Gong
- Department of Medical Imaging center, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
16
|
Elsharkasi HM, Chen SC, Steell L, Joseph S, Abdalrahaman N, McComb C, Johnston B, Foster J, Wong SC, Faisal Ahmed S. 3T-MRI-based age, sex and site-specific markers of musculoskeletal health in healthy children and young adults. Endocr Connect 2022; 11:e220034. [PMID: 35700237 PMCID: PMC9346338 DOI: 10.1530/ec-22-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022]
Abstract
Objective The aim of this study is to investigate the role of 3T-MRI in assessing musculoskeletal health in children and young people. Design Bone, muscle and bone marrow imaging was performed in 161 healthy participants with a median age of 15.0 years (range, 8.0, 30.0). Methods Detailed assessment of bone microarchitecture (constructive interference in the steady state (CISS) sequence, voxel size 0.2 × 0.2 × 0.4 mm3), bone geometry (T1-weighted turbo spin echo (TSE) sequence, voxel size 0.4 × 0.4 × 2 mm3) and bone marrow (1H-MRS, point resolved spectroscopy sequence (PRESS) (single voxel size 20 × 20 × 20 mm3) size and muscle adiposity (Dixon, voxel size 1.1 × 1.1 × 2 mm3). Results There was an inverse association of apparent bone volume/total volume (appBV/TV) with age (r = -0.5, P < 0.0005). Cortical area, endosteal and periosteal circumferences and muscle cross-sectional area showed a positive association to age (r > 0.49, P < 0.0001). In those over 17 years of age, these parameters were also higher in males than females (P < 0.05). This sex difference was also evident for appBV/TV and bone marrow adiposity (BMA) in the older participants (P < 0.05). AppBV/TV showed a negative correlation with BMA (r = -0.22, P = 0.01) which also showed an association with muscle adiposity (r = 0.24, P = 0.04). Cortical geometric parameters were highly correlated with muscle area (r > 0.57, P < 0.01). Conclusions In addition to providing deep insight into the normal relationships between bone, fat and muscle in young people, these novel data emphasize the role of MRI as a non-invasive method for performing a comprehensive and integrated assessment of musculoskeletal health in the growing skeleton.
Collapse
Affiliation(s)
- Huda M Elsharkasi
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow, UK
| | - Suet C Chen
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow, UK
| | - Lewis Steell
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow, UK
| | - Shuko Joseph
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow, UK
- Paediatric Neurosciences Research Group, Royal Hospital for Children, NHS Greater Glasgow & Clyde, Glasgow, UK
| | - Naiemh Abdalrahaman
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow, UK
| | - Christie McComb
- Department of Clinical Physics, NHS Greater Glasgow & Clyde, Glasgow, UK
| | - Blair Johnston
- Department of Clinical Physics, NHS Greater Glasgow & Clyde, Glasgow, UK
| | - John Foster
- Department of Clinical Physics, NHS Greater Glasgow & Clyde, Glasgow, UK
| | - Sze Choong Wong
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow, UK
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow, UK
| |
Collapse
|
17
|
Bardin S, Lecis M, Boido D, Boutin C, Baron G, Aldini G, Berthault P, Boumezbeur F, Ciobanu L. In vivo detection of carnosine and its derivatives using chemical exchange saturation transfer. Magn Reson Med 2022; 88:1314-1323. [PMID: 35526234 PMCID: PMC9320878 DOI: 10.1002/mrm.29282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022]
Abstract
Purpose To detect carnosine, anserine and homocarnosine in vivo with chemical exchange saturation transfer (CEST) at 17.2 T. Methods CEST MR acquisitions were performed using a CEST‐linescan sequence developed in‐house and optimized for carnosine detection. In vivo CEST data were collected from three different regions of interest (the lower leg muscle, the olfactory bulb and the neocortex) of eight rats. Results The CEST effect for carnosine, anserine and homocarnosine was characterized in phantoms, demonstrating the possibility to separate individual contributions by employing high spectral resolution (0.005 ppm) and low CEST saturation power (0.15 μT). The CEST signature of these peptides was evidenced, in vivo, in the rat brain and skeletal muscle. The presence of carnosine and anserine in the muscle was corroborated by in vivo localized spectroscopy (MRS). However, the sensitivity of MRS was insufficient for carnosine and homocarnosine detection in the brain. The absolute amounts of carnosine and derivatives in the investigated tissues were determined by liquid chromatography–electrospray ionization‐tandem mass spectrometry using isotopic dilution standard methods and were in agreement with the CEST results. Conclusion The robustness of the CEST‐linescan approach and the favorable conditions for CEST at ultra‐high magnetic field allowed the in vivo CEST MR detection of carnosine and related peptides. This approach could be useful to investigate noninvasively the (patho)‐physiological roles of these molecules.
Collapse
Affiliation(s)
- Solène Bardin
- NeuroSpin, UMR CEA/CNRS 9027 Paris‐Saclay University Gif‐sur‐Yvette France
| | - Michele Lecis
- NeuroSpin, UMR CEA/CNRS 9027 Paris‐Saclay University Gif‐sur‐Yvette France
| | - Davide Boido
- NeuroSpin, UMR CEA/CNRS 9027 Paris‐Saclay University Gif‐sur‐Yvette France
| | - Céline Boutin
- IRAMIS, NIMBE, UMR CEA/CNRS 3685 Laboratoire Structure et Dynamique par Résonance Magnétique Gif‐sur‐Yvette France
| | - Giovanna Baron
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi” University of Milan Milan Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi” University of Milan Milan Italy
| | - Patrick Berthault
- IRAMIS, NIMBE, UMR CEA/CNRS 3685 Laboratoire Structure et Dynamique par Résonance Magnétique Gif‐sur‐Yvette France
| | - Fawzi Boumezbeur
- NeuroSpin, UMR CEA/CNRS 9027 Paris‐Saclay University Gif‐sur‐Yvette France
| | - Luisa Ciobanu
- NeuroSpin, UMR CEA/CNRS 9027 Paris‐Saclay University Gif‐sur‐Yvette France
| |
Collapse
|
18
|
Waterval NFJ, Meekes VL, Hooijmans MT, Froeling M, Jaspers RT, Oudeman J, Nederveen AJ, Brehm MA, Nollet F. The relationship between quantitative magnetic resonance imaging of the ankle plantar flexors, muscle function during walking and maximal strength in people with neuromuscular diseases. Clin Biomech (Bristol, Avon) 2022; 94:105609. [PMID: 35247697 DOI: 10.1016/j.clinbiomech.2022.105609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Progression of plantar flexor weakness in neuromuscular diseases is usually monitored by muscle strength measurements, although they poorly relate to muscle function during walking. Pathophysiological changes such as intramuscular adipose tissue affect dynamic muscle function independent from isometric strength. Diffusion tensor imaging and T2 imaging are quantitative MRI measures reflecting muscular pathophysiological changes, and are therefore potential biomarkers to monitor plantar flexor functioning during walking in people with neuromuscular diseases. METHODS In fourteen individuals with plantar flexor weakness diffusion tensor imaging and T2 scans of the plantar flexors were obtained, and the diffusion indices fractional anisotropy and mean diffusivity calculated. With a dynamometer, maximal isometric plantar flexor strength was measured. 3D gait analysis was used to assess maximal ankle moment and power during walking. FINDINGS Fractional anisotropy, mean diffusivity and T2 relaxation time all moderately correlated with maximal plantar flexor strength (r > 0.512). Fractional anisotropy and mean diffusivity were not related with ankle moment or power (r < 0.288). T2 relaxation time was strongly related to ankle moment (r = -0.789) and ankle power (r = -0.798), and moderately related to maximal plantar flexor strength (r < 0.600). INTERPRETATION In conclusion, T2 relaxation time, indicative of multiple pathophysiological changes, was strongly related to plantar flexor function during walking, while fractional anisotropy and mean diffusivity, indicative of fiber size, only related to maximal plantar flexor strength. This indicates that these measures may be suitable to monitor muscle function and gain insights into the pathophysiological changes underlying a poor plantar flexor functioning during gait in people with neuromuscular diseases.
Collapse
Affiliation(s)
- N F J Waterval
- Amsterdam UMC, University of Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands.
| | - V L Meekes
- Amsterdam UMC, University of Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - M T Hooijmans
- Amsterdam UMC, University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - M Froeling
- University Medical Center Utrecht, Department of Radiology, Heidelberglaan 100, Utrecht, the Netherlands
| | - R T Jaspers
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, the Netherlands
| | - J Oudeman
- University Medical Center Utrecht, Department of Radiology, Heidelberglaan 100, Utrecht, the Netherlands
| | - A J Nederveen
- Amsterdam UMC, University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - M A Brehm
- Amsterdam UMC, University of Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - F Nollet
- Amsterdam UMC, University of Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Rebecca JW, Alison MB, Ryan JW, Claudia RS, Donovan JL, Ann TH, Kirsten LZ, Sean CF, William DR, Dah-Jyuu W, Erika LF, Gihan IT, Michael JD, William TT, Glenn AW, Krista V. Development of Contractures in DMD in Relation to MRI-Determined Muscle Quality and Ambulatory Function. J Neuromuscul Dis 2022; 9:289-302. [PMID: 35124659 DOI: 10.3233/jnd-210731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Joint contractures are common in boys and men with Duchenne muscular dystrophy (DMD), and management of contractures is an important part of care. The optimal methods to prevent and treat contractures are controversial, and the natural history of contracture development is understudied in glucocorticoid treated individuals at joints beyond the ankle. OBJECTIVE To describe the development of contractures over time in a large cohort of individuals with DMD in relation to ambulatory ability, functional performance, and muscle quality measured using magnetic resonance imaging (MRI) and spectroscopy (MRS). METHODS In this longitudinal study, range of motion (ROM) was measured annually at the hip, knee, and ankle, and at the elbow, forearm, and wrist at a subset of visits. Ambulatory function (10 meter walk/run and 6 minute walk test) and MR-determined muscle quality (transverse relaxation time (T2) and fat fraction) were measured at each visit. RESULTS In 178 boys with DMD, contracture prevalence and severity increased with age. Among ambulatory participants, more severe contractures (defined as greater loss of ROM) were significantly associated with worse ambulatory function, and across all participants, more severe contractures significantly associated with higher MRI T2 or MRS FF (ρ: 0.40-0.61 in the lower extremity; 0.20-0.47 in the upper extremity). Agonist/antagonist differences in MRI T2 were not strong predictors of ROM. CONCLUSIONS Contracture severity increases with disease progression (increasing age and muscle involvement and decreasing functional ability), but is only moderately predicted by muscle fatty infiltration and MRI T2, suggesting that other changes in the muscle, tendon, or joint contribute meaningfully to contracture formation in DMD.
Collapse
Affiliation(s)
| | | | - J Wortman Ryan
- Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | - T Harrington Ann
- Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Arcadia University, Glennside, PA, USA
| | - L Zilke Kirsten
- Shriners Hospitals for Children -Portland, OR, USA.,Oregon Health and Science University, Portland, OR, USA
| | | | | | - Wang Dah-Jyuu
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
MicroRNA-100 Reduced Fetal Bovine Muscle Satellite Cell Myogenesis and Augmented Intramuscular Lipid Deposition by Modulating IGF1R. Cells 2022; 11:cells11030451. [PMID: 35159261 PMCID: PMC8833961 DOI: 10.3390/cells11030451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Previously, microRNA-100 (miR-100) and its putative mRNA target, insulin-like growth factor receptor-1 (IGF1R) were identified as differentially and inversely expressed in bovine longissimus dorsi (LD) muscles with divergent intramuscular fat (IMF) content by our group. While IGF1R signaling is implicated in myogenesis and muscle lipid metabolism, the underlying regulatory mechanisms are poorly understood. In the present study, we aimed to investigate the regulation of IGF1R by miR-100 during bovine muscle satellite cell (BMSC) myogenesis and lipid deposition. MiR-100 was confirmed to target the IGF1R 3′-untranslated region (3′-UTR) by luciferase reporter assay. Furthermore, expression of miR-100 and IGF1R was reciprocal during BMSC differentiation, suggesting a crosstalk between the two. Correspondingly, miR-100 mimic (agomiR) suppressed the levels of IGF1R, PI3K/AKT pathway signaling, myogenic gene MYOG, muscle structural components MYH7 and MYH8, whereas the inhibitor (antagomiR) had no clear stimulating effects. The IGF1R inhibitor (BMS-754807) curtailed receptor levels and triggered atrophy in muscle myotubes but did not influence miR-100 expression. AgomiR increased oleic acid-induced lipid deposition in BMSC myotubes supporting its involvement in intramuscular fat deposition, while antagomiR had no effect. Moreover, mitochondrial beta-oxidation and long-chain fatty acid synthesis-related genes were modulated by agomiR addition. Our results demonstrate modulatory roles of miR-100 in BMSC development, lipid deposition, and metabolism and suggest a role of miR-100 in marbling characteristics of meat animals and fat oxidation in muscle.
Collapse
|
21
|
Chianca V, Albano D, Messina C, Gitto S, Ruffo G, Guarino S, Del Grande F, Sconfienza LM. Sarcopenia: imaging assessment and clinical application. Abdom Radiol (NY) 2022; 47:3205-3216. [PMID: 34687326 PMCID: PMC8536908 DOI: 10.1007/s00261-021-03294-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023]
Abstract
Sarcopenia is a progressive, generalized skeletal muscle disorder characterized by reduction of muscle mass and strength. It is associated with increased adverse outcomes including falls, fractures, physical disability, and mortality, particularly, in elderly patients. Nowadays, sarcopenia has become a specific imaging biomarker able to predict clinical outcomes of patients. Muscle fibre reduction has shown to be an unfavourable pre-operative predictive factor in patients with cancer, and is associated with worse clinical outcomes in terms of postoperative complications, morbidity, mortality, and lower tolerance of chemoradiation therapy. Several imaging modalities, including dual-energy X-ray absorptiometry, CT, MRI, and US can be used to estimate muscle mass and quality to reach the diagnosis of sarcopenia. This article reviews the clinical implications of sarcopenia, how this condition can be assessed through different imaging modalities, and future perspectives of imaging of sarcopenia.
Collapse
Affiliation(s)
- Vito Chianca
- Clinica di Radiologia EOC IIMSI, Lugano, Switzerland ,Ospedale Evangelico Betania, Napoli, Italy
| | - Domenico Albano
- grid.417776.4IRCCS Istituto Ortopedico Galeazzi, Milano, Italy ,grid.10776.370000 0004 1762 5517Sezione di Scienze Radiologiche, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Palermo, Italy
| | - Carmelo Messina
- grid.417776.4IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Salvatore Gitto
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy
| | - Gaetano Ruffo
- grid.417776.4IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | | | | | - Luca Maria Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, Milano, Italy. .,Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
22
|
Petković Ramadža D, Kuhtić I, Žarković K, Lochmüller H, Čavka M, Kovač I, Barić I, Prutki M. Case Report: Advanced Skeletal Muscle Imaging in S-Adenosylhomocysteine Hydrolase Deficiency and Further Insight Into Muscle Pathology. Front Pediatr 2022; 10:847445. [PMID: 35463910 PMCID: PMC9026168 DOI: 10.3389/fped.2022.847445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION S-Adenosylhomocysteine hydrolase deficiency (SAHHD) is a rare inherited multisystemic disease with muscle involvement as one of the most prominent and poorly understood features. To get better insight into muscle involvement, skeletal muscles were analyzed by magnetic resonance imaging (MRI) and MR spectroscopy (MRS) in three brothers with SAHHD in the different age group. METHOD The study was based on analysis of MRI and MRS of skeletal muscles of the lower and the proximal muscle groups of the upper extremities in three SAHHD patients. RESULTS Three siblings presented in early infancy with similar signs and symptoms, including motor developmental delay. All manifested myopathy, more pronounced in the lower extremities and the proximal skeletal muscle groups, and permanently elevated creatine kinase. At the time of MRI and MRS study, the brothers were at the age of 13, 11, and 8 years, respectively. MRI revealed lipid infiltration, and the MRS curve showed an elevated muscle lipid fraction (higher peak of lipid), which increased with age, and was more prominent in the proximal skeletal muscles of the lower extremities. These results were consistent with muscle biopsy findings in two of them, while the third patient had no specific pathological changes in the examined muscle tissue. CONCLUSIONS These findings demonstrate that an accessible and non-invasive method of MRI and MRS is useful for an insight into the extent of muscle involvement, monitoring disease progression, and response to treatment in SAHHD.
Collapse
Affiliation(s)
- Danijela Petković Ramadža
- Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivana Kuhtić
- Department of Radiology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Kamelija Žarković
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Pathology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Mislav Čavka
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Radiology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ida Kovač
- Department of Rehabilitation and Orthopaedic Devices, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ivo Barić
- Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Maja Prutki
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Radiology, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
23
|
Comi GP, Niks EH, Cinnante CM, Kan HE, Vandenborne K, Willcocks RJ, Velardo D, Ripolone M, van Benthem JJ, van de Velde NM, Nava S, Ambrosoli L, Cazzaniga S, Bettica PU. Characterization of patients with Becker muscular dystrophy by histology, magnetic resonance imaging, function, and strength assessments. Muscle Nerve 2021; 65:326-333. [PMID: 34918368 PMCID: PMC9302983 DOI: 10.1002/mus.27475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 12/21/2022]
Abstract
Introduction/Aims Becker muscular dystrophy (BMD) is characterized by variable disease severity and progression, prompting the identification of biomarkers for clinical trials. We used data from an ongoing phase II study to provide a comprehensive characterization of a cohort of patients with BMD, and to assess correlations between histological and magnetic resonance imaging (MRI) markers with muscle function and strength. Methods Eligible patients were ambulatory males with BMD, aged 18 to 65 years (200 to 450 meters on 6‐minute walk test). The following data were obtained: function test results, strength, fat‐fraction quantification using chemical shift‐encoded MRI (whole thigh and quadriceps), and fibrosis and muscle fiber area (MFA) of the brachial biceps. Results Of 70 patients screened, 51 entered the study. There was substantial heterogeneity between patients in muscle morphology (histology and MRI), with high fat replacement. Total fibrosis correlated significantly and mostly moderately with all functional endpoints, including both upper arm strength assessments (left and right elbow flexion rho −.574 and −.588, respectively [both P < .0001]), as did MRI fat fraction (whole thigh and quadriceps), for example, with four‐stair‐climb velocity −.554 and −.550, respectively (both P < .0001). Total fibrosis correlated significantly and moderately with both MRI fat fraction assessments (.500 [P = .0003] and .423 [.0024], respectively). Discussion In this BMD cohort, micro‐ and macroscopic morphological muscle parameters correlated moderately with each other and with functional parameters, potentially supporting the use of MRI fat fraction and histology as surrogate outcome measures in patients with BMD, although additional research is required to validate this.
Collapse
Affiliation(s)
- Giacomo P Comi
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Erik H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Duchenne Center Netherlands, The Netherlands
| | - Claudia M Cinnante
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Hermien E Kan
- Duchenne Center Netherlands, The Netherlands.,C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Krista Vandenborne
- ImagingDMD and Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Rebecca J Willcocks
- ImagingDMD and Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Daniele Velardo
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jules J van Benthem
- Department of Orthopedics, Rehabilitation and Physiotherapy, Leiden University Medical Center, Leiden, The Netherlands
| | - Nienke M van de Velde
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Duchenne Center Netherlands, The Netherlands
| | - Simone Nava
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | |
Collapse
|
24
|
Batra A, Lott DJ, Willcocks R, Forbes SC, Triplett W, Dastgir J, Yun P, Reghan Foley A, Bönnemann CG, Vandenborne K, Walter GA. Lower Extremity Muscle Involvement in the Intermediate and Bethlem Myopathy Forms of COL6-Related Dystrophy and Duchenne Muscular Dystrophy: A Cross-Sectional Study. J Neuromuscul Dis 2021; 7:407-417. [PMID: 32538860 DOI: 10.3233/jnd-190457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Collagen VI-related dystrophies (COL6-RDs) and Duchenne muscular dystrophy (DMD) cause progressive muscle weakness and disability. COL6-RDs are caused by mutations in the COL6 genes (COL6A1, COL6A2 and COL6A3) encoding the extracellular matrix protein collagen VI, and DMD is caused by mutations in the DMD gene encoding the cytoplasmic protein dystrophin. Both COL6-RDs and DMD are characterized by infiltration of the muscles by fatty and fibrotic tissue. This study examined the effect of disease pathology on skeletal muscles in lower extremity muscles of COL6-RDs using timed functional tests, strength measures and qualitative/ quantitative magnetic resonance imaging/spectroscopy measures (MRI/MRS) in comparison to unaffected (control) individuals. Patients with COL6-RD were also compared to age and gender matched patients with DMD.Patients with COL6-RD presented with a typical pattern of fatty infiltration of the muscle giving rise to an apparent halo effect around the muscle, while patients with DMD had evidence of fatty infiltration throughout the muscle areas imaged. Quantitatively, fat fraction, and transverse relaxation time (T2) were elevated in both COL6-RD and DMD patients compared to unaffected (control) individuals. Patients with COL6-RD had widespread muscle atrophy, likely contributing to weakness. In contrast, patients with DMD revealed force deficits even in muscle groups with increased contractile areas.
Collapse
Affiliation(s)
- Abhinandan Batra
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Donovan J Lott
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Rebecca Willcocks
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Sean C Forbes
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - William Triplett
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Jahannaz Dastgir
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Pomi Yun
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
25
|
Marty B, Reyngoudt H, Boisserie JM, Le Louër J, C A Araujo E, Fromes Y, Carlier PG. Water-Fat Separation in MR Fingerprinting for Quantitative Monitoring of the Skeletal Muscle in Neuromuscular Disorders. Radiology 2021; 300:652-660. [PMID: 34254855 DOI: 10.1148/radiol.2021204028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Quantitative MRI is increasingly proposed in clinical trials related to neuromuscular disorders (NMDs). Purpose To investigate the potential of an MR fingerprinting sequence for water and fat fraction (FF) quantification (MRF T1-FF) for providing markers of fatty replacement and disease activity in patients with NMDs and to establish the sensitivity of water T1 as a marker of disease activity compared with water T2 mapping. Materials and Methods Data acquired between March 2018 and March 2020 from the legs of patients with NMDs were retrospectively analyzed. The MRI examination comprised fat-suppressed T2-weighted imaging, mapping of the FF measured with the three-point Dixon technique (FFDixon), water T2 mapping, and MRF T1-FF, from which the FF measured with MRF T1-FF (FFMRF) and water T1 were derived. Data from the legs of healthy volunteers were prospectively acquired between January and July 2020 to derive abnormality thresholds for FF, water T2, and water T1 values. Kruskal-Wallis tests and receiver operating characteristic curve analysis were performed, and linear models were used. Results A total of 73 patients (mean age ± standard deviation, 47 years ± 12; 45 women) and 15 healthy volunteers (mean age, 33 years ± 8; three women) were evaluated. A linear correlation was observed between FFMRF and FFDixon (R2 = 0.97, P < .001). Water T1 values were higher in muscles with high signal intensity at fat-suppressed T2-weighted imaging than in muscles with low signal intensity (mean value, 1281 msec [95% CI: 1165, 1604] vs 1198 msec [95% CI: 1099, 1312], respectively; P < .001), and a correlation was found between water T1 and water T2 distribution metrics (R2 = 0.66 and 0.79 for the median and 90th percentile values, respectively; P < .001). Water T1 classified the patients' muscles as abnormal based on quantitative water T2, with high sensitivity (93%; 68 of 73 patients) and specificity (80%; 53 of 73 patients) (area under the receiver operating characteristic curve, 0.92 [95% CI: 0.83, 0.97]; P < .001). Conclusion Water-fat separation in MR fingerprinting is robust for deriving quantitative imaging markers of intramuscular fatty replacement and disease activity in patients with neuromuscular disorders. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Benjamin Marty
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Harmen Reyngoudt
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Jean-Marc Boisserie
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Julien Le Louër
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Ericky C A Araujo
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Yves Fromes
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Pierre G Carlier
- From the Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Bâtiment Babinski, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Blvd Vincent Auriol, 75651 Paris Cedex 13, France; and Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| |
Collapse
|
26
|
Lopez C, Taivassalo T, Berru MG, Saavedra A, Rasmussen HC, Batra A, Arora H, Roetzheim AM, Walter GA, Vandenborne K, Forbes SC. Postcontractile blood oxygenation level-dependent (BOLD) response in Duchenne muscular dystrophy. J Appl Physiol (1985) 2021; 131:83-94. [PMID: 34013753 PMCID: PMC8325615 DOI: 10.1152/japplphysiol.00634.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by a progressive replacement of muscle by fat and fibrous tissue, muscle weakness, and loss of functional abilities. Impaired vasodilatory and blood flow responses to muscle activation have also been observed in DMD and associated with mislocalization of neuronal nitric oxide synthase mu (nNOSμ) from the sarcolemma. The objective of this study was to determine whether the postcontractile blood oxygen level-dependent (BOLD) MRI response is impaired in DMD and correlated with established markers of disease severity in DMD, including MRI muscle fat fraction (FF) and clinical functional measures. Young boys with DMD (n = 16, 5-14 yr) and unaffected controls (n = 16, 5-14 yr) were evaluated using postcontractile BOLD, FF, and functional assessments. The BOLD response was measured following five brief (2 s) maximal voluntary dorsiflexion contractions, each separated by 1 min of rest. FFs from the anterior compartment lower leg muscles were quantified via chemical shift-encoded imaging. Functional abilities were assessed using the 10 m walk/run and the 6-min walk distance (6MWD). The peak BOLD responses in the tibialis anterior and extensor digitorum longus were reduced (P < 0.001) in DMD compared with controls. Furthermore, the anterior compartment peak BOLD response correlated with function (6MWD ρ = 0.87, P < 0.0001; 10 m walk/run time ρ = -0.78, P < 0.001) and FF (ρ = -0.52, P = 0.05). The reduced postcontractile BOLD response in DMD may reflect impaired microvascular function. The relationship observed between the postcontractile peak BOLD response and functional measures and FF suggests that the BOLD response is altered with disease severity in DMD.NEW & NOTEWORTHY This study examined the postcontractile blood oxygen level-dependent (BOLD) response in boys with Duchenne muscular dystrophy (DMD) and unaffected controls, and correlated this measure to markers of disease severity. Our findings indicate that the postcontractile BOLD response is impaired in DMD after brief muscle contractions, is correlated to disease severity, and may be valuable to implement in future studies to evaluate treatments targeting microvascular function in DMD.
Collapse
Affiliation(s)
- Christopher Lopez
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Tanja Taivassalo
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Maria G Berru
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Andres Saavedra
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Hannah C Rasmussen
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Abhinandan Batra
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Harneet Arora
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Alex M Roetzheim
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Sean C Forbes
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| |
Collapse
|
27
|
Finkel RS, Finanger E, Vandenborne K, Sweeney HL, Tennekoon G, Shieh PB, Willcocks R, Walter G, Rooney WD, Forbes SC, Triplett WT, Yum SW, Mancini M, MacDougall J, Fretzen A, Bista P, Nichols A, Donovan JM. Disease-modifying effects of edasalonexent, an NF-κB inhibitor, in young boys with Duchenne muscular dystrophy: Results of the MoveDMD phase 2 and open label extension trial. Neuromuscul Disord 2021; 31:385-396. [PMID: 33678513 DOI: 10.1016/j.nmd.2021.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/12/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Chronic activation of NF-κB is a key driver of muscle degeneration and suppression of muscle regeneration in Duchenne muscular dystrophy. Edasalonexent (CAT-1004) is an orally-administered novel small molecule that covalently links two bioactive compounds (salicylic acid and docosahexaenoic acid) that inhibit NF-κB. This placebo-controlled, proof-of-concept phase 2 study with open-label extension in boys ≥4-<8 years old with any dystrophin mutation examined the effect of edasalonexent (67 or 100 mg/kg/day) compared to placebo or off-treatment control. Endpoints were safety/tolerability, change from baseline in MRI T2 relaxation time of lower leg muscles and functional assessment, as well as pharmacodynamics and biomarkers. Treatment was well-tolerated and the majority of adverse events were mild, and most commonly of the gastrointestinal system (primarily diarrhea). There were no serious adverse events in the edasalonexent groups. Edasalonexent 100 mg/kg was associated with slowing of disease progression and preservation of muscle function compared to an off-treatment control period, with decrease in levels of NF-κB-regulated genes and improvements in biomarkers of muscle health and inflammation. These results support investigating edasalonexent in future trials and have informed the design of the edasalonexent phase 3 clinical trial in boys with Duchenne.
Collapse
Affiliation(s)
- Richard S Finkel
- St. Jude Children's Research Hospital, Memphis, TN and Nemours Children's Hospital, Orlando, FL, United States.
| | - Erika Finanger
- Oregon Health & Science University, Portland, OR, United States
| | | | - H Lee Sweeney
- University of Florida Health, Gainesville, FL, United States
| | - Gihan Tennekoon
- The Children's Hospital of Philadelphia, and the University of Pennsylvania, Philadelphia, PA, United States
| | - Perry B Shieh
- University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Glenn Walter
- University of Florida Health, Gainesville, FL, United States
| | | | - Sean C Forbes
- University of Florida Health, Gainesville, FL, United States
| | | | - Sabrina W Yum
- The Children's Hospital of Philadelphia, and the University of Pennsylvania, Philadelphia, PA, United States
| | - Maria Mancini
- Catabasis Pharmaceuticals, Inc., Boston, MA, United States
| | | | | | - Pradeep Bista
- Catabasis Pharmaceuticals, Inc., Boston, MA, United States
| | - Andrew Nichols
- Catabasis Pharmaceuticals, Inc., Boston, MA, United States
| | | |
Collapse
|
28
|
Güttsches AK, Rehmann R, Schreiner A, Rohm M, Forsting J, Froeling M, Tegenthoff M, Vorgerd M, Schlaffke L. Quantitative Muscle-MRI Correlates with Histopathology in Skeletal Muscle Biopsies. J Neuromuscul Dis 2021; 8:669-678. [PMID: 33814461 DOI: 10.3233/jnd-210641] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Skeletal muscle biopsy is one of the gold standards in the diagnostic workup of muscle disorders. By histopathologic analysis, characteristic features like inflammatory cellular infiltrations, fat and collagen replacement of muscle tissue or structural defects of the myofibers can be detected. In the past years, novel quantitative MRI (qMRI) techniques have been developed to quantify tissue parameters, thus providing a non-invasive diagnostic tool in several myopathies. OBJECTIVE This proof-of-principle study was performed to validate the qMRI-techniques to skeletal muscle biopsy results. METHODS Ten patients who underwent skeletal muscle biopsy for diagnostic purposes were examined by qMRI. Fat fraction, water T2-time and diffusion parameters were measured in the muscle from which the biopsy was taken. The proportion of fat tissue, the severity of degenerative and inflammatory parameters and the amount of type 1- and type 2- muscle fibers were determined in all biopsy samples. The qMRI-data were then correlated to the histopathological findings. RESULTS The amount of fat tissue in skeletal muscle biopsy correlated significantly with the fat fraction derived from the Dixon sequence. The water T2-time, a parameter for tissue edema, correlated with the amount of vacuolar changes of myofibers and endomysial macrophages in the histopathologic analysis. No significant correlations were found for diffusion parameters. CONCLUSION In this proof-of-principle study, qMRI techniques were related to characteristic histopathologic features in neuromuscular disorders. The study provides the basis for further development of qMRI methods in the follow-up of patients with neuromuscular disorders, especially in the context of emerging treatment strategies.
Collapse
Affiliation(s)
- Anne-Katrin Güttsches
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Anja Schreiner
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Marlena Rohm
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Johannes Forsting
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Martin Tegenthoff
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
29
|
Alic L, Griffin JF, Eresen A, Kornegay JN, Ji JX. Using MRI to quantify skeletal muscle pathology in Duchenne muscular dystrophy: A systematic mapping review. Muscle Nerve 2021; 64:8-22. [PMID: 33269474 PMCID: PMC8247996 DOI: 10.1002/mus.27133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022]
Abstract
There is a great demand for accurate non‐invasive measures to better define the natural history of disease progression or treatment outcome in Duchenne muscular dystrophy (DMD) and to facilitate the inclusion of a large range of participants in DMD clinical trials. This review aims to investigate which MRI sequences and analysis methods have been used and to identify future needs. Medline, Embase, Scopus, Web of Science, Inspec, and Compendex databases were searched up to 2 November 2019, using keywords “magnetic resonance imaging” and “Duchenne muscular dystrophy.” The review showed the trend of using T1w and T2w MRI images for semi‐qualitative inspection of structural alterations of DMD muscle using a diversity of grading scales, with increasing use of T2map, Dixon, and MR spectroscopy (MRS). High‐field (>3T) MRI dominated the studies with animal models. The quantitative MRI techniques have allowed a more precise estimation of local or generalized disease severity. Longitudinal studies assessing the effect of an intervention have also become more prominent, in both clinical and animal model subjects. Quality assessment of the included longitudinal studies was performed using the Newcastle‐Ottawa Quality Assessment Scale adapted to comprise bias in selection, comparability, exposure, and outcome. Additional large clinical trials are needed to consolidate research using MRI as a biomarker in DMD and to validate findings against established gold standards. This future work should use a multiparametric and quantitative MRI acquisition protocol, assess the repeatability of measurements, and correlate findings to histologic parameters.
Collapse
Affiliation(s)
- Lejla Alic
- Department of Electrical & Computer Engineering, Texas A&M University, Doha, Qatar.,Magnetic Detection and Imaging group, Technical Medical Centre, University of Twente, The Netherlands
| | - John F Griffin
- College of Vet. Med. & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Aydin Eresen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Joe N Kornegay
- College of Vet. Med. & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jim X Ji
- Department of Electrical & Computer Engineering, Texas A&M University, Doha, Qatar.,Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
30
|
Global versus individual muscle segmentation to assess quantitative MRI-based fat fraction changes in neuromuscular diseases. Eur Radiol 2020; 31:4264-4276. [PMID: 33219846 DOI: 10.1007/s00330-020-07487-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Magnetic resonance imaging (MRI) constitutes a powerful outcome measure in neuromuscular disorders, yet there is a broad diversity of approaches in data acquisition and analysis. Since each neuromuscular disease presents a specific pattern of muscle involvement, the recommended analysis is assumed to be the muscle-by-muscle approach. We, therefore, performed a comparative analysis of different segmentation approaches, including global muscle segmentation, to determine the best strategy for evaluating disease progression. METHODS In 102 patients (21 immune-mediated necrotizing myopathy/IMNM, 21 inclusion body myositis/IBM, 10 GNE myopathy/GNEM, 19 Duchenne muscular dystrophy/DMD, 12 dysferlinopathy/DYSF, 7 limb-girdle muscular dystrophy/LGMD2I, 7 Pompe disease, 5 spinal muscular atrophy/SMA), two MRI scans were obtained at a 1-year interval in thighs and lower legs. Regions of interest (ROIs) were drawn in individual muscles, muscle groups, and the global muscle segment. Standardized response means (SRMs) were determined to assess sensitivity to change in fat fraction (ΔFat%) in individual muscles, muscle groups, weighted combinations of muscles and muscle groups, and in the global muscle segment. RESULTS Global muscle segmentation gave high SRMs for ΔFat% in thigh and lower leg for IMNM, DYSF, LGMD2I, DMD, SMA, and Pompe disease, and only in lower leg for GNEM and thigh for IBM. CONCLUSIONS Global muscle segment Fat% showed to be sensitive to change in most investigated neuromuscular disorders. As compared to individual muscle drawing, it is a faster and an easier approach to assess disease progression. The use of individual muscle ROIs, however, is still of interest for exploring selective muscle involvement. KEY POINTS • MRI-based evaluation of fatty replacement in muscles is used as an outcome measure in the assessment of 1-year disease progression in 8 different neuromuscular diseases. • Different segmentation approaches, including global muscle segmentation, were evaluated for determining 1-year fat fraction changes in lower limb skeletal muscles. • Global muscle segment fat fraction has shown to be sensitive to change in lower leg and thigh in most of the investigated neuromuscular diseases.
Collapse
|
31
|
Liu Y, Wang J, Zhou X, Cao H, Zhang X, Huang K, Li X, Yang G, Shi X. miR-324-5p Inhibits C2C12 cell Differentiation and Promotes Intramuscular Lipid Deposition through lncDUM and PM20D1. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:722-732. [PMID: 33230469 PMCID: PMC7593507 DOI: 10.1016/j.omtn.2020.09.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Skeletal muscle is an important metabolic organ of the body, and impaired skeletal muscle differentiation can result in a wide range of metabolic diseases. It has been shown that microRNAs (miRNAs) play an important role in skeletal muscle differentiation. The aim of this study was to investigate the role of mmu-miR-324-5p in the differentiation of C2C12 myoblasts and lipid droplet deposition in myotubes for future targeted therapies. We found that mmu-miR-324-5p was highly expressed in mouse skeletal muscle. Overexpression of miR-324-5p significantly inhibited C2C12 myoblast differentiation while promoting oleate-induced lipid accumulation and β-oxidation in C2C12 myoblasts. Conversely, inhibition of mmu-miR-324-5p promoted C2C12 myoblast differentiation and inhibited lipid deposition in myotubes. Mechanistically, mmu-miR-324-5p negatively regulated the expression of long non-coding Dum (lncDum) and peptidase M20 domain containing 1 (Pm20d1) in C2C12 myoblasts. Reduced lncDum expression was associated with a significant decrease in the expression of myogenesis-related genes. Knockdown of mmu-miR-324-5p increased the levels of lncDum and myogenesis-related gene expression. Following oleate-induced lipid deposition in C2C12 myoblasts, overexpression of mmu-miR-324-5p decreased the expression of Pm20d1 while increasing the expression of mitochondrial β-oxidation and long-chain fatty acid synthesis-related genes. In conclusion, we provide evidence that miR-324-5p inhibits C2C12 myoblast differentiation and promotes intramuscular lipid deposition by targeting lncDum and Pm20d1, respectively.
Collapse
Affiliation(s)
- Yihao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaomin Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haigang Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kuilong Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin'e Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
32
|
Marty B, Lopez Kolkovsky AL, Araujo ECA, Reyngoudt H. Quantitative Skeletal Muscle Imaging Using 3D MR Fingerprinting With Water and Fat Separation. J Magn Reson Imaging 2020; 53:1529-1538. [PMID: 32996670 DOI: 10.1002/jmri.27381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Quantitative muscle MRI is a robust tool to monitor intramuscular fatty replacement and disease activity in patients with neuromuscular disorders (NMDs). PURPOSE To implement a 3D sequence for quantifying simultaneously fat fraction (FF) and water T1 (T1,H2O ) in the skeletal muscle, evaluate regular undersampling in the partition-encoding direction, and compare it to a recently proposed 2D MR fingerprinting sequence with water and fat separation (MRF T1 -FF). STUDY TYPE Prospective. PHANTOM/SUBJECTS Seventeen-vial phantom at different FF and T1,H2O , 11 healthy volunteers, and 6 subjects with different NMDs. FIELD STRENGTH/SEQUENCE 3T/3D MRF T1 -FF, 2D MRF T1 -FF, STEAM MRS ASSESSMENT: FF and T1,H2O measured with the 2D and 3D sequences were compared in the phantom and in vivo at different undersampling factors (US). Data were acquired in healthy subjects before and after plantar dorsiflexions and at rest in patients. STATISTICAL TESTS Linear correlations, Bland-Altman analysis, two-way repeated measures analysis of variance (ANOVA), Student's t-test. RESULTS Up to a US factor of 3, the undersampled acquisitions were in good agreement with the fully sampled sequence (R2 ≥ 0.98, T1,H2O bias ≤10 msec, FF bias ≤4 × 10-4 ) both in phantom and in vivo. The 2D and 3D MRF T1 -FF sequences provided comparable T1,H2O and FF values (R2 ≥ 0.95, absolute T1,H2O bias ≤35 msec, and absolute FF bias ≤0.003). The plantar dorsiflexion induced a significant increase of T1,H2O in the tibialis anterior and extensor digitorum (relative increase of +10.8 ± 1.7% and + 7.7 ± 1.4%, respectively, P < 0.05), that was accompanied by a significant reduction of FF in the tibialis anterior (relative decrease of -16.3 ± 4.0%, P < 0.05). Some subjects with NMDs presented increased and heterogeneous T1,H2O and FF values throughout the leg. DATA CONCLUSION Quantitative 3D T1,H2O and FF maps covering the entire leg were obtained within acquisition times compatible with clinical research (4 minutes 20 seconds) and a 1 × 1 × 5 mm3 spatial resolution. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Benjamin Marty
- Neuromuscular Investigation Center, NMR Laboratory, Institute of Myology, Paris, France.,CEA, DRF, IBFJ, MIRCen, NMR Laboratory, Paris, France
| | - Alfredo L Lopez Kolkovsky
- Neuromuscular Investigation Center, NMR Laboratory, Institute of Myology, Paris, France.,CEA, DRF, IBFJ, MIRCen, NMR Laboratory, Paris, France
| | - Ericky C A Araujo
- Neuromuscular Investigation Center, NMR Laboratory, Institute of Myology, Paris, France.,CEA, DRF, IBFJ, MIRCen, NMR Laboratory, Paris, France
| | - Harmen Reyngoudt
- Neuromuscular Investigation Center, NMR Laboratory, Institute of Myology, Paris, France.,CEA, DRF, IBFJ, MIRCen, NMR Laboratory, Paris, France
| |
Collapse
|
33
|
Giraudo C, Cavaliere A, Lupi A, Guglielmi G, Quaia E. Established paths and new avenues: a review of the main radiological techniques for investigating sarcopenia. Quant Imaging Med Surg 2020; 10:1602-1613. [PMID: 32742955 PMCID: PMC7378089 DOI: 10.21037/qims.2019.12.15] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
Sarcopenia is a clinical condition mainly affecting the elderly that can be associated in a long run with severe consequences like malnutrition and frailty. Considering the progressive ageing of the world population and the socio-economic impact of this disease, much effort is devoted and has to be further focused on an early and accurate diagnostic assessment of muscle loss. Currently, several radiological techniques can be applied for evaluating sarcopenia. If dual-energy X-ray absorptiometry (DXA) is still considered the main tool and it is even recommended as reference by the most current guidelines of the European working group on sarcopenia in older people (EWGSOP), the role of ultrasound (US), computed tomography (CT), peripheral quantitative CT (pQCT), and magnetic resonance imaging (MRI) should not be overlooked. Indeed, such techniques can provide robust qualitative and quantitative information. In particular, regarding MRI, the use of sequences like diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), magnetic resonance spectroscopy (MRS) and mapping that could provide further insights into the physiopathological features of sarcopenia, should be fostered. In an era pointing to the quantification and automatic evaluation of diseases, we call for future research extending the application of organ tailored protocols, taking advantage of the most recent technical developments.
Collapse
Affiliation(s)
- Chiara Giraudo
- Radiology Institute, Department of Medicine—DIMED, University of Padova, Padova, Italy
| | - Annachiara Cavaliere
- Radiology Institute, Department of Medicine—DIMED, University of Padova, Padova, Italy
| | - Amalia Lupi
- Radiology Institute, Department of Medicine—DIMED, University of Padova, Padova, Italy
| | - Giuseppe Guglielmi
- Department of Radiology, Scientific Institute “Casa Sollievo della Sofferenza” Hospital, University of Foggia, Foggia, Italy
| | - Emilio Quaia
- Radiology Institute, Department of Medicine—DIMED, University of Padova, Padova, Italy
| |
Collapse
|
34
|
Forbes SC, Arora H, Willcocks RJ, Triplett WT, Rooney WD, Barnard AM, Alabasi U, Wang DJ, Lott DJ, Senesac CR, Harrington AT, Finanger EL, Tennekoon GI, Brandsema J, Daniels MJ, Sweeney HL, Walter GA, Vandenborne K. Upper and Lower Extremities in Duchenne Muscular Dystrophy Evaluated with Quantitative MRI and Proton MR Spectroscopy in a Multicenter Cohort. Radiology 2020; 295:616-625. [PMID: 32286193 PMCID: PMC7263287 DOI: 10.1148/radiol.2020192210] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/18/2022]
Abstract
Background Upper extremity MRI and proton MR spectroscopy are increasingly considered to be outcome measures in Duchenne muscular dystrophy (DMD) clinical trials. Purpose To demonstrate the feasibility of acquiring upper extremity MRI and proton (1H) MR spectroscopy measures of T2 and fat fraction in a large, multicenter cohort (ImagingDMD) of ambulatory and nonambulatory individuals with DMD; compare upper and lower extremity muscles by using MRI and 1H MR spectroscopy; and correlate upper extremity MRI and 1H MR spectroscopy measures to function. Materials and Methods In this prospective cross-sectional study, MRI and 1H MR spectroscopy and functional assessment data were acquired from participants with DMD and unaffected control participants at three centers (from January 28, 2016, to April 24, 2018). T2 maps of the shoulder, upper arm, forearm, thigh, and calf were generated from a spin-echo sequence (repetition time msec/echo time msec, 3000/20-320). Fat fraction maps were generated from chemical shift-encoded imaging (eight echo times). Fat fraction and 1H2O T2 in the deltoid and biceps brachii were measured from single-voxel 1H MR spectroscopy (9000/11-243). Groups were compared by using Mann-Whitney test, and relationships between MRI and 1H MR spectroscopy and arm function were assessed by using Spearman correlation. Results This study evaluated 119 male participants with DMD (mean age, 12 years ± 3 [standard deviation]) and 38 unaffected male control participants (mean age, 12 years ± 3). Deltoid and biceps brachii muscles were different in participants with DMD versus control participants in all age groups by using quantitative T2 MRI (P < .001) and 1H MR spectroscopy fat fraction (P < .05). The deltoid, biceps brachii, and triceps brachii were affected to the same extent (P > .05) as the soleus and medial gastrocnemius. Negative correlations were observed between arm function and MRI (T2: range among muscles, ρ = -0.53 to -0.73 [P < .01]; fat fraction, ρ = -0.49 to -0.70 [P < .01]) and 1H MR spectroscopy fat fraction (ρ = -0.64 to -0.71; P < .01). Conclusion This multicenter study demonstrated early and progressive involvement of upper extremity muscles in Duchenne muscular dystrophy (DMD) and showed the feasibility of MRI and 1H MR spectroscopy to track disease progression over a wide range of ages in participants with DMD. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Sean C. Forbes
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Harneet Arora
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Rebecca J. Willcocks
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - William T. Triplett
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - William D. Rooney
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Alison M. Barnard
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Umar Alabasi
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Dah-Jyuu Wang
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Donovan J. Lott
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Claudia R. Senesac
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Ann T. Harrington
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Erika L. Finanger
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Gihan I. Tennekoon
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - John Brandsema
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Michael J. Daniels
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - H. Lee Sweeney
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Glenn A. Walter
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| | - Krista Vandenborne
- From the Department of Physical Therapy (S.C.F., H.A., R.J.W., W.T.T., A.M.B., U.A., D.J.L. C.R.S., K.V.), Department of Statistics (M.J.D.), Department of Pharmacology and Therapeutics (H.L.S.), and Department of Physiology and Functional Genomics (G.A.W.), University of Florida, Box 100154, UFHSC, Gainesville, FL 32610; Advanced Imaging Research Center, Oregon Health and Science University, Portland, Ore (W.D.R., E.L.F.); The Children’s Hospital of Philadelphia, Philadelphia, Pa (D.J.W., A.T.H., G.I.T., J.B.); and Department of Neurology, Shriners Hospital for Children, Portland, Ore (E.L.F.)
| |
Collapse
|
35
|
Celentano V, Kamil-Mustafa L, Beable R, Ball C, Flashman KG, Jennings Z, O' Leary DP, Higginson A, Luxton S. Preoperative assessment of skeletal muscle mass during magnetic resonance enterography in patients with Crohn's disease. Updates Surg 2020; 73:1419-1427. [PMID: 32410158 PMCID: PMC8397655 DOI: 10.1007/s13304-020-00790-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Measurement of the psoas muscle area has been applied to estimate lean muscle mass as a surrogate marker of sarcopenia, but there is a paucity of evidence regarding the influence of sarcopenia on clinical outcomes following inflammatory bowel disease surgery. The aim of this study was to evaluate the association between MRI enterography defined sarcopenia and postoperative complications in patients undergoing elective ileocaecal resection for Crohn’s disease. To obtain cross sectional area measurement of the psoas muscle, the freehand area tool was used to trace the margin of each psoas muscle at the level of L4, with the sum recorded as Total Psoas Area (TPA). The total cross sectional muscle area of the abdominal wall was recorded as Skeletal Muscle Area (SMA), while myosteatosis was measured by normalising the psoas muscle intensity with the mean intensity of the cerebrospinal fluid. The primary outcome was the incidence of 30-day postoperative complications in patients in the lowest quartile of TPA and SMA. 31 patients were included and ten patients (32.25%) developed postoperative complications within 30 days of surgery. The cut-off values for the lowest quartile for TPA were 11.93 cm2 in men and 9.77 cm2 in women, including a total of 8 patients (25.8%) with 5 patients in this group (62.5%) developing postoperative complications and 3 patients (37.5%) Clavien-Dindo class ≥ 3 complications. The cut-off values for the lowest quartile for SMA were 73.49 cm2 in men and 65.85 cm2 in women, with 4 patients out of 8 (50%) developing postoperative complications. Psoas muscle cross sectional area and skeletal mass area can be estimated on Magnetic Resonance Enterography as surrogate markers of sarcopenia with high inter-observer agreement.
Collapse
Affiliation(s)
- V Celentano
- Queen Alexandra Hospital - Portsmouth Hospitals NHS Trust, Portsmouth, UK. .,University of Portsmouth, Portsmouth, UK.
| | - L Kamil-Mustafa
- Queen Alexandra Hospital - Portsmouth Hospitals NHS Trust, Portsmouth, UK
| | - R Beable
- Queen Alexandra Hospital - Portsmouth Hospitals NHS Trust, Portsmouth, UK
| | - C Ball
- Queen Alexandra Hospital - Portsmouth Hospitals NHS Trust, Portsmouth, UK
| | - K G Flashman
- Queen Alexandra Hospital - Portsmouth Hospitals NHS Trust, Portsmouth, UK
| | - Z Jennings
- Queen Alexandra Hospital - Portsmouth Hospitals NHS Trust, Portsmouth, UK
| | - D P O' Leary
- Queen Alexandra Hospital - Portsmouth Hospitals NHS Trust, Portsmouth, UK
| | - A Higginson
- Queen Alexandra Hospital - Portsmouth Hospitals NHS Trust, Portsmouth, UK
| | - S Luxton
- Queen Alexandra Hospital - Portsmouth Hospitals NHS Trust, Portsmouth, UK
| |
Collapse
|
36
|
Rooney WD, Berlow YA, Triplett WT, Forbes SC, Willcocks RJ, Wang DJ, Arpan I, Arora H, Senesac C, Lott DJ, Tennekoon G, Finkel R, Russman BS, Finanger EL, Chakraborty S, O'Brien E, Moloney B, Barnard A, Sweeney HL, Daniels MJ, Walter GA, Vandenborne K. Modeling disease trajectory in Duchenne muscular dystrophy. Neurology 2020; 94:e1622-e1633. [PMID: 32184340 DOI: 10.1212/wnl.0000000000009244] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/17/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To quantify disease progression in individuals with Duchenne muscular dystrophy (DMD) using magnetic resonance biomarkers of leg muscles. METHODS MRI and magnetic resonance spectroscopy (MRS) biomarkers were acquired from 104 participants with DMD and 51 healthy controls using a prospective observational study design with patients with DMD followed up yearly for up to 6 years. Fat fractions (FFs) in vastus lateralis and soleus muscles were determined with 1H MRS. MRI quantitative T2 (qT2) values were measured for 3 muscles of the upper leg and 5 muscles of the lower leg. Longitudinal changes in biomarkers were modeled with a cumulative distribution function using a nonlinear mixed-effects approach. RESULTS MRS FF and MRI qT2 increased with DMD disease duration, with the progression time constants differing markedly between individuals and across muscles. The average age at half-maximal muscle involvement (μ) occurred 4.8 years earlier in vastus lateralis than soleus, and these measures were strongly associated with loss-of-ambulation age. Corticosteroid treatment was found to delay μ by 2.5 years on average across muscles, although there were marked differences between muscles with more slowly progressing muscles showing larger delay. CONCLUSIONS MRS FF and MRI qT2 provide sensitive noninvasive measures of DMD progression. Modeling changes in these biomarkers across multiple muscles can be used to detect and monitor the therapeutic effects of corticosteroids on disease progression and to provide prognostic information on functional outcomes. This modeling approach provides a method to transform these MRI biomarkers into well-understood metrics, allowing concise summaries of DMD disease progression at individual and population levels. CLINICALTRIALSGOV IDENTIFIER NCT01484678.
Collapse
Affiliation(s)
- William D Rooney
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR.
| | - Yosef A Berlow
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - William T Triplett
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Sean C Forbes
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Rebecca J Willcocks
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Dah-Jyuu Wang
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Ishu Arpan
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Harneet Arora
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Claudia Senesac
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Donovan J Lott
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Gihan Tennekoon
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Richard Finkel
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Barry S Russman
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Erika L Finanger
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Saptarshi Chakraborty
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Elliott O'Brien
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Brendan Moloney
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Alison Barnard
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - H Lee Sweeney
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Michael J Daniels
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Glenn A Walter
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Krista Vandenborne
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| |
Collapse
|
37
|
Barnard AM, Willcocks RJ, Triplett WT, Forbes SC, Daniels MJ, Chakraborty S, Lott DJ, Senesac CR, Finanger EL, Harrington AT, Tennekoon G, Arora H, Wang DJ, Sweeney HL, Rooney WD, Walter GA, Vandenborne K. MR biomarkers predict clinical function in Duchenne muscular dystrophy. Neurology 2020; 94:e897-e909. [PMID: 32024675 PMCID: PMC7238941 DOI: 10.1212/wnl.0000000000009012] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To investigate the potential of lower extremity magnetic resonance (MR) biomarkers to serve as endpoints in clinical trials of therapeutics for Duchenne muscular dystrophy (DMD) by characterizing the longitudinal progression of MR biomarkers over 48 months and assessing their relationship to changes in ambulatory clinical function. METHODS One hundred sixty participants with DMD were enrolled in this longitudinal, natural history study and underwent MR data acquisition of the lower extremity muscles to determine muscle fat fraction (FF) and MRI T2 biomarkers of disease progression. In addition, 4 tests of ambulatory function were performed. Participants returned for follow-up data collection at 12, 24, 36, and 48 months. RESULTS Longitudinal analysis of the MR biomarkers revealed that vastus lateralis FF, vastus lateralis MRI T2, and biceps femoris long head MRI T2 biomarkers were the fastest progressing biomarkers over time in this primarily ambulatory cohort. Biomarker values tended to demonstrate a nonlinear, sigmoidal trajectory over time. The lower extremity biomarkers predicted functional performance 12 and 24 months later, and the magnitude of change in an MR biomarker over time was related to the magnitude of change in function. Vastus lateralis FF, soleus FF, vastus lateralis MRI T2, and biceps femoris long head MRI T2 were the strongest predictors of future loss of function, including loss of ambulation. CONCLUSIONS This study supports the strong relationship between lower extremity MR biomarkers and measures of clinical function, as well as the ability of MR biomarkers, particularly those from proximal muscles, to predict future ambulatory function and important clinical milestones. CLINICALTRIALSGOV IDENTIFIER NCT01484678.
Collapse
Affiliation(s)
- Alison M Barnard
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Rebecca J Willcocks
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - William T Triplett
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Sean C Forbes
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Michael J Daniels
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Saptarshi Chakraborty
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Donovan J Lott
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Claudia R Senesac
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Erika L Finanger
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Ann T Harrington
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Gihan Tennekoon
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Harneet Arora
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Dah-Jyuu Wang
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - H Lee Sweeney
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - William D Rooney
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Glenn A Walter
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA
| | - Krista Vandenborne
- From the Departments of Physical Therapy (A.M.B., R.J.W., W.T.T., S.C.F., D.J.L., C.R.S., H.A., K.V.), Statistics (M.J.D., S.C.), Pharmacology and Therapeutics (H.L.S.), and Physiology and Functional Genomics (G.A.W.), University of Florida, Gainesville; Departments of Pediatrics and Neurology (E.L.F., G.T., D.-J.W.) and Advanced Imaging Research Center (W.D.R.), Oregon Health & Science University, Portland; and Children's Hospital of Philadelphia (A.T.H.), PA.
| |
Collapse
|
38
|
Maggi L, Moscatelli M, Frangiamore R, Mazzi F, Verri M, De Luca A, Pasanisi MB, Baranello G, Tramacere I, Chiapparini L, Bruzzone MG, Mantegazza R, Aquino D. Quantitative Muscle MRI Protocol as Possible Biomarker in Becker Muscular Dystrophy. Clin Neuroradiol 2020; 31:257-266. [PMID: 31974637 DOI: 10.1007/s00062-019-00875-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Aim of this study is to compare Quantitative Magnetic Resonance Imaging (qMRI) measures between Becker Muscular Dystrophy (BMD) and Healthy Subjects (HS) and to correlate these parameters with clinical scores. METHODS Ten BMD patients (mean age ±standard deviation: 38.7 ± 15.0 years) and ten age-matched HS, were investigated through magnetic resonance imaging (MRI) at thigh and calf levels, including: 1) a standard axial T1-weighted sequence; 2) a volumetric T2-weighted sequence; 3) a multiecho spin-echo sequence; 4) a 2-point Dixon sequence; 5) a Diffusion Tensor Imaging (DTI) sequence. RESULTS Mean Fat Fraction (FF), T2-relaxation time and Fractional Anisotropy (FA) DTI at thigh and calf levels were significantly higher in BMD patients than in HS (p-values < 0.01). FF at thigh and calf levels significantly correlated with North Star Ambulatory Assessment (NSAA) score (p-values < 0.01) and6 Minutes Walking Test (6MWT) (p-values < 0.01), whereas only calf muscle FF was significantly associated with time to get up from floor (p-value = 0.01). T2 significantly correlated with NSAA score (p-value < 0.01), 6MWT (p-value = 0.02) and time to get up from floor (p-value < 0.01) only at calf level. Among DTI values, only FA in thigh and calf muscles significantly correlated with NSAA score, 6MWT and 10-m walk (all p-values < 0.05); only FA in calf muscles significantly correlated with time to get up from floor (p = 0.01). CONCLUSIONS Muscle FF, T2-relaxometry and DTI, seem to be a promising biomarker to assess BMD disease severity, although further studies are needed to evaluate changes over the time.
Collapse
Affiliation(s)
- Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy. .,Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Via Celoria 11, 20133, Milan, Italy.
| | - Marco Moscatelli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rita Frangiamore
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Federica Mazzi
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Mattia Verri
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alberto De Luca
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maria Barbara Pasanisi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanni Baranello
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Irene Tramacere
- Department of Research and Clinical Development, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luisa Chiapparini
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
39
|
Strijkers GJ, Araujo EC, Azzabou N, Bendahan D, Blamire A, Burakiewicz J, Carlier PG, Damon B, Deligianni X, Froeling M, Heerschap A, Hollingsworth KG, Hooijmans MT, Karampinos DC, Loudos G, Madelin G, Marty B, Nagel AM, Nederveen AJ, Nelissen JL, Santini F, Scheidegger O, Schick F, Sinclair C, Sinkus R, de Sousa PL, Straub V, Walter G, Kan HE. Exploration of New Contrasts, Targets, and MR Imaging and Spectroscopy Techniques for Neuromuscular Disease - A Workshop Report of Working Group 3 of the Biomedicine and Molecular Biosciences COST Action BM1304 MYO-MRI. J Neuromuscul Dis 2020; 6:1-30. [PMID: 30714967 PMCID: PMC6398566 DOI: 10.3233/jnd-180333] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuromuscular diseases are characterized by progressive muscle degeneration and muscle weakness resulting in functional disabilities. While each of these diseases is individually rare, they are common as a group, and a large majority lacks effective treatment with fully market approved drugs. Magnetic resonance imaging and spectroscopy techniques (MRI and MRS) are showing increasing promise as an outcome measure in clinical trials for these diseases. In 2013, the European Union funded the COST (co-operation in science and technology) action BM1304 called MYO-MRI (www.myo-mri.eu), with the overall aim to advance novel MRI and MRS techniques for both diagnosis and quantitative monitoring of neuromuscular diseases through sharing of expertise and data, joint development of protocols, opportunities for young researchers and creation of an online atlas of muscle MRI and MRS. In this report, the topics that were discussed in the framework of working group 3, which had the objective to: Explore new contrasts, new targets and new imaging techniques for NMD are described. The report is written by the scientists who attended the meetings and presented their data. An overview is given on the different contrasts that MRI can generate and their application, clinical needs and desired readouts, and emerging methods.
Collapse
Affiliation(s)
| | - Ericky C.A. Araujo
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Noura Azzabou
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | | | - Andrew Blamire
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jedrek Burakiewicz
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pierre G. Carlier
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Bruce Damon
- Vanderbilt University Medical Center, Nashville, USA
| | - Xeni Deligianni
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | | - Arend Heerschap
- Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | | | | | | | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Armin M. Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany & Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Francesco Santini
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Olivier Scheidegger
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Fritz Schick
- University of Tübingen, Section on Experimental Radiology, Tübingen, Germany
| | | | | | | | - Volker Straub
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Hermien E. Kan
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
40
|
Ropars J, Gravot F, Ben Salem D, Rousseau F, Brochard S, Pons C. Muscle MRI: A biomarker of disease severity in Duchenne muscular dystrophy? A systematic review. Neurology 2019; 94:117-133. [PMID: 31892637 DOI: 10.1212/wnl.0000000000008811] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To assess the evidence of a relationship between muscle MRI and disease severity in Duchenne muscular dystrophy (DMD). METHODS We conducted a systematic review of studies that analyzed correlations between MRI measurements and motor function in patients with DMD. PubMed, Cochrane, Scopus, and Web of Science were searched using relevant keywords and inclusion/exclusion criteria (January 1, 1990-January 31, 2019). We evaluated article quality using the Joanna Briggs Institute scale. Information regarding the samples included, muscles evaluated, MRI protocols and motor function tests used was collected from each article. Correlations between MRI measurements and motor function were reported exhaustively. RESULTS Seventeen of 1,629 studies identified were included. Most patients included were ambulant with a mean age of 8.9 years. Most studies evaluated lower limb muscles. Moderate to excellent correlations were found between MRI measurements and motor function. The strongest correlations were found for quantitative MRI measurements such as fat fraction or mean T2. Correlations were stronger for lower leg muscles such as soleus. One longitudinal study reported that changes in soleus mean T2 were highly correlated with changes in motor function. CONCLUSION The findings of this systematic review showed that MRI measurements can be used as biomarkers of disease severity in ambulant patients with DMD. Guidelines are proposed to help clinicians choose the most appropriate MRI measurements and muscles to evaluate. Studies exploring upper limb muscles, other stages of the disease, and sensitivity of measurements to change are needed.
Collapse
Affiliation(s)
- Juliette Ropars
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France.
| | - France Gravot
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France
| | - Douraied Ben Salem
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France
| | - François Rousseau
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France
| | - Sylvain Brochard
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France
| | - Christelle Pons
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France
| |
Collapse
|
41
|
Schlaffke L, Rehmann R, Rohm M, Otto LAM, de Luca A, Burakiewicz J, Baligand C, Monte J, den Harder C, Hooijmans MT, Nederveen A, Schlaeger S, Weidlich D, Karampinos DC, Stouge A, Vaeggemose M, D'Angelo MG, Arrigoni F, Kan HE, Froeling M. Multi-center evaluation of stability and reproducibility of quantitative MRI measures in healthy calf muscles. NMR IN BIOMEDICINE 2019; 32:e4119. [PMID: 31313867 DOI: 10.1002/nbm.4119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 05/18/2023]
Abstract
The purpose of this study was to evaluate temporal stability, multi-center reproducibility and the influence of covariates on a multimodal MR protocol for quantitative muscle imaging and to facilitate its use as a standardized protocol for evaluation of pathology in skeletal muscle. Quantitative T2, quantitative diffusion and four-point Dixon acquisitions of the calf muscles of both legs were repeated within one hour. Sixty-five healthy volunteers (31 females) were included in one of eight 3-T MR systems. Five traveling subjects were examined in six MR scanners. Average values over all slices of water-T2 relaxation time, proton density fat fraction (PDFF) and diffusion metrics were determined for seven muscles. Temporal stability was tested with repeated measured ANOVA and two-way random intraclass correlation coefficient (ICC). Multi-center reproducibility of traveling volunteers was assessed by a two-way mixed ICC. The factors age, body mass index, gender and muscle were tested for covariance. ICCs of temporal stability were between 0.963 and 0.999 for all parameters. Water-T2 relaxation decreased significantly (P < 10-3 ) within one hour by ~ 1 ms. Multi-center reproducibility showed ICCs within 0.879-0.917 with the lowest ICC for mean diffusivity. Different muscles showed the highest covariance, explaining 20-40% of variance for observed parameters. Standardized acquisition and processing of quantitative muscle MRI data resulted in high comparability among centers. The imaging protocol exhibited high temporal stability over one hour except for water T2 relaxation times. These results show that data pooling is feasible and enables assembling data from patients with neuromuscular diseases, paving the way towards larger studies of rare muscle disorders.
Collapse
Affiliation(s)
- Lara Schlaffke
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- C.J., Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Marlena Rohm
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Louise A M Otto
- Brain Centre Rudolf Magnus, Department of Neurology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Alberto de Luca
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jedrzej Burakiewicz
- C.J., Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Celine Baligand
- C.J., Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jithsa Monte
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Chiel den Harder
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Melissa T Hooijmans
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Aart Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Sarah Schlaeger
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Anders Stouge
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Hermien E Kan
- C.J., Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
42
|
Barnard AM, Lott DJ, Batra A, Triplett WT, Forbes SC, Riehl SL, Willcocks RJ, Smith BK, Vandenborne K, Walter GA. Imaging respiratory muscle quality and function in Duchenne muscular dystrophy. J Neurol 2019; 266:2752-2763. [PMID: 31350642 DOI: 10.1007/s00415-019-09481-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Duchenne muscular dystrophy (DMD) is characterized by damage to muscles including the muscles involved in respiration. Dystrophic muscles become weak and infiltrated with fatty tissue, resulting in progressive respiratory impairment. The objective of this study was to assess respiratory muscle quality and function in DMD using magnetic resonance imaging and to determine the relationship to clinical respiratory function. METHODS Individuals with DMD (n = 36) and unaffected controls (n = 12) participated in this cross sectional magnetic resonance imaging study. Participants underwent dynamic imaging of the thorax to assess diaphragm and chest wall mobility and chemical shift-encoded imaging of the chest and abdomen to determine fatty infiltration of the accessory respiratory muscles. Additionally, clinical pulmonary function measures were obtained. RESULTS Thoracic cavity area was decreased in individuals with DMD compared to controls during tidal and maximal breathing. Individuals with DMD had reduced chest wall movement in the anterior-posterior direction during maximal inspirations and expirations, but diaphragm descent during maximal inspirations (normalized to height) was only decreased in a subset of individuals with maximal inspiratory pressures less than 60% predicted. Muscle fat fraction was elevated in all three expiratory muscles assessed (p < 0.001), and the degree of fatty infiltration correlated with percent predicted maximal expiratory pressures (r = - 0.70, p < 0.001). The intercostal muscles demonstrated minimal visible fatty infiltration; however, this analysis was qualitative and resolution limited. INTERPRETATION This magnetic resonance imaging investigation of diaphragm movement, chest wall movement, and accessory respiratory muscle fatty infiltration provides new insights into the relationship between disease progression and clinical respiratory function.
Collapse
Affiliation(s)
- Alison M Barnard
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA.,Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Donovan J Lott
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Abhinandan Batra
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - William T Triplett
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Sean C Forbes
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Samuel L Riehl
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | | | - Barbara K Smith
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
43
|
Farrow M, Grainger AJ, Tan AL, Buch MH, Emery P, Ridgway JP, Feiweier T, Tanner SF, Biglands J. Normal values and test-retest variability of stimulated-echo diffusion tensor imaging and fat fraction measurements in the muscle. Br J Radiol 2019; 92:20190143. [PMID: 31298948 DOI: 10.1259/bjr.20190143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To assess the test-retest variability of both diffusion parameters and fat fraction (FF) estimates in normal muscle, and to assess differences in normal values between muscles in the thigh. METHODS 29 healthy volunteers (mean age 37 years, range 20-60 years, 17/29 males) completed the study. Magnetic resonance images of the mid-thigh were acquired using a stimulated echo acquisition mode-echoplanar imaging (STEAM-EPI) imaging sequence, to assess diffusion, and 2-point Dixon imaging, to assess FF. Imaging was repeated in 19 participants after a 30 min interval in order to assess test-retest variability of the measurements. RESULTS Intraclass correlation coefficients (ICCs) for test-retest variability were 0.99 [95% confidence interval, (CI): 0.98, 1] for FF, 0.94 (95% CI: 0.84, 0.97) for mean diffusivity and 0.89 (95% CI: 0.74, 0.96) for fractional anisotropy (FA). FF was higher in the hamstrings than the quadriceps by a mean difference of 1.81% (95% CI:1.63, 2.00)%, p < 0.001. Mean diffusivity was significantly lower in the hamstrings than the quadriceps (0.26 (0.13, 0.39) x10-3 mm2s-1, p < 0.001) whereas fractional anisotropy was significantly higher in the hamstrings relative to the quadriceps with a mean difference of 0.063 (0.05, 0.07), p < 0.001. CONCLUSIONS This study has shown excellent test-retest, variability in MR-based FF and diffusion measurements and demonstrated significant differences in these measures between hamstrings and quadriceps in the healthy thigh. ADVANCES IN KNOWLEDGE Test-retest variability is excellent for STEAM-EPI diffusion and 2-point Dixon-based FF measurements in the healthy muscle. Inter- and intraobserver variability were excellent for region of interest placement for STEAM-EPI diffusion and 2-point Dixon-based FF measurements in the healthy muscle. There are significant differences in FF and diffusion measurements between the hamstrings and quadriceps in the normal muscle.
Collapse
Affiliation(s)
- Matthew Farrow
- 1Leeds institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, United Kingdom.,2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Andrew J Grainger
- 1Leeds institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, United Kingdom.,2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Ai Lyn Tan
- 1Leeds institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, United Kingdom.,2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Maya H Buch
- 1Leeds institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, United Kingdom.,2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Paul Emery
- 1Leeds institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, United Kingdom.,2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - John P Ridgway
- 2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,3Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | | | - Steven F Tanner
- 2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,3Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - John Biglands
- 2NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,3Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|
44
|
Effectiveness of High-Speed T2-Corrected Multiecho MR Spectroscopic Method for Quantifying Thigh Muscle Fat Content in Boys With Duchenne Muscular Dystrophy. AJR Am J Roentgenol 2019; 212:1354-1360. [PMID: 30860898 DOI: 10.2214/ajr.18.20354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE. The purpose of this study was to investigate the potential of high-speed T2-corrected multiecho (HISTO) MR spectroscopy (MRS) for rapidly quantifying the fat content of thigh muscles in children with Duchenne muscular dystrophy (DMD). SUBJECTS AND METHODS. This study prospectively enrolled 58 boys with DMD (mean age, 7.5 years; range, 4-11 years) and 30 age-matched healthy boys (mean age, 7.2 years; range, 4-11 years) at one institution over a 1-year period. T1- and T2-weighted, multiecho Dixon, and HISTO sequences were performed on the right adductor magnus and vastus lateralis muscles. The fat fractions of these muscles were acquired from HISTO and multiecho Dixon images. An experienced radiologist graded the degree of fat infiltration of the adductor magnus and vastus lateralis muscles on axial T1-weighted images. The Bland-Altman method was used to assess the consistency and repeatability of the HISTO sequence. Pearson linear correlation analysis was used to determine the correlation coefficient relating HISTO fat fraction to multiecho Dixon fat fraction values. Spearman rank correlation analysis was used to assess the relation between the HISTO fat fraction values and T1-weighted image fat infiltration grades. The independent t test was used to compare the HISTO fat fraction values of the boys with DMD with those of the healthy control subjects. RESULTS. Bland-Altman analysis showed that 95.5% of the HISTO fat fraction values of the adductor magnus were within the 95% CI. HISTO fat fraction and multiecho Dixon fat fraction values of the adductor magnus and vastus lateralis muscles were highly positively correlated (adductor magnus, r = 0.983; vastus lateralis, r = 0.967; p < 0.0001). HISTO fat fraction values were also highly positively correlated with the grades of fat infiltration on T1-weighted images (adductor magnus, r = 0.911; vastus lateralis, r = 0.937; p < 0.0001). The HISTO fat fraction of the adductor magnus muscle was 33.3% ± 22.6% and of the vastus lateralis muscle was 25.6% ± 20.3% in patients with DMD. The corresponding values were 2.9% ± 2.1% and 2.3% ± 1.9% in the control group. The differences were statistically significant (p < 0.0001). CONCLUSION. The HISTO sequence is a rapid and feasible noninvasive MRS technique for quantifying the fat infiltration of thigh muscles in children with known or suspected DMD. It is useful for diagnosis and for assessment of disease activity and prognosis.
Collapse
|
45
|
Batra A, Vohra RS, Chrzanowski SM, Hammers DW, Lott DJ, Vandenborne K, Walter GA, Forbes SC. Effects of PDE5 inhibition on dystrophic muscle following an acute bout of downhill running and endurance training. J Appl Physiol (1985) 2019; 126:1737-1745. [PMID: 30946638 DOI: 10.1152/japplphysiol.00664.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lack of sarcolemma-localized neuronal nitric oxide synthase mu (nNOSμ) contributes to muscle damage and fatigue in dystrophic muscle. In this study, we examined the effects of compensating for lack of nNOSμ with a phosphodiesterase type 5 (PDE5) inhibitor in mdx mice following downhill running and endurance training. Dystrophic mice (mdx) were treated with sildenafil citrate and compared with untreated mdx and wild-type mice after an acute bout of downhill running and during a progressive low-intensity treadmill running program (5 days/wk, 4 wk). Magnetic resonance imaging (MRI) and spectroscopy (MRS) transverse relaxation time constant (T2) of hindlimb and forelimb muscles were measured as a marker of muscle damage after downhill running and throughout training. The MRI blood oxygenation level dependence (BOLD) response and 31phosphorus MRS (31P-MRS) data were acquired after stimulated muscle contractions. After downhill running, the increase in T2 was attenuated (P < 0.05) in treated mdx and wild-type mice compared with untreated mdx. During training, resting T2 values did not change in wild-type and mdx mice from baseline values; however, the running distance completed during training was greater (P < 0.05) in treated mdx (>90% of target distance) and wild-type (100%) than untreated mdx (60%). The post-contractile BOLD response was greater (P < 0.05) in treated mdx that trained than untreated mdx, with no differences in muscle oxidative capacity, as measured by 31P-MRS. Our findings indicate that PDE5 inhibition reduces muscle damage after a single bout of downhill running and improves performance during endurance training in dystrophic mice, possibly because of enhanced microvascular function. NEW & NOTEWORTHY This study examined the combined effects of PDE5 inhibition and exercise in dystrophic muscle using high-resolution magnetic resonance imaging and spectroscopy. Our findings demonstrated that sildenafil citrate reduces muscle damage after a single bout of downhill running, improves endurance-training performance, and enhances microvascular function in dystrophic muscle. Collectively, the results support the combination of exercise and PDE5 inhibition as a therapeutic approach in muscular dystrophies lacking nNOSμ.
Collapse
Affiliation(s)
- Abhinandan Batra
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| | - Ravneet S Vohra
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| | - Steve M Chrzanowski
- Department of Physiology and Therapeutics, University of Florida , Gainesville, Florida
| | - David W Hammers
- Department of Pharmacology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Donovan J Lott
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| | - Glenn A Walter
- Department of Physiology and Therapeutics, University of Florida , Gainesville, Florida
| | - Sean C Forbes
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| |
Collapse
|
46
|
Paoletti M, Pichiecchio A, Cotti Piccinelli S, Tasca G, Berardinelli AL, Padovani A, Filosto M. Advances in Quantitative Imaging of Genetic and Acquired Myopathies: Clinical Applications and Perspectives. Front Neurol 2019; 10:78. [PMID: 30804884 PMCID: PMC6378279 DOI: 10.3389/fneur.2019.00078] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
In the last years, magnetic resonance imaging (MRI) has become fundamental for the diagnosis and monitoring of myopathies given its ability to show the severity and distribution of pathology, to identify specific patterns of damage distribution and to properly interpret a number of genetic variants. The advances in MR techniques and post-processing software solutions have greatly expanded the potential to assess pathological changes in muscle diseases, and more specifically of myopathies; a number of features can be studied and quantified, ranging from composition, architecture, mechanical properties, perfusion, and function, leading to what is known as quantitative MRI (qMRI). Such techniques can effectively provide a variety of information beyond what can be seen and assessed by conventional MR imaging; their development and application in clinical practice can play an important role in the diagnostic process and in assessing disease course and treatment response. In this review, we briefly discuss the current role of muscle MRI in diagnosing muscle diseases and describe in detail the potential and perspectives of the application of advanced qMRI techniques in this field.
Collapse
Affiliation(s)
- Matteo Paoletti
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Anna Pichiecchio
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Stefano Cotti Piccinelli
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Giorgio Tasca
- Neurology Department, Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Alessandro Padovani
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Massimiliano Filosto
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| |
Collapse
|
47
|
Gerhalter T, Gast LV, Marty B, Martin J, Trollmann R, Schüssler S, Roemer F, Laun FB, Uder M, Schröder R, Carlier PG, Nagel AM. 23 Na MRI depicts early changes in ion homeostasis in skeletal muscle tissue of patients with duchenne muscular dystrophy. J Magn Reson Imaging 2019; 50:1103-1113. [PMID: 30719784 DOI: 10.1002/jmri.26681] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a hereditary neuromuscular disease leading to progressive muscle wasting. Since there is a need for MRI variables that serve as early sensitive indicators of response to treatment, several quantitative MRI methods have been suggested for disease monitoring. PURPOSE To evaluate the potential of sodium (23 Na) and proton (1 H) MRI methods to assess early pathological changes in skeletal muscle of DMD. STUDY TYPE Prospective clinical study. POPULATION 23 Na and 1 H MRI of the right leg were performed in 13 patients with DMD (age 7.8 ± 2.4) and 14 healthy boys (age 9.5 ± 2.2). FIELD STRENGTH/SEQUENCE 3 T including a multiecho-spin-echo sequence, diffusion-weighted sequences, 1 H spectroscopy, 3-pt Dixon, and 23 Na ultrashort echo time sequences. ASSESSMENT We obtained water T2 maps, fat fraction (FF), pH, and diffusion properties of the skeletal muscle tissue. Moreover, total tissue sodium concentration (TSC) was calculated from the 23 Na sequence. Intracellular-weighted 23 Na signal (ICwS) was derived from 23 Na inversion-recovery imaging. STATISTICAL TESTS Results from DMD patients and controls were compared using Wilcoxon rank-sum tests and repeated analysis of variance (ANOVA). Spearman-rank correlations and area under the curve (AUC) were calculated to assess the performance of the different MRI methods to distinguish dystrophic from healthy muscle tissue. RESULTS FF, water T2 , and pH were higher in DMD patients (0.07 ± 0.03, 39.4 ± 0.8 msec, 7.06 ± 0.03, all P < 0.05) than in controls (0.02 ± 0.01, 36.0 ± 0.4 msec, 7.03 ± 0.02). No difference was observed in diffusion properties. TSC (26.0 ± 1.3 mM, P < 0.05) and ICwS (0.69 ± 0.05 a.u., P < 0.05) were elevated in DMD (controls: 16.5 ± 1.3 mM and 0.47 ± 0.04 a.u.). The ICwS was frequently abnormal in DMD even when water T2 , FF, and pH were in the normal range. 23 Na MRI showed higher AUC values in comparison to the 1 H methods. DATA CONCLUSION Sodium anomalies were regularly observed in patients with DMD compared with controls, and were present even in absence of fatty degenerative changes and water T2 increases. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1103-1113.
Collapse
Affiliation(s)
- Teresa Gerhalter
- NMR Laboratory, Institute of Myology, Paris, France.,NMR laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France.,Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benjamin Marty
- NMR Laboratory, Institute of Myology, Paris, France.,NMR laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Jan Martin
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Regina Trollmann
- Department of Pediatrics, Division Neuropediatrics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stephanie Schüssler
- Department of Pediatrics, Division Neuropediatrics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frank Roemer
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rolf Schröder
- Department of Neuropathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Pierre G Carlier
- NMR Laboratory, Institute of Myology, Paris, France.,NMR laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
48
|
Cai J, Xing F, Batra A, Liu F, Walter GA, Vandenborne K, Yang L. Texture Analysis for Muscular Dystrophy Classification in MRI with Improved Class Activation Mapping. PATTERN RECOGNITION 2019; 86:368-375. [PMID: 31105339 PMCID: PMC6521874 DOI: 10.1016/j.patcog.2018.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The muscular dystrophies are made up of a diverse group of rare genetic diseases characterized by progressive loss of muscle strength and muscle damage. Since there is no cure for muscular dystrophy and clinical outcome measures are limited, it is critical to assess the progression of MD objectively. Imaging muscle replacement by fibrofatty tissue has been shown to be a robust biomarker to monitor disease progression in DMD. In magnetic resonance imaging (MRI) data, specific texture patterns are found to correlate to certain MD subtypes and thus present a potential way for automatic assessment. In this paper, we first apply state-of-the-art convolutional neural networks (CNNs) to perform accurate MD image classification and then propose an effective visualization method to highlight the important image textures. With a dystrophic MRI dataset, we found that the best CNN model delivers an 91.7% classification accuracy, which significantly outperforms non-deep learning methods, e.g., >40% improvement has been found over the traditional mean fat fraction (MFF) criterion for DMD and CMD classification. After investigating every single neuron at the top layer of CNN model, we found the superior classification ability of CNN can be explained by its 91 and 118 neurons were performing better than the MFF criterion under the measurements of Euclidean and Chi-square distance, respectively. In order to further interpret CNNs predictions, we tested an improved class activation mapping (ICAM) method to visualize the important regions in the MRI images. With this ICAM, CNNs are able to locate the most discriminative texture patterns of DMD in soleus, lateral gastrocnemius, and medial gastrocnemius; for CMD, the critical texture patterns are highlighted in soleus, tibialis posterior, and peroneus.
Collapse
Affiliation(s)
- Jinzheng Cai
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida
| | - Fuyong Xing
- Department of Biostatistics and Informatics, University of Colorado Denver
| | - Abhinandan Batra
- Department of Physiology and Functional Genomics, University of Florida
| | - Fujun Liu
- Department of Electrical and Computer Engineering, University of Florida
| | - Glenn A. Walter
- Department of Physiology and Functional Genomics, University of Florida
| | | | - Lin Yang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida
- Department of Electrical and Computer Engineering, University of Florida
| |
Collapse
|
49
|
Barnard AM, Willcocks RJ, Finanger EL, Daniels MJ, Triplett WT, Rooney WD, Lott DJ, Forbes SC, Wang DJ, Senesac CR, Harrington AT, Finkel RS, Russman BS, Byrne BJ, Tennekoon GI, Walter GA, Sweeney HL, Vandenborne K. Skeletal muscle magnetic resonance biomarkers correlate with function and sentinel events in Duchenne muscular dystrophy. PLoS One 2018; 13:e0194283. [PMID: 29554116 PMCID: PMC5858773 DOI: 10.1371/journal.pone.0194283] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/28/2018] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To provide evidence for quantitative magnetic resonance (qMR) biomarkers in Duchenne muscular dystrophy by investigating the relationship between qMR measures of lower extremity muscle pathology and functional endpoints in a large ambulatory cohort using a multicenter study design. METHODS MR spectroscopy and quantitative imaging were implemented to measure intramuscular fat fraction and the transverse magnetization relaxation time constant (T2) in lower extremity muscles of 136 participants with Duchenne muscular dystrophy. Measures were collected at 554 visits over 48 months at one of three imaging sites. Fat fraction was measured in the soleus and vastus lateralis using MR spectroscopy, while T2 was assessed using MRI in eight lower extremity muscles. Ambulatory function was measured using the 10m walk/run, climb four stairs, supine to stand, and six minute walk tests. RESULTS Significant correlations were found between all qMR and functional measures. Vastus lateralis qMR measures correlated most strongly to functional endpoints (|ρ| = 0.68-0.78), although measures in other rapidly progressing muscles including the biceps femoris (|ρ| = 0.63-0.73) and peroneals (|ρ| = 0.59-0.72) also showed strong correlations. Quantitative MR biomarkers were excellent indicators of loss of functional ability and correlated with qualitative measures of function. A VL FF of 0.40 was an approximate lower threshold of muscle pathology associated with loss of ambulation. DISCUSSION Lower extremity qMR biomarkers have a robust relationship to clinically meaningful measures of ambulatory function in Duchenne muscular dystrophy. These results provide strong supporting evidence for qMR biomarkers and set the stage for their potential use as surrogate outcomes in clinical trials.
Collapse
Affiliation(s)
- Alison M. Barnard
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - Rebecca J. Willcocks
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - Erika L. Finanger
- Departments of Pediatrics and Neurology, Oregon Health & Science University, Portland, OR, United States of America
| | - Michael J. Daniels
- Department of Statistics, University of Florida, Gainesville, FL, United States of America
| | - William T. Triplett
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - William D. Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States of America
| | - Donovan J. Lott
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - Sean C. Forbes
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - Dah-Jyuu Wang
- Department of Radiology, Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Claudia R. Senesac
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - Ann T. Harrington
- The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | | | - Barry S. Russman
- Departments of Pediatrics and Neurology, Oregon Health & Science University, Portland, OR, United States of America
| | - Barry J. Byrne
- Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States of America
| | - Gihan I. Tennekoon
- The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Glenn A. Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States of America
| | - H. Lee Sweeney
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States of America
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
50
|
Szigyarto CAK, Spitali P. Biomarkers of Duchenne muscular dystrophy: current findings. Degener Neurol Neuromuscul Dis 2018; 8:1-13. [PMID: 30050384 PMCID: PMC6053903 DOI: 10.2147/dnnd.s121099] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Numerous biomarkers have been unveiled in the rapidly evolving biomarker discovery field, with an aim to improve the clinical management of disorders. In rare diseases, such as Duchenne muscular dystrophy, this endeavor has created a wealth of knowledge that, if effectively exploited, will benefit affected individuals, with respect to health care, therapy, improved quality of life and increased life expectancy. The most promising findings and molecular biomarkers are inspected in this review, with an aim to provide an overview of currently known biomarkers and the technological developments used. Biomarkers as cells, genetic variations, miRNAs, proteins, lipids and/or metabolites indicative of disease severity, progression and treatment response have the potential to improve development and approval of therapies, clinical management of DMD and patients’ life quality. We highlight the complexity of translating research results to clinical use, emphasizing the need for biomarkers, fit for purpose and describe the challenges associated with qualifying biomarkers for clinical applications.
Collapse
Affiliation(s)
- Cristina Al-Khalili Szigyarto
- Division of Proteomics, School of Biotechnology, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden, .,Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden,
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands,
| |
Collapse
|