1
|
Bochert D, Hofer S, Dechent P, Frahm J, Bähr M, Liman J, Maier I. Blood Flow Velocities as Determined by Real-Time Phase-Contrast MRI in Patients With Carotid Artery Stenosis. J Neuroimaging 2025; 35:e70016. [PMID: 39994822 PMCID: PMC11850646 DOI: 10.1111/jon.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND AND PURPOSE Real-time phase-contrast (RT-PC) flow MRI can be used to determine quantitative flow parameters throughout the vessel lumen of extracranial, brain-supplying arteries. Its potential value in the diagnostic workup of patients with carotid artery stenosis has not been evaluated. METHODS RT-PC flow MRI was performed in 10 patients with carotid stenosis in comparison to conventional neurovascular ultrasound (nvUS). Peak systolic velocity, end-diastolic velocity, mean flow velocity, and flow volumes have been evaluated by RT-PC flow MRI. Measurements have been performed at standardized sites along the common, internal, and external carotid arteries on both sides and at the maximum of the carotid stenosis. RESULTS Blood flow velocities were significantly lower with RT-PC flow MRI compared to nvUS and not consistently correlated between both methods. Within the maximum of the carotid stenosis, RT-PC flow MRI showed implausible flow velocity reductions compared to nvUS. In contrast, the flow volumes determined by RT-PC flow MRI-with exception of the stenosis maximum-were comparable with nvUS and significantly correlated in the prestenotic common carotid artery. CONCLUSION RT-PC flow MRI does not appear to be suitable for quantifying blood flow velocities and volumes in the patients with carotid stenosis compared to nvUS. Apart from the lower temporal resolution of RT-PC MRI, the lack of correlation of blood flow velocities might be ascribed to the prevalence of nonlaminar flow within and behind the stenosis, which violates a general prerequisite for valid flow velocity measurements by PC MRI.
Collapse
Affiliation(s)
- Deborah Bochert
- Department of NeurologyUniversity Medical Center GöttingenGottingenNiedersachsenGermany
| | - Sabine Hofer
- Department of NeurologyUniversity Medical Center GöttingenGottingenNiedersachsenGermany
| | - Peter Dechent
- Department of Cognitive NeurologyUniversity Medical Center GöttingenGottingenNiedersachsenGermany
| | - Jens Frahm
- Biomedical NMRMax Planck Institute for Multidisciplinary SciencesGottingenNiedersachsenGermany
| | - Mathias Bähr
- Department of NeurologyUniversity Medical Center GöttingenGottingenNiedersachsenGermany
| | - Jan Liman
- Department of NeurologyParacelsus Medical SchoolNurembergBayernGermany
| | - Ilko Maier
- Department of NeurologyUniversity Medical Center GöttingenGottingenNiedersachsenGermany
| |
Collapse
|
2
|
Yang H, Hong K, Baraboo JJ, Fan L, Larsen A, Markl M, Robinson JD, Rigsby CK, Kim D. GRASP reconstruction amplified with view-sharing and KWIC filtering reduces underestimation of peak velocity in highly-accelerated real-time phase-contrast MRI: A preliminary evaluation in pediatric patients with congenital heart disease. Magn Reson Med 2024; 91:1965-1977. [PMID: 38084397 PMCID: PMC10950531 DOI: 10.1002/mrm.29974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
PURPOSE To develop a highly-accelerated, real-time phase contrast (rtPC) MRI pulse sequence with 40 fps frame rate (25 ms effective temporal resolution). METHODS Highly-accelerated golden-angle radial sparse parallel (GRASP) with over regularization may result in temporal blurring, which in turn causes underestimation of peak velocity. Thus, we amplified GRASP performance by synergistically combining view-sharing (VS) and k-space weighted image contrast (KWIC) filtering. In 17 pediatric patients with congenital heart disease (CHD), the conventional GRASP and the proposed GRASP amplified by VS and KWIC (or GRASP + VS + KWIC) reconstruction for rtPC MRI were compared with respect to clinical standard PC MRI in measuring hemodynamic parameters (peak velocity, forward volume, backward volume, regurgitant fraction) at four locations (aortic valve, pulmonary valve, left and right pulmonary arteries). RESULTS The proposed reconstruction method (GRASP + VS + KWIC) achieved better effective spatial resolution (i.e., image sharpness) compared with conventional GRASP, ultimately reducing the underestimation of peak velocity from 17.4% to 6.4%. The hemodynamic metrics (peak velocity, volumes) were not significantly (p > 0.99) different between GRASP + VS + KWIC and clinical PC, whereas peak velocity was significantly (p < 0.007) lower for conventional GRASP. RtPC with GRASP + VS + KWIC also showed the ability to assess beat-to-beat variation and detect the highest peak among peaks. CONCLUSION The synergistic combination of GRASP, VS, and KWIC achieves 25 ms effective temporal resolution (40 fps frame rate), while minimizing the underestimation of peak velocity compared with conventional GRASP.
Collapse
Affiliation(s)
- Huili Yang
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | - KyungPyo Hong
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Justin J Baraboo
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | - Lexiaozi Fan
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | - Andrine Larsen
- Department of Biomedical Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Michael Markl
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | - Joshua D Robinson
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Cardiology, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA
| | - Cynthia K Rigsby
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA
| | - Daniel Kim
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
3
|
Sahoo P, Kollmeier JM, Wenkel N, Badura S, Gärtner J, Frahm J, Dreha-Kulaczewski S. CSF and venous blood flow from childhood to adulthood studied by real-time phase-contrast MRI. Childs Nerv Syst 2024; 40:1377-1388. [PMID: 38206441 PMCID: PMC11026278 DOI: 10.1007/s00381-024-06275-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
PURPOSE In vivo measurements of CSF and venous flow using real-time phase-contrast (RT-PC) MRI facilitate new insights into the dynamics and physiology of both fluid systems. In clinical practice, however, use of RT-PC MRI is still limited. Because many forms of hydrocephalus manifest in infancy and childhood, it is a prerequisite to investigate normal flow parameters during this period to assess pathologies of CSF circulation. This study aims to establish reference values of CSF and venous flow in healthy subjects using RT-PC MRI and to determine their age dependency. METHODS RT-PC MRI was performed in 44 healthy volunteers (20 females, age 5-40 years). CSF flow was quantified at the aqueduct (Aqd), cervical (C3) and lumbar (L3) spinal levels. Venous flow measurements comprised epidural veins, internal jugular veins and inferior vena cava. Parameters analyzed were peak velocity, net flow, pulsatility, and area of region of interest (ROI). STATISTICAL TESTS linear regression, student's t-test and analysis of variance (ANOVA). RESULTS In adults volunteers, no significant changes in flow parameters were observed. In contrast, pediatric subjects exhibited a significant age-dependent decrease of CSF net flow and pulsatility in Aqd, C3 and L3. Several venous flow parameters decreased significantly over age at C3 and changed more variably at L3. CONCLUSION Flow parameters varies depending on anatomical location and age. We established changes of brain and spinal fluid dynamics over an age range from 5-40 years. The application of RT-PC MRI in clinical care may improve our understanding of CSF flow pathology in individual patients.
Collapse
Affiliation(s)
- Prativa Sahoo
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Robert Koch Street 40, 37075, Göttingen, Germany.
| | - Jost M Kollmeier
- Biomedical NMR, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nora Wenkel
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Robert Koch Street 40, 37075, Göttingen, Germany
| | - Simon Badura
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Robert Koch Street 40, 37075, Göttingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Robert Koch Street 40, 37075, Göttingen, Germany
| | - Jens Frahm
- Biomedical NMR, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Steffi Dreha-Kulaczewski
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Robert Koch Street 40, 37075, Göttingen, Germany.
| |
Collapse
|
4
|
Ebel S, Kühn A, Köhler B, Behrendt B, Riekena B, Preim B, Denecke T, Grothoff M, Gutberlet M. Quantitative 4D flow MRI-derived thoracic aortic normal values of 2D flow MRI parameters in healthy volunteers. ROFO-FORTSCHR RONTG 2024; 196:273-282. [PMID: 37944940 DOI: 10.1055/a-2175-4165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
PURPOSE To utilize 4 D flow MRI to acquire normal values of "conventional 2 D flow MRI parameters" in healthy volunteers in order to replace multiple single 2 D flow measurements with a single 4 D flow acquisition. MATERIALS AND METHODS A kt-GRAPPA accelerated 4 D flow sequence was used. Flow volumes were assessed by forward (FFV), backward (BFV), and net flow volumes (NFV) [ml/heartbeat] and flow velocities by axial (VAX) and absolute velocity (VABS) [m/s] in 116 volunteers (58 females, 43 ± 13 years). The aortic regurgitant fraction (RF) was calculated. RESULTS The sex-neutral mean FFV, BFV, NFV, and RF in the ascending aorta were 93.5 ± 14.8, 3.6 ± 2.8, 89.9 ± 0.6 ml/heartbeat, and 3.9 ± 2.9 %, respectively. Significantly higher values were seen in males regarding FFV, BFV, NFV and RF, but there was no sex dependency regarding VAX and VABS. The mean maximum VAX was lower (1.01 ± 0.31 m/s) than VABS (1.23 ± 0.35 m/s). We were able to determine normal ranges for all intended parameters. CONCLUSION This study provides quantitative 4 D flow-derived thoracic aortic normal values of 2 D flow parameters in healthy volunteers. FFV, BFV, NFV, and VAX did not differ significantly from single 2 D flow acquisitions and could therefore replace time-consuming multiple single 2 D flow acquisitions. VABS should not be used interchangeably. KEY POINTS · 4 D flow MRI can be used to replace 2 D flow MRI measurements.. · The parameter absolute velocities can be assessed by 4 D flow MRI.. · There are sex-dependent differences regarding forward, backward, net aortic blood flow and the aortic valve regurgitant fraction..
Collapse
Affiliation(s)
- Sebastian Ebel
- Diagnostic and Interventional Radiology, Leipzig University, Leipzig, Germany
| | - Alexander Kühn
- Diagnostic and Interventional Radiology, Leipzig Heart Centre University Hospital, Leipzig, Germany
| | - Benjamin Köhler
- Simulation and Graphics, Otto von Guericke Universität Magdeburg, Germany
| | - Benjamin Behrendt
- Simulation and Graphics, Otto von Guericke Universität Magdeburg, Germany
| | - Boris Riekena
- Diagnostic and Interventional Radiology, Leipzig Heart Centre University Hospital, Leipzig, Germany
| | - Bernhard Preim
- Simulation and Graphics, Otto von Guericke Universität Magdeburg, Germany
| | - Timm Denecke
- Diagnostic and Interventional Radiology, Leipzig University, Leipzig, Germany
| | - Matthias Grothoff
- Diagnostic and Interventional Radiology, Leipzig Heart Centre University Hospital, Leipzig, Germany
| | - Matthias Gutberlet
- Diagnostic and Interventional Radiology, Leipzig Heart Centre University Hospital, Leipzig, Germany
| |
Collapse
|
5
|
Sun A, Zhao B, Zheng Y, Long Y, Wu P, Wang B, Li R, Wang H. Motion-resolved real-time 4D flow MRI with low-rank and subspace modeling. Magn Reson Med 2023; 89:1839-1852. [PMID: 36533875 DOI: 10.1002/mrm.29557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/01/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE To develop a new motion-resolved real-time four-dimensional (4D) flow MRI method, which enables the quantification and visualization of blood flow velocities with three-directional flow encodings and volumetric coverage without electrocardiogram (ECG) synchronization and respiration control. METHODS An integrated imaging method is presented for real-time 4D flow MRI, which encompasses data acquisition, image reconstruction, and postprocessing. The proposed method features a specialized continuous ( k , t ) $$ \left(\mathbf{k},t\right) $$ -space acquisition scheme, which collects two sets of data (i.e., training data and imaging data) in an interleaved manner. By exploiting strong spatiotemporal correlation of 4D flow data, it reconstructs time-series images from highly-undersampled ( k , t ) $$ \left(\mathbf{k},t\right) $$ -space measurements with a low-rank and subspace model. Through data-binning-based postprocessing, it constructs a five-dimensional dataset (i.e., x-y-z-cardiac-respiratory), from which respiration-dependent flow information is further analyzed. The proposed method was evaluated in aortic flow imaging experiments with ten healthy subjects and two patients with atrial fibrillation. RESULTS The proposed method achieves 2.4 mm isotropic spatial resolution and 34.4 ms temporal resolution for measuring the blood flow of the aorta. For the healthy subjects, it provides flow measurements in good agreement with those from the conventional 4D flow MRI technique. For the patients with atrial fibrillation, it is able to resolve beat-by-beat pathological flow variations, which cannot be obtained from the conventional technique. The postprocessing further provides respiration-dependent flow information. CONCLUSION The proposed method enables high-resolution motion-resolved real-time 4D flow imaging without ECG gating and respiration control. It is able to resolve beat-by-beat blood flow variations as well as respiration-dependent flow information.
Collapse
Affiliation(s)
- Aiqi Sun
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Bo Zhao
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA.,Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas, USA
| | | | - Yuliang Long
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Wu
- Philips Healthcare, Shanghai, China
| | - Bei Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Kollmeier JM, Gürbüz-Reiss L, Sahoo P, Badura S, Ellebracht B, Keck M, Gärtner J, Ludwig HC, Frahm J, Dreha-Kulaczewski S. Deep breathing couples CSF and venous flow dynamics. Sci Rep 2022; 12:2568. [PMID: 35173200 PMCID: PMC8850447 DOI: 10.1038/s41598-022-06361-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Venous system pathologies have increasingly been linked to clinically relevant disorders of CSF circulation whereas the exact coupling mechanisms still remain unknown. In this work, flow dynamics of both systems were studied using real-time phase-contrast flow MRI in 16 healthy subjects during normal and forced breathing. Flow evaluations in the aqueduct, at cervical level C3 and lumbar level L3 for both the CSF and venous fluid systems reveal temporal modulations by forced respiration. During normal breathing cardiac-related flow modulations prevailed, while forced breathing shifted the dominant frequency of both CSF and venous flow spectra towards the respiratory component and prompted a correlation between CSF and venous flow in the large vessels. The average of flow magnitude of CSF was increased during forced breathing at all spinal and intracranial positions. Venous flow in the large vessels of the upper body decreased and in the lower body increased during forced breathing. Deep respiration couples interdependent venous and brain fluid flow—most likely mediated by intrathoracic and intraabdominal pressure changes. Further insights into the driving forces of CSF and venous circulation and their correlation will facilitate our understanding how the venous system links to intracranial pressure regulation and of related forms of hydrocephalus.
Collapse
Affiliation(s)
- Jost M Kollmeier
- Biomedizinische NMR, Max-Planck-Institut für multidisziplinäre Naturwissenschaften, 37077, Göttingen, Germany
| | - Lukas Gürbüz-Reiss
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Prativa Sahoo
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Simon Badura
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Ben Ellebracht
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Mathilda Keck
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Jutta Gärtner
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Hans-Christoph Ludwig
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR, Max-Planck-Institut für multidisziplinäre Naturwissenschaften, 37077, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Steffi Dreha-Kulaczewski
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
7
|
Kollmeier JM, Kalentev O, Klosowski J, Voit D, Frahm J. Velocity vector reconstruction for real-time phase-contrast MRI with radial Maxwell correction. Magn Reson Med 2021; 87:1863-1875. [PMID: 34850452 DOI: 10.1002/mrm.29108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE To develop an auto-calibrated image reconstruction for highly accelerated multi-directional phase-contrast (PC) MRI that compensates for (1) reconstruction instabilities occurring for phase differences near ± π and (2) phase errors by concomitant magnetic fields that differ for individual radial spokes. THEORY AND METHODS A model-based image reconstruction for real-time PC MRI based on nonlinear inversion is extended to multi-directional flow by exploiting multiple flow-encodings for the estimation of velocity vectors. An initial smoothing constraint during iterative optimization is introduced to resolve the ambiguity of the solution space by penalizing phase wraps. Maxwell terms are considered as part of the signal model on a line-by-line basis to address phase errors by concomitant magnetic fields. The reconstruction methods are evaluated using simulated data and cross-sectional imaging of a rotating-disc, as well as in vivo for the aortic arch and cervical spinal canal at 3T. RESULTS Real-time three-directional velocity mapping in the aortic arch is achieved at 1.8 × 1.8 × 6 mm3 spatial and 60 ms temporal resolution. Artificial phase wraps are avoided in all cases using the smoothness constraint. Inter-spoke differences of concomitant magnetic fields are effectively compensated for by the model-based image reconstruction with integrated radial Maxwell correction. CONCLUSION Velocity vector reconstructions based on nonlinear inversion allow for high degrees of radial data undersampling paving the way for multi-directional PC MRI in real time. Whether a spoke-wise treatment of Maxwell terms is required or a computationally cheaper frame-wise approach depends on the individual application.
Collapse
Affiliation(s)
- Jost M Kollmeier
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Oleksandr Kalentev
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Jakob Klosowski
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Dirk Voit
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| |
Collapse
|
8
|
Wang X, Tan Z, Scholand N, Roeloffs V, Uecker M. Physics-based reconstruction methods for magnetic resonance imaging. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200196. [PMID: 33966457 PMCID: PMC8107652 DOI: 10.1098/rsta.2020.0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 05/03/2023]
Abstract
Conventional magnetic resonance imaging (MRI) is hampered by long scan times and only qualitative image contrasts that prohibit a direct comparison between different systems. To address these limitations, model-based reconstructions explicitly model the physical laws that govern the MRI signal generation. By formulating image reconstruction as an inverse problem, quantitative maps of the underlying physical parameters can then be extracted directly from efficiently acquired k-space signals without intermediate image reconstruction-addressing both shortcomings of conventional MRI at the same time. This review will discuss basic concepts of model-based reconstructions and report on our experience in developing several model-based methods over the last decade using selected examples that are provided complete with data and code. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 1'.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
- Partner Site Göttingen, German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Zhengguo Tan
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
- Partner Site Göttingen, German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Nick Scholand
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
- Partner Site Göttingen, German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Volkert Roeloffs
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Uecker
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
- Partner Site Göttingen, German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
- Campus Institute Data Science (CIDAS), University of Göttingen, Göttingen, Germany
| |
Collapse
|
9
|
Hüfken T, Arbogast JM, Bracher AK, Beer M, Neubauer H, Rasche V. Accelerated model-based quantitative diffusion MRI: A feasibility study for musculoskeletal application. Z Med Phys 2021; 32:240-247. [PMID: 34175164 PMCID: PMC9948881 DOI: 10.1016/j.zemedi.2021.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE To develop a model-based reconstruction technique for diffusion quantification based on accelerated two-dimensional echo planar data, obtained with multiple b-weightings. In combination with a dedicated undersampling pattern, acceleration factors above three were proven feasible in a clinical setting. METHODS The proposed model-based method minimizes a cost function considering the l2-norm of the difference between the Fourier transformation of a synthetic diffusion-model-generated k-space and the measured k-space data. Further regularization is performed by introduction of a total variation (TV) constraint to the cost function. Acceleration is achieved by a non-random undersampling pattern using acceleration factors that correspond to the total number of b-values. A rectangular region of variable size, centered in k-space, remains fully sampled for correction of phase variations, introduced by the different diffusion-encoding strengths. RESULTS Qualitative analysis of the resulting images (S0 and ADC) demonstrates the potential of the suggested undersampling pattern in combination with a model-based iterative reconstruction. An edge analysis highlights the preservation of high-frequency information for all investigated undersampling factors. In comparison to a conventional SENSE-accelerated reconstruction, the quantitative analysis of the ADC maps revealed a significantly (P<0.05) superior performance of the suggested technique, enabling acceleration factors of R=3.65 without compromising diffusion data fidelity. CONCLUSION The presented work shows the potential of model-based ADC quantification, which, in combination with a suited undersampling pattern for multiple b-values, enables more than three-fold acceleration using two-dimensional EPI without sacrificing ADC fidelity.
Collapse
Affiliation(s)
- Thomas Hüfken
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, BW, Germany
| | - Jannik M. Arbogast
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, BW, Germany
| | | | - Meinrad Beer
- Department of Radiology, Ulm University Medical Center, Ulm, BW, Germany
| | - Henning Neubauer
- Department of Radiology, Ulm University Medical Center, Ulm, BW, Germany
| | - Volker Rasche
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, BW, Germany.
| |
Collapse
|
10
|
Haji-Valizadeh H, Guo R, Kucukseymen S, Paskavitz A, Cai X, Rodriguez J, Pierce P, Goddu B, Kim D, Manning W, Nezafat R. Highly accelerated free-breathing real-time phase contrast cardiovascular MRI via complex-difference deep learning. Magn Reson Med 2021; 86:804-819. [PMID: 33720465 DOI: 10.1002/mrm.28750] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/18/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To develop and evaluate a real-time phase contrast (PC) MRI protocol via complex-difference deep learning (DL) framework. METHODS DL used two 3D U-nets to separately filter aliasing artifact from radial real-time velocity-compensated and complex-difference images. U-nets were trained with synthetic real-time PC generated from electrocardiograph (ECG) -gated, breath-hold, segmented PC (ECG-gated segmented PC) acquired at the ascending aorta of 510 patients. In 21 patients, free-breathing, ungated real-time (acceleration rate = 28.8) and ECG-gated segmented (acceleration rate = 2) PC were prospectively acquired at the ascending aorta. Hemodynamic parameters (cardiac output [CO], stroke volume [SV], and mean velocity at peak systole [peak mean velocity]) were measured for ECG-gated segmented and DL-filtered synthetic real-time PC and compared using Bland-Altman and linear regression analyses. Additionally, hemodynamic parameters were quantified from DL-filtered, compressed-sensing (CS) -reconstructed, and gridding reconstructed prospective real-time PC and compared to ECG-gated segmented PC. RESULTS Synthetic real-time PC with DL showed strong correlation (R > 0.98) and good agreement with ECG-gated segmented PC for quantified hemodynamic parameters (mean-difference: CO = -0.3 L/min, SV = -4.3 mL, peak mean velocity = -2.3 cm/s). On average, DL required 0.39 s/frame to filter prospective real-time PC, which was 4.6-fold faster than CS. Compared to CS, DL showed superior correlation, tighter limits of agreement (LOAs), better bias for peak mean velocity, and worse bias for CO and SV. Compared to gridding, DL showed similar correlation, tighter LOAs for CO and SV, similar bias for CO, and worse bias for SV and peak mean velocity. CONCLUSION The complex-difference DL framework accelerated real-time PC-MRI by nearly 28-fold, enabling rapid free-running real-time assessment of flow hemodynamics.
Collapse
Affiliation(s)
- Hassan Haji-Valizadeh
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Rui Guo
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Selcuk Kucukseymen
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda Paskavitz
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoying Cai
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Siemens Medical Solutions USA, Inc., Boston, Massachusetts, USA
| | - Jennifer Rodriguez
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Pierce
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Beth Goddu
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Kim
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Warren Manning
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Kroeger JR, Pavesio FC, Mörsdorf R, Weiss K, Bunck AC, Baeßler B, Maintz D, Giese D. Velocity quantification in 44 healthy volunteers using accelerated multi-VENC 4D flow CMR. Eur J Radiol 2021; 137:109570. [PMID: 33596498 DOI: 10.1016/j.ejrad.2021.109570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/25/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND To evaluate the feasibility of a k-t accelerated multi-VENC 4D phase contrast flow MRI acquisition of the main heart-surrounding vessels, its benefits over a traditional single-VENC acquisition and to present reference flow and velocity values in a large cohort of volunteers. METHODS 44 healthy volunteers were examined on a 3 T MRI scanner (Ingenia, Philips, Best, The Netherlands). 4D flow measurements were obtained with a FOV including the aorta and the pulmonary arteries. VENC values were set to 40, 100 and 200 cm/s and unfolded based on an MRI signal model. Unfolded multi-VENC data was compared to the single-VENC with VENC 200 cm/s. Flow and velocity quantification was performed in several regions of interest (ROI) placed in the ascending aorta and in the main pulmonary artery. Conservation of mass analysis was performed for single- and multi-VENC datasets. Values for mean and maximal flow velocity and stroke volume were calculated and compared to the literature. RESULTS Mean scan time was 13.8 ± 4 min. Differences between stroke volumes between the ascending aorta and the main pulmonary artery were significantly lower in multi-VENC datasets compared to single-VENC datasets (9.6 ± 7.8 mL vs. 25.4 ± 26.4 mL, p < 0.001). This was also true for differences in stroke volume between up- and downstream ROIs in the ascending aorta and pulmonary artery. Values for mean and maximal velocities and stroke volume were in-line with previous studies. To highlight potential clinical applications two exemplary 4D flow measurements in patients with different pathologies are shown and compared to single-VENC datasets. CONCLUSIONS k-t accelerated multi-VENC 4D phase contrast flow MRI acquisition of the great vessels is feasible in a clinically acceptable scan duration. It offers improvements over traditional single-VENC 4D flow, expectedly being valuable when vessels with different flow velocities or complex flow phenomena are evaluated.
Collapse
Affiliation(s)
- Jan Robert Kroeger
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Germany.
| | - Francesca Claudia Pavesio
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Richard Mörsdorf
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Kilian Weiss
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Philips GmbH, Hamburg, Germany.
| | - Alexander Christian Bunck
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Bettina Baeßler
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland.
| | - David Maintz
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Daniel Giese
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
12
|
Hirsch FW, Frahm J, Sorge I, Roth C, Voit D, Gräfe D. Real-time magnetic resonance imaging in pediatric radiology - new approach to movement and moving children. Pediatr Radiol 2021; 51:840-846. [PMID: 33566125 PMCID: PMC8055638 DOI: 10.1007/s00247-020-04828-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/17/2020] [Accepted: 08/23/2020] [Indexed: 11/30/2022]
Abstract
The recent development of highly undersampled radial gradient echo sequences in combination with nonlinear inverse image reconstruction now allows for MRI examinations in real time. Image acquisition times as short as 20 ms yield MRI videos with rates of up to 50 frames per second with spin density, T1- and T2-type contrast. The addition of an initial 180° inversion pulse achieves accurate T1 mapping within only 4 s. These technical advances promise specific advantages for studies of infants and young children by eliminating the need for sedation or anesthesia. Our preliminary data demonstrate new diagnostic opportunities ranging from dynamic studies of speech and swallowing processes and body movements to a rapid volumetric assessment of brain cerebrospinal fluid spaces in only few seconds. Real-time MRI of the heart and blood flow can be performed without electrocardiogram gating and under free breathing. The present findings support the idea that real-time MRI will complement existing methods by providing long-awaited diagnostic options for patients in early childhood. Major advantages are the avoidance of sedation or anesthesia and the yet unexplored potential to gain insights into arbitrary body functions.
Collapse
Affiliation(s)
- Franz Wolfgang Hirsch
- Department of Pediatric Radiology, University of Leipzig, Liebigstraße 20a 04103 Leipzig, Germany
| | - Jens Frahm
- Biomedizinische NMR, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Ina Sorge
- Department of Pediatric Radiology, University of Leipzig, Liebigstraße 20a 04103 Leipzig, Germany
| | - Christian Roth
- Department of Pediatric Radiology, University of Leipzig, Liebigstraße 20a 04103 Leipzig, Germany
| | - Dirk Voit
- Biomedizinische NMR, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Daniel Gräfe
- Department of Pediatric Radiology, University of Leipzig, Liebigstraße 20a, 04103, Leipzig, Germany.
| |
Collapse
|
13
|
Real-Time Magnetic Resonance Imaging: Radial Gradient-Echo Sequences With Nonlinear Inverse Reconstruction. Invest Radiol 2020; 54:757-766. [PMID: 31261294 DOI: 10.1097/rli.0000000000000584] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study is to evaluate a real-time magnetic resonance imaging (MRI) method that not only promises high spatiotemporal resolution but also practical robustness in a wide range of scientific and clinical applications. MATERIALS AND METHODS The proposed method relies on highly undersampled gradient-echo sequences with radial encoding schemes. The serial image reconstruction process solves the true mathematical task that emerges as a nonlinear inverse problem with the complex image and all coil sensitivity maps as unknowns. Extensions to model-based reconstructions for quantitative parametric mapping further increase the number of unknowns, for example, by adding parameters for phase-contrast flow or T1 relaxation. In all cases, an iterative numerical solution that minimizes a respective cost function is achieved with use of the iteratively regularized Gauss-Newton method. Convergence is supported by regularization, for example, to the preceding frame, whereas temporal fidelity is ensured by downsizing the regularization strength in comparison to the data consistency term in each iterative step. Practical implementations of highly parallelized algorithms are realized on a computer with multiple graphical processing units. It is "invisibly" integrated into a commercial 3-T MRI system to allow for conventional usage and to provide online reconstruction, display, and storage of regular DICOM image series. RESULTS Depending on the application, the proposed method offers serial imaging, that is, the recording of MRI movies, with variable spatial resolution and up to 100 frames per second (fps)-corresponding to 10 milliseconds image acquisition times. For example, movements of the temporomandibular joint during opening and closing of the mouth are visualized with use of simultaneous dual-slice movies of both joints at 2 × 10 fps (50 milliseconds per frame). Cardiac function may be studied at 30 to 50 fps (33.3 to 20 milliseconds), whereas articulation processes typically require 50 fps (20 milliseconds) or orthogonal dual-slice acquisitions at 2 × 25 fps (20 milliseconds). Methodological extensions to model-based reconstructions achieve improved quantitative mapping of flow velocities and T1 relaxation times in a variety of clinical scenarios. CONCLUSIONS Real-time gradient-echo MRI with extreme radial undersampling and nonlinear inverse reconstruction allows for direct monitoring of arbitrary physiological processes and body functions. In many cases, pertinent applications offer hitherto impossible clinical studies (eg, of high-resolution swallowing dynamics) or bear the potential to replace existing MRI procedures (eg, electrocardiogram-gated cardiac examinations). As a consequence, many novel opportunities will require a change of paradigm in MRI-based radiology. At this stage, extended clinical trials are needed.
Collapse
|
14
|
Joseph AA, Voit D, Frahm J. Inferior vena cava revisited - Real-time flow MRI of respiratory maneuvers. NMR IN BIOMEDICINE 2020; 33:e4232. [PMID: 31913551 DOI: 10.1002/nbm.4232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Recent MRI studies of blood flow in the inferior vena cava (IVC) resulted in findings which are inconsistent with earlier observations by invasive procedures - most likely because ECG-gated MRI techniques are unable to resolve dynamic adjustments due to respiration. The purpose of this work was to apply real-time phase-contrast MRI at 50 ms resolution to re-evaluate IVC flow in response to normal and deep breathing as well as breath holding and Valsalva maneuver (11 young healthy subjects). Real-time flow MRI relied on highly undersampled radial gradient-echo sequences and a model-based nonlinear inverse reconstruction. A frequency analysis of the predominant pulsatility classified IVC flow in individual subjects as "cardiac", "respiratory" or "mixed" type. Peak flow velocities during free breathing ranged from 30 to 58 cm s-1 , while flow rates varied from 15 to 37 ml s-1 . The subject-specific IVC flow pattern persists during deep breathing although the enhanced respiratory influence may shift subjects form "cardiac" to "mixed" or from "mixed" to "respiratory" type. Peak velocities increased relative to normal breathing but led to similar flow rates of 16 to 34 ml s-1 . Inspiration during deep breathing elicited brief periods of flow reversal in all subjects with mean peak velocities of -21 cm s-1 . The observation of only mildly flattened parabolic velocity distributions within the IVC indicated mostly laminar flow. Breath holding reduced blood flow velocities and rates by more than 40% on average, while Valsalva maneuvers completely abolished venous return. In conclusion, IVC blood flow is dominated by the acquired respiratory behavior of individual subjects and its pressure-induced alterations relative to cardiac pulsation. The responses to breath holding and Valsalva maneuver are in full agreement with previous invasive observations of reduced or even ceased flow, respectively.
Collapse
Affiliation(s)
- Arun A Joseph
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Dirk Voit
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| |
Collapse
|
15
|
Gräfe D, Roth C, Weisser M, Krause M, Frahm J, Voit D, Hirsch FW. Outpacing movement - ultrafast volume coverage in neuropediatric magnetic resonance imaging. Pediatr Radiol 2020; 50:1751-1756. [PMID: 32949250 PMCID: PMC7604272 DOI: 10.1007/s00247-020-04771-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/10/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Conventional MRI sequences are often affected in neuropediatric imaging by unavoidable movements. Therefore, children younger than 6 years usually have to be examined under sedation/anesthesia. A new real-time MRI technique with automatic slice advancement allows for motion-robust T2-weighted volume coverage of the whole brain within a few seconds in adults. OBJECTIVE To evaluate to which extent the new volume coverage method can be used to visualize cerebrospinal fluid and reduce the need for anesthesia in children. MATERIALS AND METHODS We assessed 30 children ages 6 years and younger with suspected or proven hydrocephalus, hygroma or macrocephalus using volume coverage sequences with 20 slices per second in three planes. If necessary, a parent was placed in the bore together with the child for calming and gentle immobilization. We compared visualization of cerebrospinal fluid spaces and course of the shunt catheter in volume coverage sequences vs. fast spin-echo sequences. RESULTS The clinical issue could be sufficiently assessed in all children with use of volume coverage sequences, whereas conventional fast spin-echo sequences performed moderately to poorly. Visualization of the tip of a shunt failed in 16% of volume coverage scans and 27% of turbo spin-echo scans. A subsequent examination under anesthesia was never necessary. None of the examinations had to be stopped prematurely. CONCLUSION The motion-robust volume coverage sequences with T2-type contrast can be used to avoid sedation of children in the evaluation of cerebrospinal fluid spaces, even in the presence of vigorous motion. For other indications and contrasts, the technique must still be evaluated.
Collapse
Affiliation(s)
- Daniel Gräfe
- Department of Pediatric Radiology, University of Leipzig, Liebigstraße 20a, 04103, Leipzig, Germany.
| | - Christian Roth
- Department of Pediatric Radiology, University of Leipzig, Liebigstraße 20a, 04103, Leipzig, Germany
| | - Margit Weisser
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Matthias Krause
- Department of Neurosurgery, University of Leipzig, Leipzig, Germany
| | - Jens Frahm
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Dirk Voit
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Franz Wolfgang Hirsch
- Department of Pediatric Radiology, University of Leipzig, Liebigstraße 20a, 04103, Leipzig, Germany
| |
Collapse
|
16
|
Staniszewski M, Klose U. Improvement of Fast Model-Based Acceleration of Parameter Look-Locker T 1 Mapping. SENSORS (BASEL, SWITZERLAND) 2019; 19:s19245371. [PMID: 31817483 PMCID: PMC6960582 DOI: 10.3390/s19245371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Quantitative mapping is desirable in many scientific and clinical magneric resonance imaging (MRI) applications. Recent inverse recovery-look locker sequence enables single-shot T1 mapping with a time of a few seconds but the main computational load is directed into offline reconstruction, which can take from several minutes up to few hours. In this study we proposed improvement of model-based approach for T1-mapping by introduction of two steps fitting procedure. We provided analysis of further reduction of k-space data, which lead us to decrease of computational time and perform simulation of multi-slice development. The region of interest (ROI) analysis of human brain measurements with two different initial models shows that the differences between mean values with respect to a reference approach are in white matter-0.3% and 1.1%, grey matter-0.4% and 1.78% and cerebrospinal fluid-2.8% and 11.1% respectively. With further improvements we were able to decrease the time of computational of single slice to 6.5 min and 23.5 min for different initial models, which has been already not achieved by any other algorithm. In result we obtained an accelerated novel method of model-based image reconstruction in which single iteration can be performed within few seconds on home computer.
Collapse
Affiliation(s)
- Michał Staniszewski
- Institute of Informatics, Silesian University of Technology, Gliwice 44-100, Poland
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls University, Tübingen 72076, Germany;
| |
Collapse
|
17
|
Kollmeier JM, Tan Z, Joseph AA, Kalentev O, Voit D, Merboldt KD, Frahm J. Real-time multi-directional flow MRI using model-based reconstructions of undersampled radial FLASH - A feasibility study. NMR IN BIOMEDICINE 2019; 32:e4184. [PMID: 31580524 DOI: 10.1002/nbm.4184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
The purpose of this work was to develop an acquisition and reconstruction technique for two- and three-directional (2d and 3d) phase-contrast flow MRI in real time. A previous real-time MRI technique for one-directional (1d) through-plane flow was extended to 2d and 3d flow MRI by introducing in-plane flow sensitivity. The method employs highly undersampled radial FLASH sequences with sequential acquisitions of two or three flow-encoding datasets and one flow-compensated dataset. Echo times are minimized by merging the waveforms of flow-encoding and radial imaging gradients. For each velocity direction individually, model-based reconstructions by regularized nonlinear inversion jointly estimate an anatomical image, a set of coil sensitivities and a phase-contrast velocity map directly. The reconstructions take advantage of a dynamic phase reference obtained by interpolating consecutive flow-compensated acquisitions. Validations include pulsatile flow phantoms as well as in vivo studies of the human aorta at 3 T. The proposed method offers cross-sectional 2d and 3d flow MRI of the human aortic arch at 53 and 67 ms resolution, respectively, without ECG synchronization and during free breathing. The in-plane resolution was 1.5 × 1.5 mm2 and the slice thickness 6 mm. In conclusion, real-time multi-directional flow MRI offers new opportunities to study complex human blood flow without the risk of combining differential phase (i.e., velocity) information from multiple heartbeats as for ECG-gated data. The method would benefit from a further reduction of acquisition time and accelerated computing to allow for extended clinical trials.
Collapse
Affiliation(s)
- Jost M Kollmeier
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Zhengguo Tan
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Arun A Joseph
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Oleksandr Kalentev
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Dirk Voit
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - K Dietmar Merboldt
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| |
Collapse
|
18
|
Voit D, Kalentev O, Frahm J. Body coil reference for inverse reconstructions of multi-coil data-the case for real-time MRI. Quant Imaging Med Surg 2019; 9:1815-1819. [PMID: 31867235 DOI: 10.21037/qims.2019.08.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Real-time magnetic resonance imaging (MRI) or model-based MRI reconstructions of parametric maps require the solution of an ill-posed nonlinear inverse problem. Respective algorithms, e.g., the iteratively regularized Gauss-Newton method, implicitly combine datasets from multiple receive coils. Because these local coils may exhibit complex sensitivity profiles with rather different phase offsets, the numerical optimization may lead to phase singularities which in turn cause "black holes" in magnitude images. The purpose of this work is to develop a method for inverse reconstructions of multi-coil MRI data which avoids the generation of such spatially selective phase singularities. It is proposed to use volumetric body coil data and start the iterative reconstruction of multi-coil data with a reference image which offers proper phase information. In more detail, inverse reconstructions of multi-coil data are initialized with a complex "seed" image which is obtained by a Fast Fourier Transform (FFT) reconstruction of data from a single body coil element. This is accomplished at no additional cost as only very few body coil scans with identical conditions as the multi-coil acquisitions are needed as part of the regular prep scan period. The method is evaluated for anatomical real-time MRI and model-based phase-contrast flow MRI in real-time at 3 T. The proposed method overcomes phase singularities in all cases for arbitrary sets of receive coils. In conclusion, the automatic use of a single body coil reference image is simple, robust, and further improves the reliability of advanced MRI reconstructions from multi-coil data.
Collapse
Affiliation(s)
- Dirk Voit
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Oleksandr Kalentev
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| |
Collapse
|
19
|
Breathing drives CSF: Impact on spaceflight disease and hydrocephalus. Proc Natl Acad Sci U S A 2019; 116:20263-20264. [PMID: 31530729 PMCID: PMC6789739 DOI: 10.1073/pnas.1910305116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Tan Z, Voit D, Kollmeier JM, Uecker M, Frahm J. Dynamic water/fat separation and B 0 inhomogeneity mapping-joint estimation using undersampled triple-echo multi-spoke radial FLASH. Magn Reson Med 2019; 82:1000-1011. [PMID: 31033051 DOI: 10.1002/mrm.27795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 11/05/2022]
Abstract
PURPOSE To achieve dynamic water/fat separation and B 0 field inhomogeneity mapping via model-based reconstructions of undersampled triple-echo multi-spoke radial FLASH acquisitions. METHODS This work introduces an undersampled triple-echo multi-spoke radial FLASH sequence, which uses (i) complementary radial spokes per echo train for faster spatial encoding, (ii) asymmetric echoes for flexible and nonuniform echo spacing, and (iii) a golden angle increment across frames for optimal k-space coverage. Joint estimation of water, fat, B 0 inhomogeneity, and coil sensitivity maps from undersampled triple-echo data poses a nonlinear and non-convex inverse problem which is solved by a model-based reconstruction with suitable regularization. The developed methods are validated using phantom experiments with different degrees of undersampling. Real-time MRI studies of the knee, liver, and heart are conducted without prospective gating or retrospective data sorting at temporal resolutions of 70, 158, and 40 ms, respectively. RESULTS Up to 18-fold undersampling is achieved in this work. Even in the presence of rapid physiological motion, large B 0 field inhomogeneities, and phase wrapping, the model-based reconstruction yields reliably separated water/fat maps in conjunction with spatially smooth inhomogeneity maps. CONCLUSIONS The combination of a triple-echo acquisition and joint reconstruction technique provides a practical solution to time-resolved and motion robust water/fat separation at high spatial and temporal resolution.
Collapse
Affiliation(s)
- Zhengguo Tan
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.,Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk Voit
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Jost M Kollmeier
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Martin Uecker
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Krohn S, Joseph AA, Voit D, Michaelis T, Merboldt KD, Buergers R, Frahm J. Multi-slice real-time MRI of temporomandibular joint dynamics. Dentomaxillofac Radiol 2019; 48:20180162. [PMID: 30028188 PMCID: PMC6398907 DOI: 10.1259/dmfr.20180162] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/29/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES The purpose of this work was to improve the clinical versatility of high-speed real-time MRI studies of temporomandibular joint (TMJ) dynamics by simultaneous recordings of multiple MRI movies in different sections. METHODS Real-time MRI at 3 T was realized using highly undersampled radial FLASH acquisitions and image reconstruction by regularized nonlinear inversion (NLINV). Multi-slice real-time MRI of two, three or four slices at 0.75 mm resolution and 6 to 8 mm thickness was accomplished at 50.0 ms, 33.3 ms or 25.5 ms temporal resolution, respectively, yielding simultaneous movies at 2 × 10, 3 × 10 or 4 × 10 frames per second in a frame-interleaved acquisition mode. Real-time MRI movies were evaluated by three blinded raters for visibility of the anterior and posterior border of disc, shape of the disk body and condyle head as well as movement of the disc and condyle (1 = excellent, 5 = no visibility). RESULTS Effective delineation of the disk atop the mandibular condyle was achieved by T1-weighted images with opposed-phase water-fat contrast. Compared to 8 mm sections, multi-slice recordings with 6 mm thickness provided sharper delineation of relevant structures as confirmed by inter-rater evaluation. Respective dual-slice and triple-slice recordings of a single TMJ as well as dual-slice recordings of both joints (one slice per TMJ) received the highest visibility ratings of ≤ 2 corresponding to high confidence in diagnostic content. CONCLUSIONS The improved access to TMJ dynamics by multi-slice real-time MRI will contribute to more effective treatment of temporomandibular disorders.
Collapse
Affiliation(s)
- Sebastian Krohn
- Department of Prosthodontics, University Medical Center, Göttingen, Germany
| | - Arun A Joseph
- Biomedizinische NMR, MPI für biophysikalische Chemie, Göttingen, Germany
- DZHK, German Center for Cardiovascular Research, Göttingen, Germany
| | - Dirk Voit
- Biomedizinische NMR, MPI für biophysikalische Chemie, Göttingen, Germany
| | - Thomas Michaelis
- Biomedizinische NMR, MPI für biophysikalische Chemie, Göttingen, Germany
| | | | - Ralf Buergers
- Department of Prosthodontics, University Medical Center, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR, MPI für biophysikalische Chemie, Göttingen, Germany
- DZHK, German Center for Cardiovascular Research, Göttingen, Germany
| |
Collapse
|
22
|
Rich A, Potter LC, Jin N, Liu Y, Simonetti OP, Ahmad R. A Bayesian approach for 4D flow imaging of aortic valve in a single breath-hold. Magn Reson Med 2018; 81:811-824. [PMID: 30265770 DOI: 10.1002/mrm.27386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PURPOSE To develop and validate a data processing technique that allows phase-contrast MRI-based 4D flow imaging of the aortic valve in a single breath-hold. THEORY AND METHODS To regularize the ill-posed inverse problem, we extend a recently proposed 2D phase-contrast MRI method to 4D flow imaging. Adopting an empirical Bayes approach, spatial and temporal redundancies are exploited via sparsity in the wavelet domain, and the voxel-wise magnitude and phase structure across encodings is captured in a conditional mixture prior that applies regularizing constraints based on the presence of flow. We validate the proposed technique using data from a mechanical flow phantom and five healthy volunteers. RESULTS The flow parameters derived from the proposed technique are in good agreement with those derived from reference datasets for both in vivo and mechanical flow experiments at accelerations rates as high as R = 27. Additionally, the proposed technique outperforms kt SPARSE-SENSE and a method that exploits spatio-temporal sparsity but does not utilize signal structure across encodings. CONCLUSIONS Using the proposed technique, it is feasible to highly accelerate 4D flow acquisition and thus enable aortic valve imaging within a single breath-hold.
Collapse
Affiliation(s)
- Adam Rich
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Lee C Potter
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Ning Jin
- Siemens Medical Solutions, Columbus, Ohio
| | - Yingmin Liu
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Orlando P Simonetti
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.,Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio.,Department of Radiology, The Ohio State University, Columbus, Ohio
| | - Rizwan Ahmad
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio.,Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| |
Collapse
|
23
|
Maier IL, Hofer S, Joseph AA, Merboldt KD, Tan Z, Schregel K, Knauth M, Bähr M, Psychogios MN, Liman J, Frahm J. Carotid artery flow as determined by real-time phase-contrast flow MRI and neurovascular ultrasound: A comparative study of healthy subjects. Eur J Radiol 2018; 106:38-45. [PMID: 30150049 DOI: 10.1016/j.ejrad.2018.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 04/02/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND The assessment of carotid artery flow by neurovascular ultrasound (nvUS) can be complemented by real-time phase-contrast (RT-PC) flow MRI which apart from quantitative flow parameters offers velocity distributions across the entire vessel lumen. MATERIALS AND METHODS The feasibility and diagnostic potential of RT-PC flow MRI was evaluated in 20 healthy volunteers in comparison to conventional nvUS. RT-PC flow MRI at 40 ms temporal resolution and 0.8 mm in-plane resolution resulted in velocity maps with low phase noise and high spatiotemporal accuracy by exploiting respective advances of a recent nonlinear inverse model-based reconstruction. Peak-systolic velocities (PSV), end-diastolic velocities (EDV), flow volumes and comprehensive velocity profiles were determined in the common, internal and external carotid artery on both sides. RESULTS Flow characteristics such as pulsatility and individual abnormalities shown on nvUS could be reproduced and visualized in detail by RT-PC flow MRI. PSV to EDV differences revealed good agreement between both techniques, mean PSV and EDV were significantly lower and flow volumes were higher for MRI. CONCLUSION Our findings suggest that RT-PC flow MRI adds to clinical diagnostics, e.g. by alterations of dynamic velocity distributions in patients with carotid stenosis. Lower PSV and EDV values than for nvUS mainly reflect the longer MRI acquisition time which attenuates short peak velocities, while higher flow volumes benefit from a proper assessment of the true vessel lumen.
Collapse
Affiliation(s)
- Ilko L Maier
- Department of Neurology, University Medical Center Göttingen, Germany.
| | - Sabine Hofer
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.
| | - Arun A Joseph
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany.
| | - K Dietmar Merboldt
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.
| | - Zhengguo Tan
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.
| | - Katharina Schregel
- Department of Neuroradiology, University Medical Center Göttingen, Germany; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michael Knauth
- Department of Neuroradiology, University Medical Center Göttingen, Germany.
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Germany.
| | | | - Jan Liman
- Department of Neurology, University Medical Center Göttingen, Germany.
| | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany.
| |
Collapse
|
24
|
Fast Interleaved Multislice T1 Mapping: Model-Based Reconstruction of Single-Shot Inversion-Recovery Radial FLASH. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:2560964. [PMID: 30186361 PMCID: PMC6110002 DOI: 10.1155/2018/2560964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
Abstract
Purpose To develop a high-speed multislice T1 mapping method based on a single-shot inversion-recovery (IR) radial FLASH acquisition and a regularized model-based reconstruction. Methods Multislice radial k-space data are continuously acquired after a single nonselective inversion pulse using a golden-angle sampling scheme in a spoke-interleaved manner with optimized flip angles. Parameter maps and coil sensitivities of each slice are estimated directly from highly undersampled radial k-space data using a model-based nonlinear inverse reconstruction in conjunction with joint sparsity constraints. The performance of the method has been validated using a numerical and experimental T1 phantom as well as demonstrated for studies of the human brain and liver at 3T. Results The proposed method allows for 7 simultaneous T1 maps of the brain at 0.5 × 0.5 × 4 mm3 resolution within a single IR experiment of 4 s duration. Phantom studies confirm similar accuracy and precision as obtained for a single-slice acquisition. For abdominal applications, the proposed method yields three simultaneous T1 maps at 1.25 × 1.25 × 6 mm3 resolution within a 4 s breath hold. Conclusion Rapid, robust, accurate, and precise multislice T1 mapping may be achieved by combining the advantages of a model-based nonlinear inverse reconstruction, radial sampling, parallel imaging, and compressed sensing.
Collapse
|
25
|
Tan Z, Hohage T, Kalentev O, Joseph AA, Wang X, Voit D, Merboldt KD, Frahm J. An eigenvalue approach for the automatic scaling of unknowns in model-based reconstructions: Application to real-time phase-contrast flow MRI. NMR IN BIOMEDICINE 2017; 30. [PMID: 28960554 DOI: 10.1002/nbm.3835] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/25/2017] [Accepted: 08/27/2017] [Indexed: 05/13/2023]
Abstract
The purpose of this work is to develop an automatic method for the scaling of unknowns in model-based nonlinear inverse reconstructions and to evaluate its application to real-time phase-contrast (RT-PC) flow magnetic resonance imaging (MRI). Model-based MRI reconstructions of parametric maps which describe a physical or physiological function require the solution of a nonlinear inverse problem, because the list of unknowns in the extended MRI signal equation comprises multiple functional parameters and all coil sensitivity profiles. Iterative solutions therefore rely on an appropriate scaling of unknowns to numerically balance partial derivatives and regularization terms. The scaling of unknowns emerges as a self-adjoint and positive-definite matrix which is expressible by its maximal eigenvalue and solved by power iterations. The proposed method is applied to RT-PC flow MRI based on highly undersampled acquisitions. Experimental validations include numerical phantoms providing ground truth and a wide range of human studies in the ascending aorta, carotid arteries, deep veins during muscular exercise and cerebrospinal fluid during deep respiration. For RT-PC flow MRI, model-based reconstructions with automatic scaling not only offer velocity maps with high spatiotemporal acuity and much reduced phase noise, but also ensure fast convergence as well as accurate and precise velocities for all conditions tested, i.e. for different velocity ranges, vessel sizes and the simultaneous presence of signals with velocity aliasing. In summary, the proposed automatic scaling of unknowns in model-based MRI reconstructions yields quantitatively reliable velocities for RT-PC flow MRI in various experimental scenarios.
Collapse
Affiliation(s)
- Zhengguo Tan
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Thorsten Hohage
- Institut für Numerische und Angewandte Mathematik, Georg-August-Universität, Göttingen, Germany
| | - Oleksandr Kalentev
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Arun A Joseph
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
- DZHK, German Center for Cardiovascular Research, partner site Göttingen, Germany
| | - Xiaoqing Wang
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Dirk Voit
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - K Dietmar Merboldt
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
- DZHK, German Center for Cardiovascular Research, partner site Göttingen, Germany
| |
Collapse
|
26
|
4D real-time phase-contrast flow MRI with sparse sampling. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:3252-3255. [PMID: 29060591 DOI: 10.1109/embc.2017.8037550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Conventional phase-contrast (PC) MRI relies on electrocardiogram (ECG)-synchronized cine acquisition and respiration control. It often results in relatively low data acquisition efficiency, and is unable to assess blood flow variabilities. Real-time imaging is a promising technique to overcome these limitations; however, it results in a challenging image reconstruction problem with highly-undersampled (k; t)-space data. This paper presents a novel model-based imaging method, which integrates low-rank modeling with parallel imaging, to enable 4D real-time PC MRI without ECG gating and respiration control. The proposed method achieves an isotropic spatial resolution of 2.4 mm and temporal resolution of 35.2 ms, with three directional flow encodings. Moreover, it is able to resolve beat-by-beat flow variations, which cannot be achieved by the conventional cine-based approach. The proposed method was evaluated with in vivo experiments with one healthy subject and one arrhythmic patient. For the first time, we demonstrate the feasibility of 4D real-time PC MRI.
Collapse
|
27
|
Cardiovascular MRI in Thoracic Aortopathy: A Focused Review of Recent Literature Updates. CURRENT RADIOLOGY REPORTS 2017. [DOI: 10.1007/s40134-017-0246-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Wang X, Roeloffs V, Klosowski J, Tan Z, Voit D, Uecker M, Frahm J. Model-based T 1 mapping with sparsity constraints using single-shot inversion-recovery radial FLASH. Magn Reson Med 2017; 79:730-740. [PMID: 28603934 DOI: 10.1002/mrm.26726] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/16/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE To develop a model-based reconstruction technique for single-shot T1 mapping with high spatial resolution, accuracy, and precision using an inversion-recovery (IR) fast low-angle shot (FLASH) acquisition with radial encoding. METHODS The proposed model-based reconstruction jointly estimates all model parameters, that is, the equilibrium magnetization, steady-state magnetization, 1/ T1*, and all coil sensitivities from the data of a single-shot IR FLASH acquisition with a small golden-angle radial trajectory. Joint sparsity constraints on the parameter maps are exploited to improve the performance of the iteratively regularized Gauss-Newton method chosen for solving the nonlinear inverse problem. Validations include both a numerical and experimental T1 phantom, as well as in vivo studies of the human brain and liver at 3 T. RESULTS In comparison to previous reconstruction methods for single-shot T1 mapping, which are based on real-time MRI with pixel-wise fitting and a model-based approach with a predetermination of coil sensitivities, the proposed method presents with improved robustness against phase errors and numerical precision in both phantom and in vivo studies. CONCLUSION The comprehensive model-based reconstruction with L1 regularization offers rapid and robust T1 mapping with high accuracy and precision. The method warrants accelerated computing and online implementation for extended clinical trials. Magn Reson Med 79:730-740, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Volkert Roeloffs
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Jakob Klosowski
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Zhengguo Tan
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Dirk Voit
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Martin Uecker
- Department of Diagnostic and Interventional Radiology, University Medical Center, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| |
Collapse
|
29
|
Zhang Z, Michaelis T, Frahm J. Towards MRI temperature mapping in real time-the proton resonance frequency method with undersampled radial MRI and nonlinear inverse reconstruction. Quant Imaging Med Surg 2017; 7:251-258. [PMID: 28516050 DOI: 10.21037/qims.2017.03.03] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Optimal control of minimally invasive interventions by hyperthermia requires dynamic temperature mapping at high temporal resolution. METHODS Based on the temperature-dependent shift of the proton resonance frequency (PRF), this work developed a method for real-time MRI thermometry which relies on highly undersampled radial FLASH MRI sequences with iterative image reconstruction by regularized nonlinear inversion (NLINV). As a first step, the method was validated with use of a temperature phantom and ex vivo organs (swine kidney) subjected to heating by warm water or a pulsed laser source. RESULTS The temperature maps obtained by real-time PRF MRI demonstrate good accuracy as independently controlled by fiber-optic temperature sensors. Moreover, the dynamic results demonstrate both excellent sensitivity to single laser pulses (20 ms duration, 6 J energy output) and high temporal resolution, i.e., 200 ms acquisition times per temperature map corresponding to a rate of 5 frames per second. In addition, future extensions to in vivo applications were prepared by addressing the breathing-related motion problem by a pre-recorded library of reference images representative of all respiratory states. CONCLUSIONS The proposed method for real-time MRI thermometry now warrants further developments towards in vivo MRI monitoring of thermal interventions in animals.
Collapse
Affiliation(s)
- Zhongshuai Zhang
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Thomas Michaelis
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| |
Collapse
|
30
|
Sun A, Zhao B, Li Y, He Q, Li R, Yuan C. Real-time phase-contrast flow cardiovascular magnetic resonance with low-rank modeling and parallel imaging. J Cardiovasc Magn Reson 2017; 19:19. [PMID: 28183320 PMCID: PMC5301411 DOI: 10.1186/s12968-017-0330-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/19/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Conventional phase-contrast cardiovascular magnetic resonance (PC-CMR) employs cine-based acquisitions to assess blood flow condition, in which electro-cardiogram (ECG) gating and respiration control are generally required. This often results in lower acquisition efficiency, and limited utility in the presence of cardiovascular pathology (e.g., cardiac arrhythmia). Real-time PC-CMR, without ECG gating and respiration control, is a promising alternative that could overcome limitations of the conventional approach. But real-time PC-CMR involves image reconstruction from highly undersampled (k, t)-space data, which is very challenging. In this study, we present a novel model-based imaging method to enable high-resolution real-time PC-CMR with sparse sampling. METHODS The proposed method captures spatiotemporal correlation among flow-compensated and flow-encoded image sequences with a novel low-rank model. The image reconstruction problem is then formulated as a low-rank matrix recovery problem. With proper temporal subspace modeling, it results in a convex optimization formulation. We further integrate this formulation with the SENSE-based parallel imaging model to handle multichannel acquisitions. The performance of the proposed method was systematically evaluated in 2D real-time PC-CMR with flow phantom experiments and in vivo experiments (with healthy subjects). Additionally, we performed a feasibility study of the proposed method on patients with cardiac arrhythmia. RESULTS The proposed method achieves a spatial resolution of 1.8 mm and a temporal resolution of 18 ms for 2D real-time PC-CMR with one directional flow encoding. For the flow phantom experiments, both regular and irregular flow patterns were accurately captured. For the in vivo experiments with healthy subjects, flow dynamics obtained from the proposed method correlated well with those from the cine-based acquisitions. For the experiments with the arrhythmic patients, the proposed method demonstrated excellent capability of resolving the beat-by-beat flow variations, which cannot be obtained from the conventional cine-based method. CONCLUSION The proposed method enables high-resolution real-time PC-CMR at 2D without ECG gating and respiration control. It accurately resolves beat-by-beat flow variations, which holds great promise for studying patients with irregular heartbeats.
Collapse
Affiliation(s)
- Aiqi Sun
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Haidian District, Beijing, China
| | - Bo Zhao
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Chalestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Yunduo Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Haidian District, Beijing, China
| | - Qiong He
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Haidian District, Beijing, China
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Haidian District, Beijing, China.
| | - Chun Yuan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Haidian District, Beijing, China
- Vascular Imaging Lab, Department of Radiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
31
|
Feng L, Benkert T, Block KT, Sodickson DK, Otazo R, Chandarana H. Compressed sensing for body MRI. J Magn Reson Imaging 2016; 45:966-987. [PMID: 27981664 DOI: 10.1002/jmri.25547] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/25/2016] [Indexed: 12/18/2022] Open
Abstract
The introduction of compressed sensing for increasing imaging speed in magnetic resonance imaging (MRI) has raised significant interest among researchers and clinicians, and has initiated a large body of research across multiple clinical applications over the last decade. Compressed sensing aims to reconstruct unaliased images from fewer measurements than are traditionally required in MRI by exploiting image compressibility or sparsity. Moreover, appropriate combinations of compressed sensing with previously introduced fast imaging approaches, such as parallel imaging, have demonstrated further improved performance. The advent of compressed sensing marks the prelude to a new era of rapid MRI, where the focus of data acquisition has changed from sampling based on the nominal number of voxels and/or frames to sampling based on the desired information content. This article presents a brief overview of the application of compressed sensing techniques in body MRI, where imaging speed is crucial due to the presence of respiratory motion along with stringent constraints on spatial and temporal resolution. The first section provides an overview of the basic compressed sensing methodology, including the notion of sparsity, incoherence, and nonlinear reconstruction. The second section reviews state-of-the-art compressed sensing techniques that have been demonstrated for various clinical body MRI applications. In the final section, the article discusses current challenges and future opportunities. LEVEL OF EVIDENCE 5 J. Magn. Reson. Imaging 2017;45:966-987.
Collapse
Affiliation(s)
- Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Thomas Benkert
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Kai Tobias Block
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ricardo Otazo
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
32
|
Joseph AA, Merboldt KD, Voit D, Dahm J, Frahm J. Real-time magnetic resonance imaging of deep venous flow during muscular exercise-preliminary experience. Cardiovasc Diagn Ther 2016; 6:473-481. [PMID: 28123969 DOI: 10.21037/cdt.2016.11.02] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The accurate assessment of peripheral venous flow is important for the early diagnosis and treatment of disorders such as deep-vein thrombosis (DVT) which is a major cause of post-thrombotic syndrome or even death due to pulmonary embolism. The aim of this work is to quantitatively determine blood flow in deep veins during rest and muscular exercise using a novel real-time magnetic resonance imaging (MRI) method for velocity-encoded phase-contrast (PC) MRI at high spatiotemporal resolution. METHODS Real-time PC MRI of eight healthy volunteers and one patient was performed at 3 Tesla (Prisma fit, Siemens, Erlangen, Germany) using a flexible 16-channel receive coil (Variety, NORAS, Hoechberg, Germany). Acquisitions were based on a highly undersampled radial FLASH sequence with image reconstruction by regularized nonlinear inversion at 0.5×0.5×6 mm3 spatial resolution and 100 ms temporal resolution. Flow was assessed in two cross-sections of the lower leg at the level of the calf muscle and knee using a protocol of 10 s rest, 20 s flexion and extension of the foot, and 10 s rest. Quantitative analyses included through-plane flow in the right posterior tibial, right peroneal and popliteal vein (PC maps) as well as signal intensity changes due to flow and muscle movements (corresponding magnitude images). RESULTS Real-time PC MRI successfully monitored the dynamics of venous flow at high spatiotemporal resolution and clearly demonstrated increased flow in deep veins in response to flexion and extension of the foot. In normal subjects, the maximum velocity (averaged across vessel lumen) during exercise was 9.4±5.7 cm·s-1 for the right peroneal vein, 8.5±4.6 cm·s-1 for the right posterior tibial vein and 17.8±5.8 cm·s-1 for the popliteal vein. The integrated flow volume per exercise (20 s) was 1.9, 1.6 and 50 mL (mean across subjects) for right peroneal, right posterior tibial and popliteal vein, respectively. A patient with DVT presented with peak flow velocities of only about 2 cm·s-1 during exercise and less than 1 cm·s-1 during rest. CONCLUSIONS Real-time PC MRI emerges as a new tool for quantifying the dynamics of muscle-induced flow in deep veins. The method provides both signal intensity changes and velocity information for the assessment of blood flow and muscle movements. It now warrants extended clinical trials to patients with suspected thrombosis.
Collapse
Affiliation(s)
- Arun Antony Joseph
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany;; DZHK, German Center for Cardiovascular Research, partner site Göttingen, Germany
| | - Klaus-Dietmar Merboldt
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dirk Voit
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Johannes Dahm
- Herz & Gefäßzentrum Göttingen am Krankenhaus Neu-Bethlehem, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany;; DZHK, German Center for Cardiovascular Research, partner site Göttingen, Germany
| |
Collapse
|