1
|
Huynh MT, Erfani Z, Kovács Z, Park JM. Hyperpolarized [2- 13C, 3- 2H 3]Pyruvate Detects Hepatic Gluconeogenesis In Vivo. ACS Sens 2024; 9:2801-2805. [PMID: 38838349 PMCID: PMC11227886 DOI: 10.1021/acssensors.4c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The feasibility of hyperpolarized [2-13C, 3-2H3]pyruvate for probing gluconeogenesis in vivo was investigated in this study. Whereas hyperpolarized [1-13C]pyruvate has clear access to metabolic pathways that convert pyruvate to lactate, alanine, and bicarbonate, its utility for assessing pyruvate carboxylation and gluconeogenesis has been limited by technical challenges, including spectral overlap and an obscure enzymatic step that decarboxylates the labeled carbon. To achieve unambiguous detection of gluconeogenic products, the carbonyl carbon in pyruvate was labeled with 13C. To prolong the T1 relaxation time, [2-13C, 3-2H3]pyruvate was synthesized and dissolved with D2O after dynamic nuclear polarization. The T1 of [2-13C, 3-2H3]pyruvate in D2O could be improved by 76.9% (79.6 s at 1 T and 74.5 s at 3 T) as compared to [2-13C]pyruvate in water. Hyperpolarized [2-13C, 3-2H3]pyruvate with D2O dissolution was applied to rat livers in vivo under normal feeding and fasting conditions. A gluconeogenic product, [2-13C]phosphoenolpyruvate, was observed at 149.9 ppm from fasted rats only, highlighting the utility of [2-13C, 3-2H3]pyruvate in detecting key gluconeogenic enzyme activities such as pyruvate carboxylase and phosphoenolpyruvate carboxykinase in vivo.
Collapse
Affiliation(s)
- Mai T Huynh
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Zohreh Erfani
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Zoltán Kovács
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jae Mo Park
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
2
|
Wang Z, Hao D, Zhao S, Zhang Z, Zeng Z, Wang X. Lactate and Lactylation: Clinical Applications of Routine Carbon Source and Novel Modification in Human Diseases. Mol Cell Proteomics 2023; 22:100641. [PMID: 37678638 PMCID: PMC10570128 DOI: 10.1016/j.mcpro.2023.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023] Open
Abstract
Cell metabolism generates numerous intermediate metabolites that could serve as feedback and feed-forward regulation substances for posttranslational modification. Lactate, a metabolic product of glycolysis, has recently been conceptualized to play a pleiotropic role in shaping cell identities through metabolic rewiring and epigenetic modifications. Lactate-derived carbons, sourced from glucose, mediate the crosstalk among glycolysis, lactate, and lactylation. Furthermore, the multiple metabolic fates of lactate make it an ideal substrate for metabolic imaging in clinical application. Several studies have identified the crucial role of protein lactylation in human diseases associated with cell fate determination, embryonic development, inflammation, neoplasm, and neuropsychiatric disorders. Herein, this review will focus on the metabolic fate of lactate-derived carbon to provide useful information for further research and therapeutic approaches in human diseases. We comprehensively discuss its role in reprogramming and modification during the regulation of glycolysis, the clinical translation prospects of the hyperpolarized lactate signal, lactyl modification in human diseases, and its application with other techniques and omics.
Collapse
Affiliation(s)
- Zhimin Wang
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Hao
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Shijiazhuang Zhongnongtongchuang (ZNTC) Biotechnology Co, Ltd, Shijiazhuang, China
| | - Shuiying Zhao
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziyin Zhang
- Division of Information, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zeng
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Xiao Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China; Konge Larsen ApS, Kongens Lyngby, Denmark.
| |
Collapse
|
3
|
Song L, Zhou Y, Zhai Y, Huo X, Chen M, Shi H, Yu Y, Zhang Y, Zhou K. Sub-chronic toxicity of an aqueous extract of Epimedium sagittatum (Sieb. Et Zucc.) Maxim. in rats. Drug Chem Toxicol 2023; 46:451-461. [PMID: 35287533 DOI: 10.1080/01480545.2022.2050749] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Epimedium sagittatum (Sieb. et Zucc.) Maxim., a traditional medicinal plant in Asia, is widely used in clinical settings but its safety in vivo is unclear. This study investigated the sub-chronic toxicity of E. sagittatum aqueous extract to rats with a 13-week daily intragastric administration of 7.5, 15, or 30 g/kg. Nine constituents of the aqueous extract were identified by ultra-performance liquid chromatography (UPLC). Organ weights, organ coefficients, serum biochemistry parameters, histopathology, and metabolomic analysis were performed. In female rats, treatment increased the liver, thymus, and adrenal gland coefficients (p < 0.05). Liver, pancreas, and adrenal gland injury were observed. The levels of six metabolites were altered by the treatment (p < 0.05). In male rats, treatment altered liver, heart, and thymus coefficients (p < 0.05) and liver, adrenal gland, and heart injury were observed. The levels of 11 metabolites were altered (p < 0.05). The no-observed-adverse-effect level was not determined but would be below 7.5 g/kg in rats treated for 13 weeks. In female rats, E. sagittatum may injure the liver and pancreas and dysregulate the biosynthesis of phenylalanine, tyrosine, tryptophan, valine, leucine, and isoleucine and the metabolism of phenylalanine. In male rats, the extract may injure the liver and adrenal gland and dysregulate the biosynthesis of valine, leucine, and isoleucine and the metabolism of pyruvate.
Collapse
Affiliation(s)
- Lei Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin, PR China
| | - Yating Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yuxia Zhai
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xiangxiang Huo
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengying Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Hong Shi
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yingli Yu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin, PR China
| | - Yue Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin, PR China
| | - Kun Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin, PR China
| |
Collapse
|
4
|
Sejersen S, Rasmussen CW, Bøgh N, Kjaergaard U, Hansen ESS, Schulte RF, Laustsen C. Considering whole-body metabolism in hyperpolarized MRI through 13 C breath analysis-An alternative way to quantification and normalization? Magn Reson Med 2023; 90:664-672. [PMID: 37094025 DOI: 10.1002/mrm.29669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE Hyperpolarized [1-13 C]pyruvate MRI is an emerging clinical tool for metabolic imaging. It has the potential for absolute quantitative metabolic imaging. However, the method itself is not quantitative, limiting comparison of images across both time and between individuals. Here, we propose a simple signal normalization to the whole-body oxidative metabolism to overcome this limitation. THEORY AND METHODS A simple extension of the model-free ratiometric analysis of hyperpolarized [1-13 C]pyruvate MRI is presented, using the expired 13 CO2 in breath for normalization. The proposed framework was investigated in two porcine cohorts (N = 11) subjected to local renal hypoperfusion defects and subsequent [1-13 C]pyruvate MRI. A breath sample was taken before the [1-13 C]pyruvate injection and 5 min after. The raw MR signal from both the healthy and intervened kidney in the two cohorts was normalized using the 13 CO2 in the expired air. RESULTS 13 CO2 content in the expired air was significantly different between the two cohorts. Normalization to this reduced the coefficients of variance in the aerobic metabolic sensitive pathways by 25% for the alanine/pyruvate ratio, and numerical changes were observed in the bicarbonate/pyruvate ratio. The lactate/pyruvate ratio was largely unaltered (<2%). CONCLUSION Our results indicate that normalizing the hyperpolarized 13 C-signal ratios by the 13 CO2 content in expired air can reduce variation as well as improve specificity of the method by normalizing the metabolic readout to the overall metabolic status of the individual. The method is a simple and cheap extension to the hyperpolarized 13 C exam.
Collapse
Affiliation(s)
- Steffen Sejersen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Camilla W Rasmussen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nikolaj Bøgh
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Uffe Kjaergaard
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Esben S S Hansen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Christoffer Laustsen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Magnetic Resonance Imaging and Spectroscopy Methods to Study Hepatic Glucose Metabolism and Their Applications in the Healthy and Diabetic Liver. Metabolites 2022; 12:metabo12121223. [PMID: 36557261 PMCID: PMC9788351 DOI: 10.3390/metabo12121223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The liver plays an important role in whole-body glucose homeostasis by taking up glucose from and releasing glucose into the blood circulation. In the postprandial state, excess glucose in the blood circulation is stored in hepatocytes as glycogen. In the postabsorptive state, the liver produces glucose by breaking down glycogen and from noncarbohydrate precursors such as lactate. In metabolic diseases such as diabetes, these processes are dysregulated, resulting in abnormal blood glucose levels. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are noninvasive techniques that give unique insight into different aspects of glucose metabolism, such as glycogenesis, glycogenolysis, and gluconeogenesis, in the liver in vivo. Using these techniques, liver glucose metabolism has been studied in regard to a variety of interventions, such as fasting, meal intake, and exercise. Moreover, deviations from normal hepatic glucose metabolism have been investigated in both patients with type 1 and 2 diabetes, as well as the effects of antidiabetic medications. This review provides an overview of current MR techniques to measure hepatic glucose metabolism and the insights obtained by the application of these techniques in the healthy and diabetic liver.
Collapse
|
6
|
Coppola A, Zorzetto G, Piacentino F, Bettoni V, Pastore I, Marra P, Perani L, Esposito A, De Cobelli F, Carcano G, Fontana F, Fiorina P, Venturini M. Imaging in experimental models of diabetes. Acta Diabetol 2022; 59:147-161. [PMID: 34779949 DOI: 10.1007/s00592-021-01826-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/30/2021] [Indexed: 12/01/2022]
Abstract
Translational medicine, experimental medicine and experimental animal models, in particular mice and rats, represent a multidisciplinary field that has made it possible to achieve, in the last decades, important scientific progress. In this review, we have summarized the most frequently used imaging animal models, such as ultrasound (US), micro-CT, MRI and the optical imaging methods, and their main implications in diagnostic and therapeutic fields, with a particular focus on diabetes mellitus, a multifactorial disease extremely widespread among the general population.
Collapse
Affiliation(s)
- Andrea Coppola
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy.
| | | | - Filippo Piacentino
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| | - Valeria Bettoni
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Paolo Marra
- Department of Diagnostic Radiology, Giovanni XXIII Hospital, Milano-Bicocca University, Bergamo, Italy
| | - Laura Perani
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Esposito
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
- Radiology Unit, San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Francesco De Cobelli
- Radiology Unit, San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Giulio Carcano
- Insubria University, Varese, Italy
- General, Emergency, and Transplant Surgery Unit, ASST Settelaghi, Varese, Italy
| | - Federico Fontana
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| | - Paolo Fiorina
- International Center for T1D, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Endocrinology Division, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Massimo Venturini
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| |
Collapse
|
7
|
Can E, Bastiaansen JAM, Couturier DL, Gruetter R, Yoshihara HAI, Comment A. [ 13C]bicarbonate labelled from hyperpolarized [1- 13C]pyruvate is an in vivo marker of hepatic gluconeogenesis in fasted state. Commun Biol 2022; 5:10. [PMID: 35013537 PMCID: PMC8748681 DOI: 10.1038/s42003-021-02978-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/07/2021] [Indexed: 01/07/2023] Open
Abstract
Hyperpolarized [1-13C]pyruvate enables direct in vivo assessment of real-time liver enzymatic activities by 13C magnetic resonance. However, the technique usually requires the injection of a highly supraphysiological dose of pyruvate. We herein demonstrate that liver metabolism can be measured in vivo with hyperpolarized [1-13C]pyruvate administered at two- to three-fold the basal plasma concentration. The flux through pyruvate dehydrogenase, assessed by 13C-labeling of bicarbonate in the fed condition, was found to be saturated or partially inhibited by supraphysiological doses of hyperpolarized [1-13C]pyruvate. The [13C]bicarbonate signal detected in the liver of fasted rats nearly vanished after treatment with a phosphoenolpyruvate carboxykinase (PEPCK) inhibitor, indicating that the signal originates from the flux through PEPCK. In addition, the normalized [13C]bicarbonate signal in fasted untreated animals is dose independent across a 10-fold range, highlighting that PEPCK and pyruvate carboxylase are not saturated and that hepatic gluconeogenesis can be directly probed in vivo with hyperpolarized [1-13C]pyruvate. Can et al. demonstrate the ability to use hyperpolarized [1-13C]pyruvate at nearphysiological concentrations to directly assess liver enzymatic activities by 13C magnetic resonance. While in the fed state, the normalized [13C]bicarbonate signal produced from hyperpolarized [1-13C]pyruvate derives from PDH activity, which is saturated at supraphysiological doses, it results from PEPCK in the fasted state and is dose-independent, allowing non-invasive in vivo detection of hepatic gluconeogenesis.”
Collapse
Affiliation(s)
- Emine Can
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Jessica A M Bastiaansen
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.,Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Rolf Gruetter
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Hikari A I Yoshihara
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Arnaud Comment
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, Cambridgeshire, CB2 0RE, UK. .,General Electric Healthcare, Chalfont St Giles, Buckinghamshire, HP8 4SP, UK.
| |
Collapse
|
8
|
Yoshihara HAI, Comment A, Schwitter J. Assessment of Aspartate and Bicarbonate Produced From Hyperpolarized [1- 13C]Pyruvate as Markers of Renal Gluconeogenesis. Front Physiol 2021; 12:792769. [PMID: 34955898 PMCID: PMC8702956 DOI: 10.3389/fphys.2021.792769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
As both a consumer and producer of glucose, the kidney plays a significant role in glucose homeostasis. Measuring renal gluconeogenesis requires invasive techniques, and less invasive methods would allow renal gluconeogenesis to be measured more routinely. Magnetic resonance spectroscopy and imaging of infused substrates bearing hyperpolarized carbon-13 spin labels allows metabolism to be detected within the body with excellent sensitivity. Conversion of hyperpolarized 1-13C pyruvate in the fasted rat liver is associated with gluconeogenic flux through phosphoenolpyruvate carboxykinase (PEPCK) rather than pyruvate dehydrogenase (PDH), and this study tested whether this was also the case in the kidney. The left kidney was scanned in fed and overnight-fasted rats either with or without prior treatment by the PEPCK inhibitor 3-mercaptopicolinic acid (3-MPA) following infusion of hyperpolarized 1-13C pyruvate. The 13C-bicarbonate signal normalized to the total metabolite signal was 3.2-fold lower in fasted rats (p = 0.00073) and was not significantly affected by 3-MPA treatment in either nutritional state. By contrast, the normalized [1-13C]aspartate signal was on average 2.2-fold higher in the fasted state (p = 0.038), and following 3-MPA treatment it was 2.8-fold lower in fed rats and 15-fold lower in fasted rats (p = 0.001). These results confirm that, unlike in the liver, most of the pyruvate-to-bicarbonate conversion in the fasted kidney results from PDH flux. The higher conversion to aspartate in fasted kidney and the marked drop following PEPCK inhibition demonstrate the potential of this metabolite as a marker of renal gluconeogenesis.
Collapse
Affiliation(s)
- Hikari A. I. Yoshihara
- Laboratory for Functional and Metabolic Imaging, Institute of Physics, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Arnaud Comment
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- General Electric Healthcare, Chalfont St Giles, United Kingdom
| | - Juerg Schwitter
- Division of Cardiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Cardiac MR Center, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
9
|
Lau AZ, Chen AP, Cunningham CH. Cardiac metabolic imaging using hyperpolarized [1- 13 C]lactate as a substrate. NMR IN BIOMEDICINE 2021; 34:e4532. [PMID: 33963784 DOI: 10.1002/nbm.4532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Hyperpolarized (HP) [1-13 C]lactate is an attractive alternative to [1-13 C]pyruvate as a substrate to investigate cardiac metabolism in vivo: it can be administered safely at a higher dose and can be polarized to a degree similar to pyruvate via dynamic nuclear polarization. While 13 C cardiac experiments using HP lactate have been performed in small animal models, they have not been demonstrated in large animal models or humans. Utilizing the same hardware and data acquisition methods as the first human HP 13 C cardiac study, 13 C metabolic images were acquired following injections of HP [1-13 C]lactate in porcine hearts. Data were also acquired using HP [1-13 C]pyruvate for comparison. The 13 C bicarbonate signal was localized to the myocardium and had a similar appearance with both substrates for all animals. No 13 C pyruvate signal was detected in the experiments following injection of HP 13 C lactate. The signal-to-noise ratio (SNR) of injected lactate was 88 ± 4% of the SNR of injected pyruvate, and the SNR of bicarbonate in the experiments using lactate as the substrate was 52 ± 19% of the SNR in the experiments using pyruvate as the substrate. The lower SNR was likely due to the shorter T1 of [1-13 C]lactate as compared with [1-13 C]pyruvate and the additional enzyme-catalyzed metabolic conversion step before the 13 C nuclei from [1-13 C]lactate were detected as 13 C bicarbonate. While challenges remain, the potential of HP lactate as a substrate for clinical metabolic imaging of human heart has been demonstrated.
Collapse
Affiliation(s)
- Angus Z Lau
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Charles H Cunningham
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Sharma R, Tiwari S. Renal gluconeogenesis in insulin resistance: A culprit for hyperglycemia in diabetes. World J Diabetes 2021; 12:556-568. [PMID: 33995844 PMCID: PMC8107972 DOI: 10.4239/wjd.v12.i5.556] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/27/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Renal gluconeogenesis is one of the major pathways for endogenous glucose production. Impairment in this process may contribute to hyperglycemia in cases with insulin resistance and diabetes. We reviewed pertinent studies to elucidate the role of renal gluconeogenesis regulation in insulin resistance and diabetes. A consensus on the suppressive effect of insulin on kidney gluconeogenesis has started to build up. Insulin-resistant models exhibit reduced insulin receptor (IR) expression and/or post-receptor signaling in their kidney tissue. Reduced IR expression or post-receptor signaling can cause impairment in insulin’s action on kidneys, which may increase renal gluconeogenesis in the state of insulin resistance. It is now established that the kidney contributes up to 20% of all glucose production via gluconeogenesis in the post-absorptive phase. However, the rate of renal glucose release excessively increases in diabetes. The rise in renal glucose release in diabetes may contribute to fasting hyperglycemia and increased postprandial glucose levels. Enhanced glucose release by the kidneys and renal expression of the gluconeogenic-enzyme in diabetic rodents and humans further point towards the significance of renal gluconeogenesis. Overall, the available literature suggests that impairment in renal gluconeogenesis in an insulin-resistant state may contribute to hyperglycemia in type 2 diabetes.
Collapse
Affiliation(s)
- Rajni Sharma
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Swasti Tiwari
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
11
|
Nguyen NT, Bae EH, Do LN, Nguyen TA, Park I, Shin SS. In Vivo Assessment of Metabolic Abnormality in Alport Syndrome Using Hyperpolarized [1- 13C] Pyruvate MR Spectroscopic Imaging. Metabolites 2021; 11:metabo11040222. [PMID: 33917329 PMCID: PMC8067337 DOI: 10.3390/metabo11040222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 01/23/2023] Open
Abstract
Alport Syndrome (AS) is a genetic disorder characterized by impaired kidney function. The development of a noninvasive tool for early diagnosis and monitoring of renal function during disease progression is of clinical importance. Hyperpolarized 13C MRI is an emerging technique that enables non-invasive, real-time measurement of in vivo metabolism. This study aimed to investigate the feasibility of using this technique for assessing changes in renal metabolism in the mouse model of AS. Mice with AS demonstrated a significant reduction in the level of lactate from 4- to 7-week-old, while the levels of lactate were unchanged in the control mice over time. This reduction in lactate production in the AS group accompanied a significant increase of PEPCK expression levels, indicating that the disease progression in AS triggered the gluconeogenic pathway and might have resulted in a decreased lactate pool size and a subsequent reduction in pyruvate-to-lactate conversion. Additional metabolic imaging parameters, including the level of lactate and pyruvate, were found to be different between the AS and control groups. These preliminary results suggest that hyperpolarized 13C MRI might provide a potential noninvasive tool for the characterization of disease progression in AS.
Collapse
Affiliation(s)
- Nguyen-Trong Nguyen
- Department of Biomedical Science, Chonnam National University, Gwangju 61469, Korea;
| | - Eun-Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea;
| | - Luu-Ngoc Do
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (L.-N.D.); (T.-A.N.)
| | - Tien-Anh Nguyen
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (L.-N.D.); (T.-A.N.)
| | - Ilwoo Park
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (L.-N.D.); (T.-A.N.)
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (I.P.); (S.-S.S.); Tel.: +82-62-220-5744 (I.P.); +82-62-220-5882 (S.-S.S.)
| | - Sang-Soo Shin
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (L.-N.D.); (T.-A.N.)
- Correspondence: (I.P.); (S.-S.S.); Tel.: +82-62-220-5744 (I.P.); +82-62-220-5882 (S.-S.S.)
| |
Collapse
|
12
|
Marco-Rius I, Wright AJ, Hu DE, Savic D, Miller JJ, Timm KN, Tyler D, Brindle KM, Comment A. Probing hepatic metabolism of [2- 13C]dihydroxyacetone in vivo with 1H-decoupled hyperpolarized 13C-MR. MAGMA (NEW YORK, N.Y.) 2021; 34:49-56. [PMID: 32910316 PMCID: PMC7910257 DOI: 10.1007/s10334-020-00884-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/07/2020] [Accepted: 08/27/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVES To enhance detection of the products of hyperpolarized [2-13C]dihydroxyacetone metabolism for assessment of three metabolic pathways in the liver in vivo. Hyperpolarized [2-13C]DHAc emerged as a promising substrate to follow gluconeogenesis, glycolysis and the glycerol pathways. However, the use of [2-13C]DHAc in vivo has not taken off because (i) the chemical shift range of [2-13C]DHAc and its metabolic products span over 144 ppm, and (ii) 1H decoupling is required to increase spectral resolution and sensitivity. While these issues are trivial for high-field vertical-bore NMR spectrometers, horizontal-bore small-animal MR scanners are seldom equipped for such experiments. METHODS Real-time hepatic metabolism of three fed mice was probed by 1H-decoupled 13C-MR following injection of hyperpolarized [2-13C]DHAc. The spectra of [2-13C]DHAc and its metabolic products were acquired in a 7 T small-animal MR scanner using three purpose-designed spectral-spatial radiofrequency pulses that excited a spatial bandwidth of 8 mm with varying spectral bandwidths and central frequencies (chemical shifts). RESULTS The metabolic products detected in vivo include glycerol 3-phosphate, glycerol, phosphoenolpyruvate, lactate, alanine, glyceraldehyde 3-phosphate and glucose 6-phosphate. The metabolite-to-substrate ratios were comparable to those reported previously in perfused liver. DISCUSSION Three metabolic pathways can be probed simultaneously in the mouse liver in vivo, in real time, using hyperpolarized DHAc.
Collapse
Affiliation(s)
- Irene Marco-Rius
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | - Alan J Wright
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - De-En Hu
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Dragana Savic
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Division of Medicine, University of Oxford, Oxford, UK
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Division of Medicine, University of Oxford, Oxford, UK
| | - Kerstin N Timm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Damian Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Division of Medicine, University of Oxford, Oxford, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Arnaud Comment
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- General Electric Healthcare, Chalfont St Giles, UK
| |
Collapse
|
13
|
Chen J, Hackett EP, Kovacs Z, Malloy CR, Park JM. Assessment of hepatic pyruvate carboxylase activity using hyperpolarized [1- 13 C]-l-lactate. Magn Reson Med 2020; 85:1175-1182. [PMID: 32936474 DOI: 10.1002/mrm.28489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/06/2020] [Accepted: 08/03/2020] [Indexed: 01/24/2023]
Abstract
PURPOSE To evaluate the utility of hyperpolarized [1-13 C]-l-lactate to detect hepatic pyruvate carboxylase activity in vivo under fed and fasted conditions. METHODS [1-13 C]-labeled sodium L-lactate was polarized using a dynamic nuclear polarizer. Polarization level and the T1 were measured in vitro in a 3 Telsa MR scanner. Two groups of healthy rats (fasted vs. fed) were prepared for in vivo studies. Each rat was anesthetized and intravenously injected with 60-mM hyperpolarized [1-13 C]-l-lactate, immediately followed by dynamic acquisition of 13 C (carbon-13) MR spectra from the liver at 3 Tesla. The dosage-dependence of the 13 C-products was also investigated by performing another injection of an equal volume of 30-mM hyperpolarized [1-13 C]-l-lactate. RESULTS T1 and liquid polarization level of [1-13 C]-l-lactate were estimated as 67.8 s and 40.0%, respectively. [1-13 C]pyruvate and [1-13 C]alanine, [13 C]bicarbonate ( HCO 3 - ) and [1-13 C]aspartate were produced from hyperpolarized [1-13 C]-l-lactate in rat liver. Smaller HCO 3 - and larger aspartate were measured in the fed group compared to the fasted group. Pyruvate and alanine production were increased in proportion to the lactate concentration, whereas the amount of HCO 3 - and aspartate production was consistent between 30-mM and 60-mM lactate injections. CONCLUSION This study demonstrates that a unique biomarker of pyruvate carboxylase flux, the appearance of [1-13 C]aspartate from [1-13 C]-l-lactate, is sensitive to nutritional state and may be monitored in vivo at 3 Tesla. Because [13 C] HCO 3 - is largely produced by pyruvate dehydrogenase flux, these results suggest that the ratio of [1-13 C]aspartate and [13 C] HCO 3 - (aspartate/ HCO 3 - ) reflects the saturable pyruvate carboxylase/pyruvate dehydrogenase enzyme activities.
Collapse
Affiliation(s)
- Jun Chen
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Edward P Hackett
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jae Mo Park
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
14
|
van Erp AC, Qi H, Jespersen NR, Hjortbak MV, Ottens PJ, Wiersema‐Buist J, Nørregaard R, Pedersen M, Laustsen C, Leuvenink HGD, Jespersen B. Organ-specific metabolic profiles of the liver and kidney during brain death and afterwards during normothermic machine perfusion of the kidney. Am J Transplant 2020; 20:2425-2436. [PMID: 32282984 PMCID: PMC7496945 DOI: 10.1111/ajt.15885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
Abstract
We investigated metabolic changes during brain death (BD) using hyperpolarized magnetic resonance (MR) spectroscopy and ex vivo graft glucose metabolism during normothermic isolated perfused kidney (IPK) machine perfusion. BD was induced in mechanically ventilated rats by inflation of an epidurally placed catheter; sham-operated rats served as controls. Hyperpolarized [1-13 C]pyruvate MR spectroscopy was performed to quantify pyruvate metabolism in the liver and kidneys at 3 time points during BD, preceded by injecting hyperpolarized[1-13 C]pyruvate. Following BD, glucose oxidation was measured using tritium-labeled glucose (d-6-3H-glucose) during IPK reperfusion. Quantitative polymerase chain reaction and biochemistry were performed on tissue/plasma. Immediately following BD induction, lactate increased in both organs (liver: eµd 0.21, 95% confidence interval [CI] [-0.27, -0.15]; kidney: eµd 0.26, 95% CI [-0.40, -0.12]. After 4 hours of BD, alanine production decreased in the kidney (eµd 0.14, 95% CI [0.03, 0.25], P < .05). Hepatic lactate and alanine profiles were significantly different throughout the experiment between groups (P < .01). During IPK perfusion, renal glucose oxidation was reduced following BD vs sham animals (eµd 0.012, 95% CI [0.004, 0.03], P < .001). No differences in enzyme activities were found. Renal gene expression of lactate-transporter MCT4 increased following BD (P < .01). In conclusion, metabolic processes during BD can be visualized in vivo using hyperpolarized magnetic resonance imaging and with glucose oxidation during ex vivo renal machine perfusion. These techniques can detect differences in the metabolic profiles of the liver and kidney following BD.
Collapse
Affiliation(s)
- Anne C. van Erp
- University of GroningenUniversity Medical Center GroningenDepartment of surgeryGroningenthe Netherlands
| | - Haiyun Qi
- MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | | | - Petra J. Ottens
- University of GroningenUniversity Medical Center GroningenDepartment of surgeryGroningenthe Netherlands
| | - Janneke Wiersema‐Buist
- University of GroningenUniversity Medical Center GroningenDepartment of surgeryGroningenthe Netherlands
| | | | | | - Christoffer Laustsen
- MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Henri G. D. Leuvenink
- University of GroningenUniversity Medical Center GroningenDepartment of surgeryGroningenthe Netherlands
| | - Bente Jespersen
- Department of Clinical MedicineAarhus UniversityAarhusDenmark,Department of Renal MedicineAarhus University HospitalAarhusDenmark
| |
Collapse
|
15
|
Laustsen C, Nielsen PM, Qi H, Løbner MH, Palmfeldt J, Bertelsen LB. Hyperpolarized [1,4- 13C]fumarate imaging detects microvascular complications and hypoxia mediated cell death in diabetic nephropathy. Sci Rep 2020; 10:9650. [PMID: 32541797 PMCID: PMC7295762 DOI: 10.1038/s41598-020-66265-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Today, there is a general lack of prognostic biomarkers for development of renal disease and in particular diabetic nephropathy. Increased glycolytic activity, lactate accumulation and altered mitochondrial oxygen utilization are hallmarks of diabetic kidney disease. Fumarate hydratase activity has been linked to mitochondrial dysfunction as well as activation of the hypoxia inducible factor, induction of apoptosis and necrosis. Here, we investigate fumarate hydratase activity in biofluids in combination with the molecular imaging probe, hyperpolarized [1,4-13C2]fumarate, to identify the early changes associated with hemodynamics and cell death in a streptozotocin rat model of type 1 diabetes. We found a significantly altered hemodynamic signature of [1,4-13C2]fumarate in the diabetic kidneys as well as an systemic increased metabolic conversion of fumarate-to-malate, indicative of increased cell death associated with progression of diabetes, while little to no renal specific conversion was observed. This suggest apoptosis as the main cause of cell death in the diabetic kidney. This is likely resulting from an increased reactive oxygen species production following uncoupling of the electron transport chain at complex II. The mechanism coupling the enzyme leakage and apoptotic phenotype is hypoxia inducible factor independent and seemingly functions as a protective mechanism in the kidney cells.
Collapse
Affiliation(s)
- Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Haiyun Qi
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mette Hadberg Løbner
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Nielsen PM, Mariager CØ, Mølmer M, Sparding N, Genovese F, Karsdal MA, Nørregaard R, Bertelsen LB, Laustsen C. Hyperpolarized [1- 13 C] alanine production: A novel imaging biomarker of renal fibrosis. Magn Reson Med 2020; 84:2063-2073. [PMID: 32452096 DOI: 10.1002/mrm.28326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Renal tubulointerstitial fibrosis is strongly linked to the progressive decline of renal function seen in chronic kidney disease. State-of-the-art noninvasive diagnostic modalities are currently unable to detect the earliest changes associated with the onset of fibrosis. This study was undertaken to evaluate the potential for detecting the earliest alterations in fibrogenesis using a biofluid-based method and metabolic hyperpolarized [1-13 C]pyruvate imaging. METHODS We evaluated renal fibrosis in a combined ischemia reperfusion-induced and streptozotocin-induced diabetic nephropathy rodent model by hyperpolarized [1-13 C]pyruvate MRI and correlated the metabolic MRI parameters with biomarkers of fibrosis measured on renal tissue and plasma/urine. RESULTS The hyperglycemic rats experienced maladaptive injury repair after the ischemic insults, as shown by the elevation in the injury markers kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. Renal function was significantly impaired in the ischemic hyperglycemic kidney, as seen in the reduced perfusion and single-kidney glomerular filtration rate. A deranged energy metabolism was detected in the ischemic hyperglycemic kidney, as seen in the reduced fractional perfusion of lactate. Renal fibrosis biomarkers correlated significantly with the alanine production. CONCLUSION Hyperpolarized carbon-13 MRI provides a promising approach to assess renal fibrosis in an animal model of fibrotic chronic kidney disease. In particular, the metabolic supply of amino acids for fibrogenesis (alanine production) correlates well with biomarkers of fibrosis. Thus, [1-13 C]pyruvate-to-[1-13 C]alanine conversion might be a candidate for noninvasive assessment of renal fibrogenesis.
Collapse
Affiliation(s)
- Per Mose Nielsen
- MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Maria Mølmer
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | | | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Topping GJ, Hundshammer C, Nagel L, Grashei M, Aigner M, Skinner JG, Schulte RF, Schilling F. Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei. MAGMA (NEW YORK, N.Y.) 2020; 33:221-256. [PMID: 31811491 PMCID: PMC7109201 DOI: 10.1007/s10334-019-00807-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Hyperpolarization is an emerging method in magnetic resonance imaging that allows nuclear spin polarization of gases or liquids to be temporarily enhanced by up to five or six orders of magnitude at clinically relevant field strengths and administered at high concentration to a subject at the time of measurement. This transient gain in signal has enabled the non-invasive detection and imaging of gas ventilation and diffusion in the lungs, perfusion in blood vessels and tissues, and metabolic conversion in cells, animals, and patients. The rapid development of this method is based on advances in polarizer technology, the availability of suitable probe isotopes and molecules, improved MRI hardware and pulse sequence development. Acquisition strategies for hyperpolarized nuclei are not yet standardized and are set up individually at most sites depending on the specific requirements of the probe, the object of interest, and the MRI hardware. This review provides a detailed introduction to spatially resolved detection of hyperpolarized nuclei and summarizes novel and previously established acquisition strategies for different key areas of application.
Collapse
Affiliation(s)
- Geoffrey J Topping
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Aigner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
18
|
Song JE, Shin J, Lee H, Choi YS, Song HT, Kim DH. Dynamic hyperpolarized 13 C MR spectroscopic imaging using SPICE in mouse kidney at 9.4 T. NMR IN BIOMEDICINE 2020; 33:e4230. [PMID: 31856426 DOI: 10.1002/nbm.4230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 05/16/2023]
Abstract
This study aims to investigate the feasibility of dynamic hyperpolarized 13 C MR spectroscopic imaging (MRSI) using the SPectroscopic Imaging by exploiting spatiospectral CorrElation (SPICE) technique and an estimation of the spatially resolved conversion constant rate (kpl ). An acquisition scheme comprising a single training dataset and several imaging datasets was proposed considering hyperpolarized 13 C circumstances. The feasibility and advantage of the scheme were investigated in two parts: (a) consistency of spectral basis over time and (b) accuracy of the estimated kpl . The simulations and in vivo experiments support accurate kpl estimation with consistent spectral bases. The proposed method was implemented in an enzyme phantom and via in vivo experiments. In the enzyme phantom experiments, spatially resolved homogeneous kpl maps were observed. In the in vivo experiments, normal diet (ND) mice and high-fat diet (HFD) mice had kpl (s-1 ) values of medullar (ND: 0.0119 ± 0.0022, HFD: 0.0195 ± 0.0005) and cortical (ND: 0.0148 ±0.0023, HFD: 0.0224 ±0.0054) regions which were higher than vascular (ND: 0.0087 ±0.0013, HFD: 0.0132 ±0.0050) regions. In particular, the kpl value in the medullar region exhibited a significant difference between the two diet groups. In summary, the feasibility of using modified SPICE for dynamic hyperpolarized 13 C MRSI was demonstrated via simulations and in vivo experiments. The consistency of spectral bases over time and the accuracy of the estimated kpl values validate the proposed acquisition scheme, which comprises only a single training dataset. The proposed method improved the spatial resolution of dynamic hyperpolarized 13 C MRSI, which could be used for kpl estimation using high signal-to-noise ratio spectral bases.
Collapse
Affiliation(s)
- Jae Eun Song
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea
| | - Jaewook Shin
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea
| | - Hansol Lee
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea
| | - Young-Suk Choi
- Department of Radiology and Research Institute of Radiological Science, College of Medicine, Yonsei University, Seoul, South Korea
| | - Ho-Taek Song
- Department of Radiology and Research Institute of Radiological Science, College of Medicine, Yonsei University, Seoul, South Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea
| |
Collapse
|
19
|
Pedersen M, Ursprung S, Jensen JD, Jespersen B, Gallagher F, Laustsen C. Hyperpolarised 13C-MRI metabolic and functional imaging: an emerging renal MR diagnostic modality. MAGMA (NEW YORK, N.Y.) 2020; 33:23-32. [PMID: 31782036 DOI: 10.1007/s10334-019-00801-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/21/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Magnetic resonance imaging (MRI) is a well-established modality for assessing renal morphology and function, as well as changes that occur during disease. However, the significant metabolic changes associated with renal disease are more challenging to assess with MRI. Hyperpolarized carbon-13 MRI is an emerging technique which provides an opportunity to probe metabolic alterations at high sensitivity by providing an increase in the signal-to-noise ratio of 20,000-fold or more. This review will highlight the current status of hyperpolarised 13C-MRI and its translation into the clinic and how it compares to metabolic measurements provided by competing technologies such as positron emission tomography (PET).
Collapse
Affiliation(s)
| | - Stephan Ursprung
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Jens Dam Jensen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Bente Jespersen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ferdia Gallagher
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University Hospital, Palle Juul Jensens Boulevard, 8200, Aarhus N, Denmark.
| |
Collapse
|
20
|
Laustsen C, Lipsø K, Østergaard JA, Nielsen PM, Bertelsen LB, Flyvbjerg A, Pedersen M, Palm F, Ardenkjær-Larsen JH. High Intrarenal Lactate Production Inhibits the Renal Pseudohypoxic Response to Acutely Induced Hypoxia in Diabetes. ACTA ACUST UNITED AC 2020; 5:239-247. [PMID: 31245545 PMCID: PMC6588198 DOI: 10.18383/j.tom.2019.00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intrarenal hypoxia develops within a few days after the onset of insulinopenic diabetes in an experimental animal model (ie, a model of type-1 diabetes). Although diabetes-induced hypoxia results in increased renal lactate formation, mitochondrial function is well maintained, a condition commonly referred to as pseudohypoxia. However, the metabolic effects of significantly elevated lactate levels remain unclear. We therefore investigated in diabetic animals the response to acute intrarenal hypoxia in the presence of high renal lactate formation to delineate mechanistic pathways and compare these findings to healthy control animals. Hyperpolarized 13C-MRI and blood oxygenation level–dependent 1H-MRI was used to investigate the renal metabolism of [1-13C]pyruvate and oxygenation following acutely altered oxygen content in the breathing gas in a streptozotocin rat model of type-1 diabetes with and without insulin treatment and compared with healthy control rats. The lactate signal in the diabetic kidney was reduced by 12%–16% during hypoxia in diabetic rats irrespective of insulin supplementation. In contrast, healthy controls displayed the well-known Pasteur effect manifested as a 10% increased lactate signal following reduction of oxygen in the inspired air. Reduced expression of the monocarboxyl transporter-4 may account for altered response to hypoxia in diabetes with a high intrarenal pyruvate-to-lactate conversion. Reduced intrarenal lactate formation in response to hypoxia in diabetes shows the existence of a different metabolic phenotype, which is independent of insulin, as insulin supplementation was unable to affect the pyruvate-to-lactate conversion in the diabetic kidney.
Collapse
Affiliation(s)
- Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Kasper Lipsø
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Electrical Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Jakob Appel Østergaard
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Per Mose Nielsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Allan Flyvbjerg
- Steno Diabetes Center Copenhagen, The Capital Region of Denmark, Gentofte, Denmark.,University of Copenhagen, Copenhagen, Denmark
| | - Michael Pedersen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; and
| | - Jan Henrik Ardenkjær-Larsen
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Electrical Engineering, Technical University of Denmark, Kgs Lyngby, Denmark.,GE Healthcare, Copenhagen, Denmark
| |
Collapse
|
21
|
Pereira-Moreira R, Muscelli E. Effect of Insulin on Proximal Tubules Handling of Glucose: A Systematic Review. J Diabetes Res 2020; 2020:8492467. [PMID: 32377524 PMCID: PMC7180501 DOI: 10.1155/2020/8492467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Renal proximal tubules reabsorb glucose from the glomerular filtrate and release it back into the circulation. Modulation of glomerular filtration and renal glucose disposal are some of the insulin actions, but little is known about a possible insulin effect on tubular glucose reabsorption. This review is aimed at synthesizing the current knowledge about insulin action on glucose handling by proximal tubules. Method. A systematic article selection from Medline (PubMed) and Embase between 2008 and 2019. 180 selected articles were clustered into topics (renal insulin handling, proximal tubule glucose transport, renal gluconeogenesis, and renal insulin resistance). Summary of Results. Insulin upregulates its renal uptake and degradation, and there is probably a renal site-specific insulin action and resistance; studies in diabetic animal models suggest that insulin increases renal SGLT2 protein content; in vivo human studies on glucose transport are few, and results of glucose transporter protein and mRNA contents are conflicting in human kidney biopsies; maximum renal glucose reabsorptive capacity is higher in diabetic patients than in healthy subjects; glucose stimulates SGLT1, SGLT2, and GLUT2 in renal cell cultures while insulin raises SGLT2 protein availability and activity and seems to directly inhibit the SGLT1 activity despite it activating this transporter indirectly. Besides, insulin regulates SGLT2 inhibitor bioavailability, inhibits renal gluconeogenesis, and interferes with Na+K+ATPase activity impacting on glucose transport. Conclusion. Available data points to an important insulin participation in renal glucose handling, including tubular glucose transport, but human studies with reproducible and comparable method are still needed.
Collapse
Affiliation(s)
- Ricardo Pereira-Moreira
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Zip Code: 13083-887, Brazil
| | - Elza Muscelli
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Zip Code: 13083-887, Brazil
| |
Collapse
|
22
|
Real-time hyperpolarized 13C magnetic resonance detects increased pyruvate oxidation in pyruvate dehydrogenase kinase 2/4-double knockout mouse livers. Sci Rep 2019; 9:16480. [PMID: 31712597 PMCID: PMC6848094 DOI: 10.1038/s41598-019-52952-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023] Open
Abstract
The pyruvate dehydrogenase complex (PDH) critically regulates carbohydrate metabolism. Phosphorylation of PDH by one of the pyruvate dehydrogenase kinases 1-4 (PDK1-4) decreases the flux of carbohydrates into the TCA cycle. Inhibition of PDKs increases oxidative metabolism of carbohydrates, so targeting PDKs has emerged as an important therapeutic approach to manage various metabolic diseases. Therefore, it is highly desirable to begin to establish imaging tools for noninvasive measurements of PDH flux in rodent models. In this study, we used hyperpolarized (HP) 13C-magnetic resonance spectroscopy to study the impact of a PDK2/PDK4 double knockout (DKO) on pyruvate metabolism in perfused livers from lean and diet-induced obese (DIO) mice and validated the HP observations with high-resolution 13C-nuclear magnetic resonance (NMR) spectroscopy of tissue extracts and steady-state isotopomer analyses. We observed that PDK-deficient livers produce more HP-bicarbonate from HP-[1-13C]pyruvate than age-matched control livers. A steady-state 13C-NMR isotopomer analysis of tissue extracts confirmed that flux rates through PDH, as well as pyruvate carboxylase and pyruvate cycling activities, are significantly higher in PDK-deficient livers. Immunoblotting experiments confirmed that HP-bicarbonate production from HP-[1-13C]pyruvate parallels decreased phosphorylation of the PDH E1α subunit (pE1α) in liver tissue. Our findings indicate that combining real-time hyperpolarized 13C NMR spectroscopy and 13C isotopomer analysis provides quantitative insights into intermediary metabolism in PDK-knockout mice. We propose that this method will be useful in assessing metabolic disease states and developing therapies to improve PDH flux.
Collapse
|
23
|
Qi H, Mariager CØ, Nielsen PM, Schroeder M, Lindhardt J, Nørregaard R, Klein JD, Sands JM, Laustsen C. Glucagon infusion alters the hyperpolarized 13 C-urea renal hemodynamic signature. NMR IN BIOMEDICINE 2019; 32:e4028. [PMID: 30426590 DOI: 10.1002/nbm.4028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/13/2018] [Accepted: 09/19/2018] [Indexed: 06/09/2023]
Abstract
Renal urea handling is central to the urine concentrating mechanism, and as such the ability to image urea transport in the kidney is an important potential imaging biomarker for renal functional assessment. Glucagon levels associated with changes in dietary protein intake have been shown to influence renal urea handling; however, the exact mechanism has still to be fully understood. Here we investigate renal function and osmolite distribution using [13 C,15 N] urea dynamics and 23 Na distribution before and 60 min after glucagon infusion in six female rats. Glucagon infusion increased the renal [13 C,15 N] urea mean transit time by 14%, while no change was seen in the sodium distribution, glomerular filtration rate or oxygen consumption. This change is related to the well-known effect of increased urea excretion associated with glucagon infusion, independent of renal functional effects. This study demonstrates for the first time that hyperpolarized 13 C-urea enables monitoring of renal urinary excretion effects in vivo.
Collapse
Affiliation(s)
- Haiyun Qi
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marie Schroeder
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jakob Lindhardt
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nørregaard
- Water Salt Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Janet D Klein
- Renal Division, Department of Medicine, Emory University, Giorgia, USA
| | - Jeff M Sands
- Renal Division, Department of Medicine, Emory University, Giorgia, USA
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
24
|
von Morze C, Reed GD, Larson PE, Mammoli D, Chen AP, Tropp J, Van Criekinge M, Ohliger MA, Kurhanewicz J, Vigneron DB, Merritt ME. In vivo hyperpolarization transfer in a clinical MRI scanner. Magn Reson Med 2018; 80:480-487. [PMID: 29488244 PMCID: PMC5910192 DOI: 10.1002/mrm.27154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/08/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE The purpose of this study was to investigate the feasibility of in vivo 13 C->1 H hyperpolarization transfer, which has significant potential advantages for detecting the distribution and metabolism of hyperpolarized 13 C probes in a clinical MRI scanner. METHODS A standalone pulsed 13 C RF transmit channel was developed for operation in conjunction with the standard 1 H channel of a clinical 3T MRI scanner. Pulse sequences for 13 C power calibration and polarization transfer were programmed on the external hardware and integrated with a customized water-suppressed 1 H MRS acquisition running in parallel on the scanner. The newly developed RF system was tested in both phantom and in vivo polarization transfer experiments in 1 JCH -coupled systems: phantom experiments in thermally polarized and hyperpolarized [2-13 C]glycerol, and 1 H detection of [2-13 C]lactate generated from hyperpolarized [2-13 C]pyruvate in rat liver in vivo. RESULTS Operation of the custom pulsed 13 C RF channel resulted in effective 13 C->1 H hyperpolarization transfer, as confirmed by the characteristic antiphase appearance of 1 H-detected, 1 JCH -coupled doublets. In conjunction with a pulse sequence providing 190-fold water suppression in vivo, 1 H detection of hyperpolarized [2-13 C]lactate generated in vivo was achieved in a rat liver slice. CONCLUSION The results show clear feasibility for effective 13 C->1 H hyperpolarization transfer in a clinical MRI scanner with customized heteronuclear RF system.
Collapse
Affiliation(s)
- Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | | | - Peder E. Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Daniele Mammoli
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | | | | | - Mark Van Criekinge
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Michael A. Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | | |
Collapse
|
25
|
Qi H, Nielsen PM, Schroeder M, Bertelsen LB, Palm F, Laustsen C. Acute renal metabolic effect of metformin assessed with hyperpolarised MRI in rats. Diabetologia 2018; 61:445-454. [PMID: 28936623 DOI: 10.1007/s00125-017-4445-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/04/2017] [Indexed: 01/07/2023]
Abstract
AIMS/HYPOTHESIS Metformin inhibits hepatic mitochondrial glycerol phosphate dehydrogenase, thereby increasing cytosolic lactate and suppressing gluconeogenesis flux in the liver. This inhibition alters cytosolic and mitochondrial reduction-oxidation (redox) potential, which has been reported to protect organ function in several disease states including diabetes. In this study, we investigated the acute metabolic and functional changes induced by metformin in the kidneys of both healthy and insulinopenic Wistar rats used as a model of diabetes. METHODS Diabetes was induced by intravenous injection of streptozotocin, and kidney metabolism in healthy and diabetic animals was investigated 4 weeks thereafter using hyperpolarised 13C-MRI, Clark-type electrodes and biochemical analysis. RESULTS Metformin increased renal blood flow, but did not change total kidney oxygen consumption. In healthy rat kidneys, metformin increased [1-13C]lactate production and reduced mitochondrial [1-13C]pyruvate oxidation (decreased the 13C-bicarbonate/[1-13C]pyruvate ratio) within 30 min of administration. Corresponding alterations to indices of mitochondrial, cytosolic and whole-cell redox potential were observed. Pyruvate oxidation was maintained in the diabetic rats, suggesting that the diabetic state abrogates metabolic reprogramming caused by metformin. CONCLUSIONS/INTERPRETATION This study demonstrates that metformin-induced acute metabolic alterations in healthy kidneys favoured anaerobic metabolism at the expense of aerobic metabolism. The results suggest that metformin directly alters the renal redox state, with elevated renal cytosolic redox states as well as decreased mitochondrial redox state. These findings suggest redox biology as a novel target to eliminate the renal complications associated with metformin treatment in individuals with impaired renal function.
Collapse
Affiliation(s)
- Haiyun Qi
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Per M Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Marie Schroeder
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Lotte B Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| |
Collapse
|
26
|
Morze CV, Allu PKR, Chang GY, Marco-Rius I, Milshteyn E, Wang ZJ, Ohliger MA, Gleason CE, Kurhanewicz J, Vigneron DB, Pearce D. Non-invasive detection of divergent metabolic signals in insulin deficiency vs. insulin resistance in vivo. Sci Rep 2018; 8:2088. [PMID: 29391429 PMCID: PMC5794967 DOI: 10.1038/s41598-018-20264-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/04/2018] [Indexed: 12/04/2022] Open
Abstract
The type 2 diabetic phenotype results from mixed effects of insulin deficiency and insulin resistance, but the relative contributions of these two distinct factors remain poorly characterized, as do the respective roles of the gluconeogenic organs. The purpose of this study was to investigate localized in vivo metabolic changes in liver and kidneys of contrasting models of diabetes mellitus (DM): streptozotocin (STZ)-treated wild-type Zucker rats (T1DM) and Zucker diabetic fatty (ZDF) rats (T2DM). Intermediary metabolism was probed using hyperpolarized (HP) [1-13C]pyruvate MRI of the liver and kidneys. These data were correlated with gene expression data for key mediators, assessed using rtPCR. Increased HP [1-13C]lactate was detected in both models, in association with elevated gluconeogenesis as reflected by increased expression of phosphoenolpyruvate carboxykinase. In contrast, HP [1-13C]alanine diverged between the two models, increasing in ZDF rats, while decreasing in the STZ-treated rats. The differences in liver alanine paralleled differences in key lipogenic mediators. Thus, HP [1-13C]alanine is a marker that can identify phenotypic differences in kidneys and liver of rats with T1DM vs. T2DM, non-invasively in vivo. This approach could provide a powerful diagnostic tool for characterizing tissue metabolic defects and responses to treatment in diabetic patients with ambiguous systemic manifestations.
Collapse
Affiliation(s)
- Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States.
| | - Prasanna K R Allu
- Division of Nephrology, Department of Medicine, University of California, San Francisco, United States
| | - Gene Y Chang
- Division of Nephrology, Department of Medicine, University of California, San Francisco, United States
| | - Irene Marco-Rius
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Eugene Milshteyn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Zhen J Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Catherine E Gleason
- Division of Nephrology, Department of Medicine, University of California, San Francisco, United States
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - David Pearce
- Division of Nephrology, Department of Medicine, University of California, San Francisco, United States
| |
Collapse
|
27
|
Niles DJ, Gordon JW, Huang G, Reese S, Adamson EB, Djamali A, Fain SB. Evaluation of renal metabolic response to partial ureteral obstruction with hyperpolarized 13 C MRI. NMR IN BIOMEDICINE 2018; 31. [PMID: 29130537 PMCID: PMC5736002 DOI: 10.1002/nbm.3846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 05/13/2023]
Abstract
Hyperpolarized 13 C magnetic resonance imaging (MRI) may be used to non-invasively image the transport and chemical conversion of 13 C-labeled compounds in vivo. In this study, we utilize hyperpolarized 13 C MRI to evaluate metabolic markers in the kidneys longitudinally in a mouse model of partial unilateral ureteral obstruction (pUUO). Partial obstruction was surgically induced in the left ureter of nine adult mice, leaving the right ureter as a control. 1 H and hyperpolarized [1-13 C]pyruvate MRI of the kidneys was performed 2 days prior to surgery (baseline) and at 3, 7 and 14 days post-surgery. Images were evaluated for changes in renal pelvis volume, pyruvate, lactate and the lactate to pyruvate ratio. After 14 days, mice were sacrificed and immunohistological staining of both kidneys for collagen fibrosis (picrosirius red) and macrophage infiltration (F4/80) was performed. Statistical analysis was performed using a linear mixed effects model. Significant kidney × time interaction effects were observed for both lactate and pyruvate, indicating that these markers changed differently between time points for the obstructed and unobstructed kidneys. Both kidneys showed an increase in the lactate to pyruvate ratio after obstruction, suggesting a shift towards glycolytic metabolism. These changes were accompanied by marked hydronephrosis, fibrosis and macrophage infiltration in the obstructed kidney, but not in the unobstructed kidney. Our results show that pUUO is associated with increased pyruvate to lactate metabolism in both kidneys, with injury and inflammation specific to the obstructed kidney. The work also demonstrates the feasibility of the use of hyperpolarized 13 C MRI to study metabolism in renal disease.
Collapse
Affiliation(s)
- David J Niles
- Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeremy W Gordon
- Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Gengwen Huang
- Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Shannon Reese
- Medicine, Nephrology, University of Wisconsin-Madison, Madison, WI, USA
| | - Erin B Adamson
- Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Arjang Djamali
- Medicine, Nephrology, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sean B Fain
- Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
28
|
Baligand C, Qin H, True-Yasaki A, Gordon J, von Morze C, Santos JD, Wilson D, Raffai R, Cowley PM, Baker AJ, Kurhanewicz J, Lovett DH, Wang ZJ. Hyperpolarized 13 C magnetic resonance evaluation of renal ischemia reperfusion injury in a murine model. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3765. [PMID: 28708304 PMCID: PMC5618802 DOI: 10.1002/nbm.3765] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/16/2017] [Accepted: 05/29/2017] [Indexed: 05/10/2023]
Abstract
Acute kidney injury (AKI) is a major risk factor for the development of chronic kidney disease (CKD). Persistent oxidative stress and mitochondrial dysfunction are implicated across diverse forms of AKI and in the transition to CKD. In this study, we applied hyperpolarized (HP) 13 C dehydroascorbate (DHA) and 13 C pyruvate magnetic resonance spectroscopy (MRS) to investigate the renal redox capacity and mitochondrial pyruvate dehydrogenase (PDH) activity, respectively, in a murine model of AKI at baseline and 7 days after unilateral ischemia reperfusion injury (IRI). Compared with the contralateral sham-operated kidneys, the kidneys subjected to IRI showed a significant decrease in the HP 13 C vitamin C/(vitamin C + DHA) ratio, consistent with a decrease in redox capacity. The kidneys subjected to IRI also showed a significant decrease in the HP 13 C bicarbonate/pyruvate ratio, consistent with impaired PDH activity. The IRI kidneys showed a significantly higher HP 13 C lactate/pyruvate ratio at day 7 compared with baseline, although the 13 C lactate/pyruvate ratio was not significantly different between the IRI and contralateral sham-operated kidneys at day 7. Arterial spin labeling magnetic resonance imaging (MRI) demonstrated significantly reduced perfusion in the IRI kidneys. Renal tissue analysis showed corresponding increased reactive oxygen species (ROS) and reduced PDH activity in the IRI kidneys. Our results show the feasibility of HP 13 C MRS for the non-invasive assessment of oxidative stress and mitochondrial PDH activity following renal IRI.
Collapse
Affiliation(s)
- Celine Baligand
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Hecong Qin
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Aisha True-Yasaki
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Jeremy Gordon
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Cornelius von Morze
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Justin DeLos Santos
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - David Wilson
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Robert Raffai
- Medicine, San Francisco VAMC/University of California San Francisco, San Francisco, CA
| | - Patrick M. Cowley
- Medicine, San Francisco VAMC/University of California San Francisco, San Francisco, CA
| | - Anthony J. Baker
- Medicine, San Francisco VAMC/University of California San Francisco, San Francisco, CA
| | - John Kurhanewicz
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - David H. Lovett
- Medicine, San Francisco VAMC/University of California San Francisco, San Francisco, CA
| | - Zhen Jane Wang
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| |
Collapse
|
29
|
Hansen ESS, Tougaard RS, Nørlinger TS, Mikkelsen E, Nielsen PM, Bertelsen LB, Bøtker HE, Jørgensen HS, Laustsen C. Imaging porcine cardiac substrate selection modulations by glucose, insulin and potassium intervention: A hyperpolarized [1- 13 C]pyruvate study. NMR IN BIOMEDICINE 2017; 30. [PMID: 28186677 DOI: 10.1002/nbm.3702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/21/2016] [Accepted: 12/30/2016] [Indexed: 05/07/2023]
Abstract
Cardiac metabolism has received considerable attention in terms of both diagnostics and prognostics, as well as a novel target for treatment. As human trials involving hyperpolarized magnetic resonance in the heart are imminent, we sought to evaluate the general feasibility of detection of an imposed shift in metabolic substrate utilization during metabolic modulation with glucose-insulin-potassium (GIK) infusion, and thus the limitations associated with this strategy, in a large animal model resembling human physiology. Four [1-13 C]pyruvate injections did not alter the blood pressure or ejection fraction over 180 min. Hyperpolarized [1-13 C]pyruvate conversion showed a generally high reproducibility, with intraclass correlation coefficients between the baseline measurements at 0 and 30 min as follows: lactate to pyruvate, 0.85; alanine to pyruvate, 1.00; bicarbonate to pyruvate, 0.83. This study demonstrates that hyperpolarized [1-13 C]pyruvate imaging is a feasible technique for cardiac studies and shows a generally high reproducibility in fasted large animals. GIK infusion increases the metabolic conversion of pyruvate to its metabolic derivatives lactate, alanine and bicarbonate, but with increased variability.
Collapse
Affiliation(s)
- Esben Søvsø Szocska Hansen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - Rasmus Stilling Tougaard
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital Skejby, Aarhus N, Denmark
| | | | - Emmeli Mikkelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital Skejby, Aarhus N, Denmark
| | | | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
30
|
Adamson EB, Ludwig KD, Mummy DG, Fain SB. Magnetic resonance imaging with hyperpolarized agents: methods and applications. Phys Med Biol 2017; 62:R81-R123. [PMID: 28384123 DOI: 10.1088/1361-6560/aa6be8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the past decade, hyperpolarized (HP) contrast agents have been under active development for MRI applications to address the twin challenges of functional and quantitative imaging. Both HP helium (3He) and xenon (129Xe) gases have reached the stage where they are under study in clinical research. HP 129Xe, in particular, is poised for larger scale clinical research to investigate asthma, chronic obstructive pulmonary disease, and fibrotic lung diseases. With advances in polarizer technology and unique capabilities for imaging of 129Xe gas exchange into lung tissue and blood, HP 129Xe MRI is attracting new attention. In parallel, HP 13C and 15N MRI methods have steadily advanced in a wide range of pre-clinical research applications for imaging metabolism in various cancers and cardiac disease. The HP [1-13C] pyruvate MRI technique, in particular, has undergone phase I trials in prostate cancer and is poised for investigational new drug trials at multiple institutions in cancer and cardiac applications. This review treats the methodology behind both HP gases and HP 13C and 15N liquid state agents. Gas and liquid phase HP agents share similar technologies for achieving non-equilibrium polarization outside the field of the MRI scanner, strategies for image data acquisition, and translational challenges in moving from pre-clinical to clinical research. To cover the wide array of methods and applications, this review is organized by numerical section into (1) a brief introduction, (2) the physical and biological properties of the most common polarized agents with a brief summary of applications and methods of polarization, (3) methods for image acquisition and reconstruction specific to improving data acquisition efficiency for HP MRI, (4) the main physical properties that enable unique measures of physiology or metabolic pathways, followed by a more detailed review of the literature describing the use of HP agents to study: (5) metabolic pathways in cancer and cardiac disease and (6) lung function in both pre-clinical and clinical research studies, concluding with (7) some future directions and challenges, and (8) an overall summary.
Collapse
Affiliation(s)
- Erin B Adamson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States of America
| | | | | | | |
Collapse
|
31
|
Nørlinger TS, Nielsen PM, Qi H, Mikkelsen E, Hansen K, Schmidt NH, Pedersen M, Agger P, Palm F, Laustsen C. Hyperbaric oxygen therapy reduces renal lactate production. Physiol Rep 2017; 5:e13217. [PMID: 28336821 PMCID: PMC5371573 DOI: 10.14814/phy2.13217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 02/26/2017] [Accepted: 02/28/2017] [Indexed: 01/27/2023] Open
Abstract
Intrarenal hypoxia is an acknowledged factor contributing to the development of diabetic nephropathy. Hyperbaric oxygen (HBO) therapy is a well-known adjuvant treatment for several medical conditions, such as decompression sickness, infections, and wound healing. The underlying metabolic response of HBO is largely unknown. In this study, we investigated the effect of HBO on the intrarenal metabolic alteration in diabetes. Hyperpolarized [1-13C]pyruvate MRI was performed to assess intrarenal energy metabolism in normoglycemic controls and short-term (2 weeks) streptozotocin-induced diabetic rats with and without HBO for five consecutive days. HBO therapy blunted intrarenal lactate production, 3 days after the therapy, in both normoglycemic controls and diabetic rats without affecting either lactate dehydrogenase mRNA expression or activity. HBO therapy reduced lactate formation in both normoglycemic and hyperglycemic rats. These findings support hyperpolarized [1-13C]pyruvate MRI as a novel method for monitoring HBO therapy via the pyruvate to lactate conversion.
Collapse
Affiliation(s)
- Thomas S Nørlinger
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Per Mose Nielsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Haiyun Qi
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Emmeli Mikkelsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Kasper Hansen
- Department of Clinical Medicine, Comparative Medicine Lab, Aarhus University, Aarhus, Denmark
| | - Nikolaj H Schmidt
- Department of Clinical Medicine, Comparative Medicine Lab, Aarhus University, Aarhus, Denmark
| | - Michael Pedersen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Comparative Medicine Lab, Aarhus University, Aarhus, Denmark
| | - Peter Agger
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Comparative Medicine Lab, Aarhus University, Aarhus, Denmark
| | - Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| |
Collapse
|
32
|
Imaging oxygen metabolism with hyperpolarized magnetic resonance: a novel approach for the examination of cardiac and renal function. Biosci Rep 2017; 37:BSR20160186. [PMID: 27899435 PMCID: PMC5270319 DOI: 10.1042/bsr20160186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/24/2022] Open
Abstract
Every tissue in the body critically depends on meeting its energetic demands with sufficient oxygen supply. Oxygen supply/demand imbalances underlie the diseases that inflict the greatest socio-economic burden globally. The purpose of this review is to examine how hyperpolarized contrast media, used in combination with MR data acquisition methods, may advance our ability to assess oxygen metabolism non-invasively and thus improve management of clinical disease. We first introduce the concept of hyperpolarization and how hyperpolarized contrast media have been practically implemented to achieve translational and clinical research. We will then analyse how incorporating hyperpolarized contrast media could enable realization of unmet technical needs in clinical practice. We will focus on imaging cardiac and renal oxygen metabolism, as both organs have unique physiological demands to satisfy their requirements for tissue oxygenation, their dysfunction plays a fundamental role in society’s most prevalent diseases, and each organ presents unique imaging challenges. It is our aim that this review attracts a multi-disciplinary audience and sparks collaborations that utilize an exciting, emergent technology to advance our ability to treat patients adversely affected by an oxygen supply/demand mismatch.
Collapse
|