1
|
Sun A, Lu H, Wu P, Zhao B. Accelerated Black-Blood Cine MR Imaging with Low-Rank and Sparsity Constraints. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083142 DOI: 10.1109/embc40787.2023.10340783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Black-blood MRI is a promising imaging technique for assessing vascular diseases (e.g., stroke). Vessel wall dynamic characterization using black-blood cine MRI has been recognized as an effective tool for studying vascular diseases. However, acquiring time-resolved 3D vessel wall images often requires a long acquisition time, which limits its clinical utility. In this work, we develop a new method to achieve rapid, time-resolved 3D black-blood cine MRI. Specifically, the proposed method performs (k, t)-space undersampling to accelerate the volumetric data acquisition process. Moreover, it utilizes an image reconstruction method with low-rank and sparsity constraints to enable high-quality image reconstruction from highly-undersampled data. We validate the performance of the proposed method with 3D in vivo black-blood cine MRI experiments and show representative results to demonstrate the utility of the proposed method.
Collapse
|
2
|
Lin JM, Patterson AJ, Chao TC, Zhu C, Chang HC, Mendes J, Chung HW, Gillard JH, Graves MJ. Free-breathing black-blood CINE fast-spin echo imaging for measuring abdominal aortic wall distensibility: a feasibility study. Phys Med Biol 2017; 62:N204-N218. [PMID: 28327475 DOI: 10.1088/1361-6560/aa685a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The paper reports a free-breathing black-blood CINE fast-spin echo (FSE) technique for measuring abdominal aortic wall motion. The free-breathing CINE FSE includes the following MR techniques: (1) variable-density sampling with fast iterative reconstruction; (2) inner-volume imaging; and (3) a blood-suppression preparation pulse. The proposed technique was evaluated in eight healthy subjects. The inner-volume imaging significantly reduced the intraluminal artifacts of respiratory motion (p = 0.015). The quantitative measurements were a diameter of 16.3 ± 2.8 mm and wall distensibility of 2.0 ± 0.4 mm (12.5 ± 3.4%) and 0.7 ± 0.3 mm (4.1 ± 1.0%) for the anterior and posterior walls, respectively. The cyclic cross-sectional distensibility was 35 ± 15% greater in the systolic phase than in the diastolic phase. In conclusion, we developed a feasible CINE FSE method to measure the motion of the abdominal aortic wall, which will enable clinical scientists to study the elasticity of the abdominal aorta.
Collapse
Affiliation(s)
- Jyh-Miin Lin
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom. Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Dai E, Dong L, Zhang Z, Li L, Zhang H, Zhao X, Wang J, Yuan C, Guo H. Technical Note: Measurement of common carotid artery lumen dynamics using black-blood MR cine imaging. Med Phys 2017; 44:1105-1112. [PMID: 28100004 DOI: 10.1002/mp.12114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/24/2016] [Accepted: 01/08/2017] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To demonstrate the feasibility of measuring the common carotid artery (CCA) lumen dynamics using a black-blood cine (BB-cine) imaging method. METHODS Motion-sensitized driven-equilibrium (MSDE) prepared spoiled gradient sequence was used for the BB-cine imaging. CCAs of eleven healthy volunteers were studied using this method. Lumen dynamics, including lumen area evolution waveforms and distension values, were measured and evaluated by comparing this method with bright-blood cine (BrB-cine) imaging. RESULTS Compared with the BrB-cine images, flow artifacts were effectively suppressed in the BB-cine images. BrB-cine images generally show larger lumen areas than BB-cine images. The lumen area waveforms and distension measurements from BB-cine imaging showed smaller variances among different subjects than BrB-cine imaging. CONCLUSIONS The proposed BB-cine imaging technique can suppress the flow artifacts effectively and reduce the partial volume effects from the vessel wall. This might allow more accurate lumen dynamics measurements than traditional BrB-cine imaging, which may further be valuable for investigating biomechanical and functional properties of the cardiovascular system.
Collapse
Affiliation(s)
- Erpeng Dai
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Li Dong
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Zhe Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Lyu Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Hui Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jinnan Wang
- Clinical Sites Research Program, Philips Research North America, Briarcliff Manor, NY, 10510, USA
| | - Chun Yuan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China.,Department of Radiology, University of Washington, Seattle, WA, 98109, USA
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Tamir JI, Uecker M, Chen W, Lai P, Alley MT, Vasanawala SS, Lustig M. T 2 shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging. Magn Reson Med 2017; 77:180-195. [PMID: 26786745 PMCID: PMC4990508 DOI: 10.1002/mrm.26102] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/21/2015] [Accepted: 12/06/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE A new acquisition and reconstruction method called T2 Shuffling is presented for volumetric fast spin-echo (three-dimensional [3D] FSE) imaging. T2 Shuffling reduces blurring and recovers many images at multiple T2 contrasts from a single acquisition at clinically feasible scan times (6-7 min). THEORY AND METHODS The parallel imaging forward model is modified to account for temporal signal relaxation during the echo train. Scan efficiency is improved by acquiring data during the transient signal decay and by increasing echo train lengths without loss in signal-to-noise ratio (SNR). By (1) randomly shuffling the phase encode view ordering, (2) constraining the temporal signal evolution to a low-dimensional subspace, and (3) promoting spatio-temporal correlations through locally low rank regularization, a time series of virtual echo time images is recovered from a single scan. A convex formulation is presented that is robust to partial voluming and radiofrequency field inhomogeneity. RESULTS Retrospective undersampling and in vivo scans confirm the increase in sharpness afforded by T2 Shuffling. Multiple image contrasts are recovered and used to highlight pathology in pediatric patients. A proof-of-principle method is integrated into a clinical musculoskeletal imaging workflow. CONCLUSION The proposed T2 Shuffling method improves the diagnostic utility of 3D FSE by reducing blurring and producing multiple image contrasts from a single scan. Magn Reson Med 77:180-195, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jonathan I. Tamir
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Martin Uecker
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Weitian Chen
- Global Applied Science Laboratory, GE Healthcare, Menlo Park, California, USA
| | - Peng Lai
- Global Applied Science Laboratory, GE Healthcare, Menlo Park, California, USA
| | - Marcus T. Alley
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | - Michael Lustig
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| |
Collapse
|
6
|
Lee D, Han S, Cho H. Optimization of sparse phase encodings for variable repetition-delay turbo-spin echo (TSE) T 1 measurements for preclinical applications. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 274:57-64. [PMID: 27886558 DOI: 10.1016/j.jmr.2016.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
A variable repetition-delay (TR) spin echo sequence with repeated refocusing pulses, i.e., a variable TR turbo-spin echo (TSE), provides an attractive means of acquiring an accurate T1 map information that is free from gradient echo based artifacts such as magnetic field inhomogeneities particularly for ultra-high field (at 7T and above) preclinical applications. However, the applicability of multi-slice TSE sequences is often limited by signal distortion from T2 relaxation due to echo-train acquisitions for short T2 tissues, inter-slice cross talks and magnetization transfer (MT) from repetitive slice-selective 180° pulse, and extended scan times with multiple TR excitations. These TSE shortcomings are difficult to remedy for preclinical applications, where small sizes of target organs usually limit the slice-gap control with restricted parallel imaging capabilities. In this study, compressed-sensing-assisted turbo-spin echo (CS-TSE) acquisitions for variable TR T1 measurements at 7T preclinical scanner were implemented to reduce the echo-trains by sparse phase encodings. Following the sparse signal simulation and sampling scheme optimization, the measured T1 values from CS-TSE and TSE were compared for phantoms, ex vivo, and in vivo subjects. The phantom T1 values from CS-TSE and TSE were identical to those from the inversion recovery spin echo. For both ex vivo and in vivo multi-slice T1 mapping, the shortened echo-trains of CS-TSE relieved the T2 relaxation, reduced the inter-slice interferences of multi-slice acquisition, and made room for additional slice encodings while maintaining a shorter scan time than the conventional TSE at the expense of local image smoothness from CS regularizations.
Collapse
Affiliation(s)
- DongKyu Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Sohyun Han
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - HyungJoon Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
7
|
Han S, Cho H. Temporal resolution improvement of calibration-free dynamic contrast-enhanced MRI with compressed sensing optimized turbo spin echo: The effects of replacing turbo factor with compressed sensing accelerations. J Magn Reson Imaging 2015; 44:138-47. [DOI: 10.1002/jmri.25136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/03/2015] [Indexed: 11/09/2022] Open
Affiliation(s)
- SoHyun Han
- Department of Biomedical Engineering; Ulsan National Institute of Science and Technology; Ulsan South Korea
| | - HyungJoon Cho
- Department of Biomedical Engineering; Ulsan National Institute of Science and Technology; Ulsan South Korea
| |
Collapse
|