1
|
Filippou A, Evripidou N, Georgiou A, Georgiou L, Chrysanthou A, Ioannides C, Damianou C. Magnetic Resonance Thermometry of Focused Ultrasound Using a Preclinical Focused Ultrasound Robotic System at 3T. J Med Phys 2024; 49:583-596. [PMID: 39926130 PMCID: PMC11801101 DOI: 10.4103/jmp.jmp_133_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/24/2024] [Accepted: 11/12/2024] [Indexed: 02/11/2025] Open
Abstract
AIM Focused ultrasound (FUS) therapies are often performed within magnetic resonance imaging (MRI) systems providing thermometry-based temperature monitoring. Herein, MRI thermometry was assessed for FUS sonications executed using a preclinical system on agar-based phantoms at 1.5T and 3T MRI scanners, using the proton resonance frequency shift technique. MATERIALS AND METHODS Sonications were executed at 1.5T and 3T to assess the system and observe variations in magnetic resonance (MR) thermometry temperature measurements. MR thermometry was assessed at 3T, for identical sonications on three agar-based phantoms doped with varied silica and evaporated milk concentrations, and for sonications executed at varied acoustic power of 1.5-45 W. Moreover, echo time (TE) values of 5-20 ms were used to assess the effect on the signal-to-noise ratio (SNR) and temperature change sensitivity. RESULTS Clearer thermal maps with a 2.5-fold higher temporal resolution were produced for sonications at 3T compared to 1.5T, despite employment of similar thermometry sequences. At 3T, temperature changes between 41°C and 50°C were recorded for the three phantoms produced with varied silica and evaporated milk, with the addition of 2% w/v silica resulting in a 20% increase in temperature change. The lowest acoustic power that produced reliable beam detection within a voxel was 1.5 W. A TE of 10 ms resulted in the highest temperature sensitivity with adequate SNR. CONCLUSIONS MR thermometry performed at 3T achieved short temporal resolution with temperature dependencies exhibited with the sonication and imaging parameters. Present data could be used in preclinical MRI-guided FUS feasibility studies to enhance MR thermometry.
Collapse
Affiliation(s)
- Antria Filippou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Andreas Georgiou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Leonidas Georgiou
- Department of Interventional Radiology, German Oncology Centre, Limassol, Cyprus
| | - Antreas Chrysanthou
- Department of Interventional Radiology, German Oncology Centre, Limassol, Cyprus
| | - Cleanthis Ioannides
- Department of Interventional Radiology, German Oncology Centre, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
- Department of Electronics and Information Engineering, Hangzhou Diazin University, Hangzhou, China
| |
Collapse
|
2
|
Zhang L, Antonacci M, Burant A, McCallister A, Kelley M, Bryden N, McHugh C, Atalla S, Holmes L, Katz L, Branca RT. Absolute thermometry of human brown adipose tissue by magnetic resonance with laser polarized 129Xe. COMMUNICATIONS MEDICINE 2023; 3:147. [PMID: 37848608 PMCID: PMC10582175 DOI: 10.1038/s43856-023-00374-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Absolute temperature measurements of tissues inside the human body are difficult to perform non-invasively. Yet, for brown adipose tissue (BAT), these measurements would enable direct monitoring of its thermogenic activity and its association with metabolic health. METHODS Here, we report direct measurement of absolute BAT temperature in humans during cold exposure by magnetic resonance (MR) with laser polarized xenon gas. This methodology, which leverages on the sensitivity of the chemical shift of the 129Xe isotope to temperature-induced changes in fat density, is first calibrated in vitro and then tested in vivo in rodents. Finally, it is used in humans along with positron emission tomography (PET) scans with fluorine-18-fluorodeoxyglucose to detect BAT thermogenic activity during cold exposure. RESULTS Absolute temperature measurements, obtained in rodents with an experimental error of 0.5 °C, show only a median deviation of 0.12 °C against temperature measurements made using a pre-calibrated optical temperature probe. In humans, enhanced uptake of 129Xe in BAT during cold exposure leads to background-free detection of this tissue by MR. Global measurements of supraclavicular BAT temperature, made over the course of four seconds and with an experimental error ranging from a minimum of 0.4 °C to more than 2 °C, in case of poor shimming, reveal an average BAT temperature of 38.8° ± 0.8 °C, significantly higher (p < 0.02 two-sided t test) than 37.7 °C. Hot BAT is also detected in participants with a PET scan negative for BAT. CONCLUSIONS Non-invasive, radiation-free measurements of BAT temperature by MRI with hyperpolarized 129Xe may enable longitudinal monitoring of human BAT activity under various stimulatory conditions.
Collapse
Affiliation(s)
- Le Zhang
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Small Animal Imaging Laboratory, Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Michael Antonacci
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Department of Physics, Saint Vincent College, 300 Fraser Purchase Rd., Latrobe, PA, 15650, USA
| | - Alex Burant
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Department of Physics, University of Arizona, 1118 E Fourth Street, PO Box 210081, Tucson, AZ, 85721, USA
| | - Andrew McCallister
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
| | - Michele Kelley
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
| | - Nicholas Bryden
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
| | - Christian McHugh
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
| | - Sebastian Atalla
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
| | - Leah Holmes
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
| | - Laurence Katz
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
| | - Rosa Tamara Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Kern AL, Gutberlet M, Rumpel R, Bruesch I, Hohlfeld JM, Wacker F, Hensen B. Absolute thermometry using hyperpolarized 129 Xe free-induction decay and spin-echo chemical-shift imaging in rats. Magn Reson Med 2022; 89:54-63. [PMID: 36121206 DOI: 10.1002/mrm.29455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE To implement and test variants of chemical shift imaging (CSI) acquiring both free induction decays (FIDs) showing all dissolved-phase compartments and spin echoes for specifically assessing 129 $$ {}^{129} $$ Xe in lipids in order to perform precise lipid-dissolved 129 $$ {}^{129} $$ Xe MR thermometry in a rat model of general hypothermia. METHODS Imaging was performed at 2.89 T. T 2 $$ {T}_2 $$ of 129 $$ {}^{129} $$ Xe in lipids was determined in one rat by fitting exponentials to decaying signals of global spin-echo spectra. Four rats (conventional CSI) and six rats (turbo spectroscopic imaging) were scanned at three time points with core body temperature 37/34/37 ∘ $$ {}^{\circ } $$ C. Lorentzian functions were fit to spectra from regions of interest to determine the water-referenced chemical shift of lipid-dissolved 129 $$ {}^{129} $$ Xe in the abdomen. Absolute 129 $$ {}^{129} $$ Xe-derived temperature was compared to values from a rectal probe. RESULTS Global T 2 $$ {T}_2 $$ of 129 $$ {}^{129} $$ Xe in lipids was determined as 251 . 3 ms ± 81 . 4 ms $$ 251.3\;\mathrm{ms}\pm 81.4\;\mathrm{ms} $$ . Friedman tests showed significant changes of chemical shift with time for both sequence variants and both FID and spin-echo acquisitions. Mean and SD of 129 $$ {}^{129} $$ Xe and rectal probe temperature differences were found to be - 0 . 1 5 ∘ C ± 0 . 9 3 ∘ C $$ -0.1{5}^{\circ}\mathrm{C}\pm 0.9{3}^{\circ}\mathrm{C} $$ (FID) and - 0 . 3 8 ∘ C ± 0 . 6 4 ∘ C $$ -0.3{8}^{\circ}\mathrm{C}\pm 0.6{4}^{\circ}\mathrm{C} $$ (spin echo) for conventional CSI as well as 0 . 0 3 ∘ C ± 0 . 7 7 ∘ C $$ 0.0{3}^{\circ}\mathrm{C}\pm 0.7{7}^{\circ}\mathrm{C} $$ (FID) and - 0 . 0 6 ∘ C ± 0 . 7 6 ∘ C $$ -0.0{6}^{\circ}\mathrm{C}\pm 0.7{6}^{\circ}\mathrm{C} $$ (spin echo) for turbo spectroscopic imaging. CONCLUSION 129 $$ {}^{129} $$ Xe MRI using conventional CSI and turbo spectroscopic imaging of lipid-dissolved 129 $$ {}^{129} $$ Xe enables precise temperature measurements in the rat's abdomen using both FID and spin-echo acquisitions with acquisition of spin echoes enabling most precise temperature measurements.
Collapse
Affiliation(s)
- Agilo L Kern
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Regina Rumpel
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Inga Bruesch
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Jens M Hohlfeld
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany.,Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Bennet Hensen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Scotti AM, Damen F, Gao J, Li W, Liew CW, Cai Z, Zhang Z, Cai K. Phase-independent thermometry by Z-spectrum MR imaging. Magn Reson Med 2022; 87:1731-1741. [PMID: 34752646 PMCID: PMC10029969 DOI: 10.1002/mrm.29072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/30/2021] [Accepted: 10/17/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE Z-spectrum imaging, defined as the consecutive collection of images after saturating over a range of frequency offsets, has been recently proposed as a method to measure the fat-water fraction by the simultaneous detection of fat and water resonances. By incorporating a binomial pulse irradiated at each offset before the readout, the spectral selectivity of the sequence can be further amplified, making it possible to monitor the subtle proton resonance frequency shift that follows a change in temperature. METHODS We tested the hypothesis in aqueous and cream phantoms and in healthy mice, all under thermal challenge. The binomial module consisted of 2 sinc-shaped pulses of opposite phase separated by a delay. Such a delay served to spread out off-resonance spins, with the resulting excitation profile being a periodic function of the delay and the chemical shift. RESULTS During heating experiments, the water resonance shifted downfield, and by fitting the curve to a sine function it was possible to quantify the change in temperature. Results from Z-spectrum imaging correlated linearly with data from conventional MRI techniques like T1 mapping and phase differences from spoiled GRE. CONCLUSION Because the measurement is performed solely on magnitude images, the technique is independent of phase artifacts and is therefore applicable in mixed tissues (e.g., fat). We showed that Z-spectrum imaging can deliver reliable temperature change measurement in both muscular and fatty tissues.
Collapse
Affiliation(s)
- Alessandro M. Scotti
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Frederick Damen
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jin Gao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Weiguo Li
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Chong Wee Liew
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zimeng Cai
- School of Medical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Image Processing, Southern Medical University, Guangzhou, China
| | - Zhuoli Zhang
- Department of Radiology, Northwestern University, Evanston, Illinois, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Anatomical Phase Extraction (APE) Method: A Novel Method to Correct Detrimental Effects of Tissue-Inhomogeneity in Referenceless MR Thermometry-Preliminary Ex Vivo Investigation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5566775. [PMID: 34422091 PMCID: PMC8373482 DOI: 10.1155/2021/5566775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022]
Abstract
Purpose We present a novel background tissue phase removing method, called anatomical phase extraction (APE), and to investigate the accuracy of temperature estimation and capability of reducing background artifacts compared with the conventional referenceless methods. Methods Susceptibility variance was acquired by subtracting pretreatment baseline images taken at different locations (nine pretreatment baselines are acquired and called φ1 to φ9). The susceptibility phase data φS was obtained using the Wiener deconvolution algorithm. The background phase data φT was isolated by subtracting φS from the whole phase data. Finally, φT was subtracted from the whole phase data before applying the referenceless method. As a proof of concept, the proposed APE method was performed on ex vivo pork tenderloin and compared with other two referenceless temperature estimation approaches, including reweighted ℓ1 referenceless (RW- ℓ1) and ℓ2 referenceless methods. The proposed APE method was performed with four different baselines combination, namely, (φ1, φ5, φ2, φ4), (φ3, φ5, φ2, φ6), (φ7, φ5, φ8, φ4), and (φ9, φ5, φ8, φ6), and called APE experiment 1 to 4, respectively. The multibaseline method was used as a standard reference. The mean absolute error (MAE) and two-sample t-test analysis in temperature estimation of three regions of interest (ROI) between the multibaseline method and the other three methods, i.e., APE, RW- ℓ1, and ℓ2, were calculated and compared. Results Our results show that the mean temperature errors of the APE method-experiment 1, APE method-experiment 2, APE method-experiment 3, APE method-experiment 4, and RW- ℓ1 and ℓ2 referenceless method are 1.02°C, 1.04°C, 1.00°C, 1.00°C, 4.75°C, and 13.65°C, respectively. The MAEs of the RW- ℓ1 and ℓ2 referenceless methods were higher than that of APE method. The APE method showed no significant difference (p > 0.05), compared with the multibaseline method. Conclusion The present work demonstrates the use of the APE method on referenceless MR thermometry to improve the accuracy of temperature estimation during MRI guided high-intensity focused ultrasound for ablation treatment.
Collapse
|
6
|
Payne A, Chopra R, Ellens N, Chen L, Ghanouni P, Sammet S, Diederich C, Ter Haar G, Parker D, Moonen C, Stafford J, Moros E, Schlesinger D, Benedict S, Wear K, Partanen A, Farahani K. AAPM Task Group 241: A medical physicist's guide to MRI-guided focused ultrasound body systems. Med Phys 2021; 48:e772-e806. [PMID: 34224149 DOI: 10.1002/mp.15076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/28/2021] [Accepted: 06/21/2021] [Indexed: 11/07/2022] Open
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) is a completely non-invasive technology that has been approved by FDA to treat several diseases. This report, prepared by the American Association of Physicist in Medicine (AAPM) Task Group 241, provides background on MRgFUS technology with a focus on clinical body MRgFUS systems. The report addresses the issues of interest to the medical physics community, specific to the body MRgFUS system configuration, and provides recommendations on how to successfully implement and maintain a clinical MRgFUS program. The following sections describe the key features of typical MRgFUS systems and clinical workflow and provide key points and best practices for the medical physicist. Commonly used terms, metrics and physics are defined and sources of uncertainty that affect MRgFUS procedures are described. Finally, safety and quality assurance procedures are explained, the recommended role of the medical physicist in MRgFUS procedures is described, and regulatory requirements for planning clinical trials are detailed. Although this report is limited in scope to clinical body MRgFUS systems that are approved or currently undergoing clinical trials in the United States, much of the material presented is also applicable to systems designed for other applications.
Collapse
Affiliation(s)
- Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Lili Chen
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Steffen Sammet
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | - Chris Diederich
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | | | - Dennis Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Chrit Moonen
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jason Stafford
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - David Schlesinger
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | | | - Keith Wear
- U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | - Keyvan Farahani
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
7
|
Blackwell J, Kraśny MJ, O'Brien A, Ashkan K, Galligan J, Destrade M, Colgan N. Proton Resonance Frequency Shift Thermometry: A Review of Modern Clinical Practices. J Magn Reson Imaging 2020; 55:389-403. [PMID: 33217099 DOI: 10.1002/jmri.27446] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Magnetic resonance imaging (MRI) has become a popular modality in guiding minimally invasive thermal therapies, due to its advanced, nonionizing, imaging capabilities and its ability to record changes in temperature. A variety of MR thermometry techniques have been developed over the years, and proton resonance frequency (PRF) shift thermometry is the current clinical gold standard to treat a variety of cancers. It is used extensively to guide hyperthermic thermal ablation techniques such as high-intensity focused ultrasound (HIFU) and laser-induced thermal therapy (LITT). Essential attributes of PRF shift thermometry include excellent linearity with temperature, good sensitivity, and independence from tissue type. This noninvasive temperature mapping method gives accurate quantitative measures of the temperature evolution inside biological tissues. In this review, the current status and new developments in the fields of MR-guided HIFU and LITT are presented with an emphasis on breast, prostate, bone, uterine, and brain treatments. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- James Blackwell
- Advanced Biological Imaging Laboratory, School of Physics, National University of Ireland Galway, Galway, Ireland.,School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Marcin J Kraśny
- Advanced Biological Imaging Laboratory, School of Physics, National University of Ireland Galway, Galway, Ireland
| | - Aoife O'Brien
- School of Psychology, National University of Ireland Galway, Galway, Ireland
| | - Keyoumars Ashkan
- Neurosurgical Department, King's College Hospital Foundation Trust, London, UK.,Harley Street Clinic, London Neurosurgery Partnership, London, UK
| | - Josette Galligan
- Department of Medical Physics and Bioengineering, St. James' Hospital, Dublin, Ireland
| | - Michel Destrade
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Niall Colgan
- Advanced Biological Imaging Laboratory, School of Physics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
8
|
Wu M, Junker D, Branca RT, Karampinos DC. Magnetic Resonance Imaging Techniques for Brown Adipose Tissue Detection. Front Endocrinol (Lausanne) 2020; 11:421. [PMID: 32849257 PMCID: PMC7426399 DOI: 10.3389/fendo.2020.00421] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) methods can non-invasively assess brown adipose tissue (BAT) structure and function. Recently, MRI and MRS have been proposed as a means to differentiate BAT from white adipose tissue (WAT) and to extract morphological and functional information on BAT inaccessible by other means. Specifically, proton MR (1H) techniques, such as proton density fat fraction mapping, diffusion imaging, and intermolecular multiple quantum coherence imaging, have been employed to access BAT microstructure; MR thermometry, relaxometry, and MRI and MRS with 31P, 2H, 13C, and 129Xe have shown to provide complementary information on BAT function. The purpose of the present review is to provide a comprehensive overview of MR imaging and spectroscopy techniques used to detect BAT in rodents and in humans. The present work discusses common challenges of current methods and provides an outlook on possible future directions of using MRI and MRS in BAT studies.
Collapse
Affiliation(s)
- Mingming Wu
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
- *Correspondence: Mingming Wu
| | - Daniela Junker
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rosa Tamara Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
9
|
Kokuryo D, Kumamoto E, Kuroda K. Recent technological advancements in thermometry. Adv Drug Deliv Rev 2020; 163-164:19-39. [PMID: 33217482 DOI: 10.1016/j.addr.2020.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/25/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Thermometry is the key factor for achieving successful thermal therapy. Although invasive thermometry with a probe has been used for more than four decades, this method can only detect the local temperature within the probing volume. Noninvasive temperature imaging using a tomographic technique is ideal for monitoring hot-spot formation in the human body. Among various techniques, such as X-ray computed tomography, microwave tomography, echo sonography, and magnetic resonance (MR) imaging, the proton resonance frequency shift method of MR thermometry is the only method currently available for clinical practice because its temperature sensitivity is consistent in most aqueous tissues and can be easily observed using common clinical scanners. New techniques are being proposed to improve the robustness of this method against tissue motion. MR techniques for fat thermometry were also developed based on relaxation times. One of the latest non-MR techniques to attract attention is photoacoustic imaging.
Collapse
Affiliation(s)
- Daisuke Kokuryo
- Graduate School of System Informatics, Kobe University, Japan
| | - Etsuko Kumamoto
- Information Science and Technology Center, Kobe University, Japan
| | - Kagayaki Kuroda
- School of Information Science and Technology, Tokai University, Japan; Center for Frontier Medical Engineering, Chiba University, Japan.
| |
Collapse
|
10
|
Silletta EV, Jerschow A, Madelin G, Alon L. Multinuclear absolute magnetic resonance thermometry. COMMUNICATIONS PHYSICS 2019; 2:152. [PMID: 33072888 PMCID: PMC7561043 DOI: 10.1038/s42005-019-0252-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/29/2019] [Indexed: 06/11/2023]
Abstract
Non-invasive measurement of absolute temperature is important for proper characterization of various pathologies and for evaluation of thermal dose during interventional procedures. The proton (hydrogen nucleus) magnetic resonance (MR) frequency shift method can be used to map relative temperature changes. However, spatiotemporal variations in the main magnetic field and the lack of local internal frequency reference challenge the determination of absolute temperature. Here, we introduce a multinuclear method for absolute MR thermometry, based on the fact that the hydrogen and sodium nuclei exhibit a unique and distinct characteristic frequency dependence with temperature and with electrolyte concentration. A one-to-one mapping between the precession frequency difference of the two nuclei and absolute temperature is demonstrated. Proof-of-concept experiments were conducted in aqueous solutions with different NaCl concentrations, in agarose gel samples, and in freshly excised ex vivo mouse tissues. One-dimensional chemical shift imaging experiments also demonstrated excellent agreement with infrared measurements.
Collapse
Affiliation(s)
- Emilia V. Silletta
- New York University, Department of Chemistry, 100 Washington Square E, New York, NY 10003, USA
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Medina Allende s/n, X5000HUA Córdoba, Argentina
- Instituto de Física Enrique Gaviola, CONICET, Medina Allende s/n, X5000HUA Córdoba, Argentina
| | - Alexej Jerschow
- New York University, Department of Chemistry, 100 Washington Square E, New York, NY 10003, USA
| | - Guillaume Madelin
- New York University School of Medicine, Department of Radiology, Center for Biomedical Imaging, 660 First Avenue, New York, NY 10016, USA
| | - Leeor Alon
- New York University School of Medicine, Department of Radiology, Center for Biomedical Imaging, 660 First Avenue, New York, NY 10016, USA
| |
Collapse
|
11
|
Antonacci MA, McHugh C, Kelley M, McCallister A, Degan S, Branca RT. Direct detection of brown adipose tissue thermogenesis in UCP1-/- mice by hyperpolarized 129Xe MR thermometry. Sci Rep 2019; 9:14865. [PMID: 31619741 PMCID: PMC6795875 DOI: 10.1038/s41598-019-51483-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022] Open
Abstract
Brown adipose tissue (BAT) is a type of fat specialized in non-shivering thermogenesis. While non-shivering thermogenesis is mediated primarily by uncoupling protein 1 (UCP1), the development of the UCP1 knockout mouse has enabled the study of possible UCP1-independent non-shivering thermogenic mechanisms, whose existence has been shown so far only indirectly in white adipose tissue and still continues to be a matter of debate in BAT. In this study, by using magnetic resonance thermometry with hyperpolarized xenon, we produce the first direct evidence of UCP1-independent BAT thermogenesis in knockout mice. We found that, following adrenergic stimulation, the BAT temperature of knockout mice increases more and faster than rectal temperature. While with this study we cannot exclude or separate the physiological effect of norepinephrine on core body temperature, the fast increase of iBAT temperature seems to suggest the existence of a possible UCP1-independent thermogenic mechanism responsible for this temperature increase.
Collapse
Affiliation(s)
- Michael A Antonacci
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Physics, Saint Vincent College, Latrobe, Pennsylvania, United States of America
| | - Christian McHugh
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michele Kelley
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Andrew McCallister
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Simone Degan
- Department of Radiology, Duke University, Durham, North Carolina, United States of America
| | - Rosa T Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
| |
Collapse
|
12
|
Odéen H, Parker DL. Magnetic resonance thermometry and its biological applications - Physical principles and practical considerations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:34-61. [PMID: 30803693 PMCID: PMC6662927 DOI: 10.1016/j.pnmrs.2019.01.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/23/2019] [Indexed: 05/25/2023]
Abstract
Most parameters that influence the magnetic resonance imaging (MRI) signal experience a temperature dependence. The fact that MRI can be used for non-invasive measurements of temperature and temperature change deep inside the human body has been known for over 30 years. Today, MR temperature imaging is widely used to monitor and evaluate thermal therapies such as radio frequency, microwave, laser, and focused ultrasound therapy. In this paper we cover the physical principles underlying the biological applications of MR temperature imaging and discuss practical considerations and remaining challenges. For biological tissue, the MR signal of interest comes mostly from hydrogen protons of water molecules but also from protons in, e.g., adipose tissue and various metabolites. Most of the discussed methods, such as those using the proton resonance frequency (PRF) shift, T1, T2, and diffusion only measure temperature change, but measurements of absolute temperatures are also possible using spectroscopic imaging methods (taking advantage of various metabolite signals as internal references) or various types of contrast agents. Currently, the PRF method is the most used clinically due to good sensitivity, excellent linearity with temperature, and because it is largely independent of tissue type. Because the PRF method does not work in adipose tissues, T1- and T2-based methods have recently gained interest for monitoring temperature change in areas with high fat content such as the breast and abdomen. Absolute temperature measurement methods using spectroscopic imaging and contrast agents often offer too low spatial and temporal resolution for accurate monitoring of ablative thermal procedures, but have shown great promise in monitoring the slower and usually less spatially localized temperature change observed during hyperthermia procedures. Much of the current research effort for ablative procedures is aimed at providing faster measurements, larger field-of-view coverage, simultaneous monitoring in aqueous and adipose tissues, and more motion-insensitive acquisitions for better precision measurements in organs such as the heart, liver, and kidneys. For hyperthermia applications, larger coverage, motion insensitivity, and simultaneous aqueous and adipose monitoring are also important, but great effort is also aimed at solving the problem of long-term field drift which gets interpreted as temperature change when using the PRF method.
Collapse
Affiliation(s)
- Henrik Odéen
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| | - Dennis L Parker
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| |
Collapse
|
13
|
Sarasniemi JT, Koskensalo K, Raiko J, Nuutila P, Saunavaara J, Parkkola R, Virtanen KA. Skin temperature may not yield human brown adipose tissue activity in diverse populations. Acta Physiol (Oxf) 2018; 224:e13095. [PMID: 29757496 DOI: 10.1111/apha.13095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- J. T. Sarasniemi
- Turku PET Centre; University of Turku; Turku Finland
- Turku PET Centre; Turku University Hospital; Turku Finland
| | - K. Koskensalo
- Turku PET Centre; University of Turku; Turku Finland
- Turku PET Centre; Turku University Hospital; Turku Finland
| | - J. Raiko
- Turku PET Centre; University of Turku; Turku Finland
- Turku PET Centre; Turku University Hospital; Turku Finland
| | - P. Nuutila
- Turku PET Centre; University of Turku; Turku Finland
- Turku PET Centre; Turku University Hospital; Turku Finland
| | - J. Saunavaara
- Department of Medical Physics; Turku University Hospital; Turku Finland
| | - R. Parkkola
- Medical Imaging Centre of Southwest Finland; Turku University Hospital; Turku Finland
- Department of Radiology; Turku University Hospital; Turku Finland
- Department of Radiology; University of Turku; Turku Finland
| | - K. A. Virtanen
- Turku PET Centre; University of Turku; Turku Finland
- Turku PET Centre; Turku University Hospital; Turku Finland
| |
Collapse
|
14
|
Cheng C, Zou C, Wan Q, Qiao Y, Pan M, Tie C, Liang D, Zheng H, Liu X. Dual-step iterative temperature estimation method for accurate and precise fat-referenced PRFS temperature imaging. Magn Reson Med 2018; 81:1322-1334. [PMID: 30230595 DOI: 10.1002/mrm.27396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/15/2018] [Accepted: 05/19/2018] [Indexed: 12/24/2022]
Abstract
PURPOSE The aim of this study was to propose dual-step iterative temperature estimation (DITE) of a fat-referenced proton resonance frequency shift (PRFS) method to improve both the accuracy and precision of temperature estimations in fat-containing tissues. METHODS A fat-water signal model with multiple fat peaks was used to simultaneously estimate the temperature, fat/water intensity and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mtext>T</mml:mtext> <mml:mrow><mml:mn>2</mml:mn></mml:mrow> <mml:mrow><mml:mrow/> <mml:mo>∗</mml:mo></mml:mrow> </mml:msubsup> </mml:math> , and field offset. In DITE, model fitting was implemented with alternating 2-step minimizations. The estimated temperature map was smoothed between the 2-step minimizations, which is considered to be the most important step for improving the temperature precision. The performance of DITE was evaluated with a Monte Carlo simulation, fat/water phantoms, and ex vivo brown adipose tissue experiments and then compared with the performance of previous fat-referenced proton resonance frequency shift methods. RESULTS In fat/water phantom experiment with a smooth temperature profile, the temperatures estimated by DITE are consistent with the thermometer results and present a better accuracy and precision than those of previous fat-referenced proton resonance frequency shift methods. In the brown adipose tissue heating experiment, the average mean error, SD, and RMS error were -0.08ºC, 0.46ºC, and 0.56ºC, respectively, over all of the measurements within the region of interest. CONCLUSION Our proposed DITE method improves both the accuracy and precision of temperature measurements in tissues with fat fractions between 20% and 80% under smooth distribution of the temperature profile and represents a simple fat-referenced thermometry method.
Collapse
Affiliation(s)
- Chuanli Cheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Qian Wan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Yangzi Qiao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Min Pan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Changjun Tie
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Chongqing Collaborative Innovation Center for Minimally Invasive and Noninvasive Medicine, Chongqing, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Chongqing Collaborative Innovation Center for Minimally Invasive and Noninvasive Medicine, Chongqing, China
| |
Collapse
|
15
|
Antonacci MA, Zhang L, Degan S, Erdmann D, Branca RT. Calibration of methylene-referenced lipid-dissolved xenon frequency for absolute MR temperature measurements. Magn Reson Med 2018; 81:765-772. [PMID: 30216528 DOI: 10.1002/mrm.27441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Absolute MR temperature measurements are currently difficult because they require precalibration procedures specific for tissue types and conditions. Reference of the lipid-dissolved 129 Xe resonance frequency to temperature-insensitive methylene protons (rLDX) has been proposed to remove the effect of macro- and microscopic susceptibility gradients to obtain absolute temperature information. The scope of this work is to evaluate the rLDX chemical shift (CS) dependence on lipid composition to estimate the precision of absolute temperature measurements in lipids. METHODS Neat triglycerides, vegetable oils, and samples of freshly excised human and rodent adipose tissue (AT) are prepared under 129 Xe atmosphere and studied using high-resolution NMR. The rLDX CS is measured as a function of temperature. 1 H spectra are also acquired and the consistency of methylene-referenced water proton and rLDX CS values are compared in human AT. RESULTS Although rLDX CS shows a dependence on lipid composition, in human and rodent AT samples the rLDX shows consistent CS values with a similar temperature dependence (-0.2058 ± 0.0010) ppm/°C × T (°C) + (200.15 ± 0.03) ppm, enabling absolute temperature measurements with an accuracy of 0.3°C. Methylene-referenced water CS values present variations of up to 4°C, even under well-controlled conditions. CONCLUSIONS The rLDX can be used to obtain accurate absolute temperature measurements in AT, opening new opportunities for hyperpolarized 129 Xe MR to measure tissue absolute temperature.
Collapse
Affiliation(s)
- Michael A Antonacci
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Le Zhang
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Simone Degan
- Center for Molecular and Biomolecular Imaging, Department of Radiology and Dermatology, Duke University, Durham, North Carolina
| | - Detlev Erdmann
- Division of Plastic, Reconstructive, Maxillofacial and Oral Surgery, Duke University Medical Center, Durham, North Carolina
| | - Rosa T Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
16
|
Hofstetter LW, Yeo DTB, Dixon WT, Marinelli L, Foo TK. Referenced MR thermometry using three-echo phase-based fat water separation method. Magn Reson Imaging 2018; 49:86-93. [PMID: 29409819 DOI: 10.1016/j.mri.2018.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 12/24/2022]
Abstract
A three-point image reconstruction method for internally referenced MR thermometry was developed. The technique exploits the fact that temperature-induced changes in the water resonance frequency are small relative to the chemical shift difference between water and fat signals. This property enabled the use of small angle approximations to derive an analytic phase-based fat-water separation method for MR thermometry. Ethylene glycol and cream cool-down experiments were performed to validate measurement technique. Over a cool-down temperature range of 20 °C, maximum deviation between probe and MR measurement (averaged over 1.3 cm3 region surrounding probe) was 0.6 °C and 1.1 °C for ethylene glycol and cream samples, respectively.
Collapse
Affiliation(s)
| | | | - W Thomas Dixon
- Department of Radiology, Emory University, Atlanta, GA, USA.
| | | | | |
Collapse
|
17
|
Kuroda K. MR techniques for guiding high-intensity focused ultrasound (HIFU) treatments. J Magn Reson Imaging 2018; 47:316-331. [PMID: 28580706 DOI: 10.1002/jmri.25770] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/02/2017] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED To make full use of the ability of magnetic resonance (MR) to guide high-intensity focused ultrasound (HIFU) treatment, effort has been made to improve techniques for thermometry, motion tracking, and sound beam visualization. For monitoring rapid temperature elevation with proton resonance frequency (PRF) shift, data acquisition and processing can be accelerated with parallel imaging and/or sparse sampling in conjunction with appropriate signal processing methods. Thermometry should be robust against tissue motion, motion-induced magnetic field variation, and susceptibility change. Thus, multibaseline, referenceless, or hybrid techniques have become important. In cases with adipose or bony tissues, for which PRF shift cannot be used, thermometry with relaxation times or signal intensity may be utilized. Motion tracking is crucial not only for thermometry but also for targeting the focus of an ultrasound in moving organs such as the liver, kidney, or heart. Various techniques for motion tracking, such as those based on an anatomical image atlas with optical-flow displacement detection, a navigator echo to seize the diaphragm position, and/or rapid imaging to track vessel positions, have been proposed. Techniques for avoiding the ribcage and near-field heating have also been examined. MR acoustic radiation force imaging (MR-ARFI) is an alternative to thermometry that can identify the location and shape of the focal spot and sound beam path. This technique could be useful for treating heterogeneous tissue regions or performing transcranial therapy. All of these developments, which will be discussed further in this review, expand the applicability of HIFU treatments to a variety of clinical targets while maintaining safety and precision. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2018;47:316-331.
Collapse
Affiliation(s)
- Kagayaki Kuroda
- Department of Human and Information Science, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan
- Center for Frontier Medical Engineering, Chiba University, Inage, Chiba, Japan
| |
Collapse
|
18
|
Zhang L, McCallister A, Koshlap KM, Branca RT. Correlation distance dependence of the resonance frequency of intermolecular zero quantum coherences and its implication for MR thermometry. Magn Reson Med 2017; 79:1429-1438. [PMID: 28656726 DOI: 10.1002/mrm.26801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/04/2017] [Accepted: 05/27/2017] [Indexed: 12/27/2022]
Abstract
PURPOSE Because the resonance frequency of water-fat intermolecular zero-quantum coherences (iZQCs) reflects the water-fat frequency separation at the microscopic scale, these frequencies have been proposed and used as a mean to obtain more accurate temperature information. The purpose of this work was to investigate the dependence of the water-fat iZQC resonance frequency on sample microstructure and on the specific choice of the correlation distance. METHODS The effect of water-fat susceptibility gradients on the water-methylene iZQC resonance frequency was first computed and then measured for different water-fat emulsions and for a mixture of porcine muscle and fat. Similar measurements were also performed for mixed heteronuclear spin systems. RESULTS A strong dependence of the iZQC resonance frequency on the sample microstructure and on the specific choice of the correlation distance was found for spin systems like water and fat that do not mix, but not for spin systems that mix at the molecular level. CONCLUSIONS Because water and fat spins do not mix at the molecular level, the water-fat iZQC resonance frequency and its temperature coefficient are not only affected by sample microstructure but also by the specific choice of the correlation distance. Magn Reson Med 79:1429-1438, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Le Zhang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew McCallister
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Karl M Koshlap
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rosa Tamara Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
19
|
Koskensalo K, Raiko J, Saari T, Saunavaara V, Eskola O, Nuutila P, Saunavaara J, Parkkola R, Virtanen KA. Human Brown Adipose Tissue Temperature and Fat Fraction Are Related to Its Metabolic Activity. J Clin Endocrinol Metab 2017; 102:1200-1207. [PMID: 28323929 DOI: 10.1210/jc.2016-3086] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/14/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIM The metabolic activity of human brown adipose tissue (BAT) has been previously examined using positron emission tomography (PET). The aim of this study was to use proton magnetic resonance spectroscopy (1H MRS) to investigate whether the temperature and the fat fraction (FF) of BAT and white adipose tissue (WAT) are associated with BAT metabolic activity determined by deoxy-2-18F-fluoro-d-glucose (18F-FDG)-PET. MATERIALS AND METHODS Ten healthy subjects (four women, six men; 25 to 45 years of age) were studied using PET-magnetic resonance imaging during acute cold exposure and at ambient room temperature. BAT and subcutaneous WAT 1H MRS were measured. The tissue temperature and the FF were derived from the spectra. Tissue metabolic activity was studied through glucose uptake using dynamic FDG PET scanning during cold exposure. A 2-hour hyperinsulinemic euglycemic clamp was performed on eight subjects. RESULTS The metabolic activity of BAT associated directly with the heat production capacity and inversely with the FF of the tissue. In addition, the lipid-burning capacity of BAT associated with whole-body insulin sensitivity. During cold exposure, the FF of BAT was lower than at room temperature, and cold-induced FF of BAT associated inversely with high-density lipoprotein and directly with low-density lipoprotein cholesterol. CONCLUSION Both 1H MRS-derived temperature and FF are promising methods to study BAT activity noninvasively. The association between the lipid-burning capacity of BAT and whole-body insulin sensitivity emphasizes the role of BAT in glucose handling. Furthermore, the relation of FF to high-density lipoprotein and low-density lipoprotein cholesterol suggests that BAT has a role in lipid clearance, thus protecting tissues from excess lipid load.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Riitta Parkkola
- Department of Radiology, University of Turku, 20520 Turku, Finland
- Medical Imaging Centre of Southwest Finland, and
- Department of Radiology, Turku University Hospital, 20520 Turku, Finland
| | | |
Collapse
|
20
|
Lam MK, Bakker CJG, Moonen CTW, Viergever MA, Bartels LW. Short and long time MR signal behavior of randomly distributed water and fat-numerical simulations. NMR IN BIOMEDICINE 2016; 29:1634-1643. [PMID: 27687017 DOI: 10.1002/nbm.3615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 07/29/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
The MR time-signal behavior of water has been reported to be different on short and long time scales for systems of randomly distributed perturbers in water in the static dephasing regime. Up to now, the signal of the perturbers in such systems has not been taken into consideration. Water-fat emulsions are macroscopically homogeneous systems and can be considered as microscopically randomly distributed perturbing fat spheres embedded in water. In such water-fat systems, the signal of the perturber, fat, cannot be ignored. Since water and fat are within the same system, the fat signal behavior may show similarities with water, with differences in short and long time scales. This could complicate fat-referenced MR thermometry (MRT) methods such as multi-gradient echo-based (MGE) MRT. Simulations were performed using a numerical phantom comprising spherical fat objects embedded in a spherical water medium. To characterize the fat signal, the theoretical signal description of water was fitted to the simulated fat signal. The simulated signals were sampled as an MGE signal and MGE MRT was used to calculate temperatures. The sampling was done with and without delay, to investigate the effect on the temperature error of the time ranges in which the signal was sampled. It was confirmed that the fat signal behavior was similar to that of water and consisted of two regimes. The separation between the short and long time scales was approximately at 55 ms for fat, as compared with 8.9 ms for water. Without delayed signal sampling, the MGE MRT temperature error was about 2.5°C. With delayed sampling such that both the water and the fat signals were either in the short or in the long time scale the error was reduced to 0.2°C.
Collapse
Affiliation(s)
- Mie K Lam
- Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, Room Q.02.445, CX, Utrecht, The Netherlands.
| | - Chris J G Bakker
- Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, Room Q.02.445, CX, Utrecht, The Netherlands
| | - Chrit T W Moonen
- Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, Room Q.02.445, CX, Utrecht, The Netherlands
| | - Max A Viergever
- Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, Room Q.02.445, CX, Utrecht, The Netherlands
| | - Lambertus W Bartels
- Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, Room Q.02.445, CX, Utrecht, The Netherlands
| |
Collapse
|
21
|
Zhang L, Burant A, McCallister A, Zhao V, Koshlap KM, Degan S, Antonacci M, Branca RT. Accurate MR thermometry by hyperpolarized 129 Xe. Magn Reson Med 2016; 78:1070-1079. [PMID: 27759913 DOI: 10.1002/mrm.26506] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE To investigate the temperature dependence of the resonance frequency of lipid-dissolved xenon (LDX) and to assess the accuracy of LDX-based MR thermometry. METHODS The chemical shift temperature dependence of water protons, methylene protons, and LDX was measured from samples containing tissues with varying fat contents using a high-resolution NMR spectrometer. LDX results were then used to acquire relative and absolute temperature maps in vivo and the results were compared with PRF-based MR thermometry. RESULTS The temperature dependence of proton resonance frequency (PRF) is strongly affected by the specific distribution of water and fat. A redistribution of water and fat compartments can reduce the apparent temperature dependence of the water chemical shift from -0.01 ppm/°C to -0.006 ppm, whereas the LDX chemical shift shows a consistent temperature dependence of -0.21 ppm/°C. The use of the methylene protons resonance frequency as internal reference improves the accuracy of LDX-based MR thermometry, but degrades that of PRF-based MR thermometry, as microscopic susceptibility gradients affected lipid and water spins differently. CONCLUSION The LDX resonance frequency, with its higher temperature dependence, provides more accurate and precise temperature measurements, both in vitro and in vivo. More importantly, the resonance frequency of nearby methylene protons can be used to extract absolute temperature information. Magn Reson Med 78:1070-1079, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Le Zhang
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alex Burant
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew McCallister
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Victor Zhao
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Karl M Koshlap
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Simone Degan
- Center for Molecular and Biomolecular Imaging, Department of Radiology and Dermatology, Duke University, Durham, North Carolina, USA
| | - Michael Antonacci
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rosa Tamara Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|