1
|
Islam MZ, Guo R, Akter MK, Zheng J, Kainz W, Long S, Chen J. RF-induced heating reduction by minimizing the external portion of the partially in and partially out medical devices under MRI at 1.5 T. Magn Reson Med 2025; 93:2108-2122. [PMID: 39607954 DOI: 10.1002/mrm.30389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE To address the issue of RF-induced heating for partially in and partially out (PIPO) medical devices during 1.5 T MRI scans by proposing a method of minimizing the external portion. METHODS A method of tightly winding the external segment of the PIPO device is proposed to minimize the overall device effective reception length during MRI scans to mitigate the RF-induced heating. Two commercially available PIPO medical devices and simplified solid wires were used to demonstrate the concept. RF heating results are compared between typical and minimized-length trajectories under the American Society for Testing and Materials (ASTM) testing procedure. In addition, 16 scaled and validated device models were used in conjuncture with human body numerical simulations within three virtual human models to estimate clinically relevant heating. RESULTS The wound segments in PIPO devices functioned as a lumped element rather than a receiving antenna, reducing induced energy/heating as compared to the original PIPO devices under typical straight or loop configurations. Minimizing the lead's external portion can reduce the RF-induced heating by significant factors for all studied cases during ASTM phantom measurements and in human body simulations. CONCLUSION Our findings show a significant reduction in RF heating by minimizing the external segment, thereby enhancing patient safety during 1.5 T MRI procedures. Although limited to four devices at 1.5 T across two applications, the extent of heating reduction may vary for others. Nonetheless, tightly winding the external segment of PIPO electrodes holds promise for improving device safety under MRI.
Collapse
Affiliation(s)
- Md Zahidul Islam
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Ran Guo
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Mir Khadiza Akter
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Jianfeng Zheng
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Wolfgang Kainz
- High Performance Computing for MRI Safety, Jasper, Georgia, USA
| | - Stuart Long
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Ji Chen
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| |
Collapse
|
2
|
Karadeniz N, Hajnal JV, Ipek Ö. Design of multi-row parallel-transmit coil arrays for enhanced SAR efficiency with deep brain electrodes at 3T: an electromagnetic simulation study. MAGMA (NEW YORK, N.Y.) 2025; 38:107-120. [PMID: 39541078 PMCID: PMC11790791 DOI: 10.1007/s10334-024-01212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Tissue heating near the implanted deep brain stimulation (DBS) during magnetic resonance imaging (MRI) poses a significant safety constraint. This study aimed to evaluate the performance of parallel transmit (pTx) head transmit radiofrequency (RF) coils in DBS patients, with a focus on excitation fidelity under specific absorption rate (SAR) control for brain imaging at 3T MRI. MATERIALS AND METHODS We employed electromagnetic simulations to assess different coil configurations, including multi-row pTx coils of 16-24 channels arranged in 1, 2, and 3 rows, and compared these to a circularly polarised and pTx birdcage coil using a realistic human model without and with DBS leads and electrodes. RESULTS Two- and three-row pTx coils with overlapping loop elements exhibited similar performance, which was superior in excitation homogeneity and local SAR compared to the single-row coil and the birdcage coil both without and with DBS. DISCUSSION These findings suggest that multi-row coils can enhance the safety and efficacy of MRI in patients with DBS devices, so potentially improving imaging performance in this expanding patient population. There was a minimal difference in performance between the 2 and 3-row coils, favouring the simpler, lower channel count design for practical implementation.
Collapse
Affiliation(s)
- Nejat Karadeniz
- School of Biomedical Engineering and Imaging Science, King's College London, 3rd Floor Lambeth Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK.
| | - Joseph V Hajnal
- School of Biomedical Engineering and Imaging Science, King's College London, 3rd Floor Lambeth Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
- Centre for the Developing Brain, King's College London, London, UK
| | - Özlem Ipek
- School of Biomedical Engineering and Imaging Science, King's College London, 3rd Floor Lambeth Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| |
Collapse
|
3
|
Arianpouya M, Yang B, Tam F, McElcheran CE, Graham SJ. Optimized radiofrequency shimming using low-heating B1+-mapping in the presence of deep brain stimulation implants: Proof of concept. PLoS One 2024; 19:e0316002. [PMID: 39693369 DOI: 10.1371/journal.pone.0316002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
MRI of patients with Deep Brain Stimulation (DBS) implants is constrained due to radiofrequency (RF) heating of the implant lead. However, "RF-shimming" parallel transmission (PTX) has the potential to reduce DBS heating during MRI. As part of using PTX in such a "safe mode", maps of the RF transmission field (B1+) are typically acquired for calibration purposes, with each transmit coil excited individually. These maps often have large zones of low signal intensity distant from the specific coil that is being excited, raising concerns that low signal-to-noise ratio (SNR) in these zones might negatively impact the ability of the optimized RF shim settings to suppress heating in safe mode. One way to improve SNR would be to increase RF transmission power during B1+ mapping, but this also raises heating concerns especially for coil elements proximal to the implant. Acting with an abundance of caution, it would be useful to investigate methods that permit B1+ mapping with low localized heating while producing high SNR measurements that lead to safe PTX RF shim settings. The present work addresses this issue in proof of concept using electromagnetic simulations and experimental PTX MRI. A two-step optimization algorithm is proposed and examined for a cylindrical phantom with an implanted wire to enable 1) robust B1+ mapping with low localized heating; and 2) robust RF shimming PTX with low localized heating and good B1+ homogeneity over a large imaging volume. Simulation and experimental outcomes were compared with those obtained using an existing simulation-driven workflow for obtaining safe mode RF shim settings, and for quadrature RF transmission using a circularly polarized (CP) birdcage head coil. Experimental results showed that although both existing and proposed safe-mode workflows effectively suppressed localized heating at the wire tip in comparison to the CP coil results, the proposed workflow produced much smaller temperature elevations and much improved signal uniformity. These promising results support continued investigation and refinement of the proposed workflow, involving more realistic scenarios toward ultimate implementations in DBS patients.
Collapse
Affiliation(s)
- Maryam Arianpouya
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Benson Yang
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Clare E McElcheran
- TECHNA Institute for the Advancement of Technology for Health, Toronto, ON, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Vu J, Bhusal B, Jiang F, Golestanirad L. Comparative Analysis of RF Heating of Cardiac Implantable Electronic Devices (CIEDs) in Conventional Closed-bore vs. Vertical Open-bore MRI Systems. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-5. [PMID: 40039719 DOI: 10.1109/embc53108.2024.10781567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Radiofrequency (RF) induced tissue heating during magnetic resonance imaging (MRI) is the predominant safety risk for patients with active electronic implants such as cardiac implantable electronic devices (CIEDs) which typically have elongated conductive leads. Currently, abandoned CIED leads, as well as CIEDs with epicardial leads, are contraindicated for MRI exams. Recent studies have demonstrated the superior safety of vertical, open-bore MRI systems regarding RF heating compared to conventional closed-bore scanners. However, these studies only investigated deep brain stimulation (DBS) and passive devices. In this study, we compared the RF heating of three commercially available epicardial leads in clinically available closed-bore and open-bore MRI systems. Results from the phantom experiments revealed significantly lower RF heating with up to a nine-fold reduction in the mean temperature rise in the tissue-mimicking gel. Our results are in line with previous findings, suggesting that vertical MRI systems can offer a potentially safer platform for imaging this patient population.
Collapse
|
5
|
Zaidi T, Marturano F, Bonmassar G, Golestanirad L. A Resistive Tapered Cylindrical Conductor Can Substantially Reduce RF Heating of Implanted Leads During MRI: A Simulation Study of Helical Wire Structures. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039766 DOI: 10.1109/embc53108.2024.10782168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Active implanted electronic devices (AIMDs) are increasingly common and are often indicated to provide therapeutic stimulation to patients in cases such as pacemakers and deep brain stimulators. Such devices typically require leads of significant length to deliver stimulation. The use of long leads in combination with an implantable pulse generator often means that there is a significant risk of radiofrequency energy coupling with the leads when patients receive MRI scans. Previous studies have investigated the use of a multi-segment wires with sharp conductivity changes to mitigate this RF coupling. However, past work in this area has evaluated stripline and straight cylindrical geometries. Clinical lead designs often use helical wrapping for internal conductors for improved fatigue resistance. In this study we assessed the applicability of the multi-segment lead design with a helical structure at 1.5 T to better assess the potential heating reduction with a more clinically relevant geometry. A maximum SAR reduction of roughly 7-fold was achieved, and decreasing the helical pitch yielded shorter optimum lengths for the tissue-exposed wire segment.
Collapse
|
6
|
Petzold J, Schmitter S, Silemek B, Winter L, Speck O, Ittermann B, Seifert F. Investigation of alternative RF power limit control methods for 0.5T, 1.5T, and 3T parallel transmission cardiac imaging: A simulation study. Magn Reson Med 2024; 91:1659-1675. [PMID: 38031517 DOI: 10.1002/mrm.29932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
PURPOSE To investigate safety and performance aspects of parallel-transmit (pTx) RF control-modes for a body coil atB 0 ≤ 3 T $$ {B}_0\le 3\mathrm{T} $$ . METHODS Electromagnetic simulations of 11 human voxel models in cardiac imaging position were conducted forB 0 = 0.5 T $$ {B}_0=0.5\mathrm{T} $$ ,1.5 T $$ 1.5\mathrm{T} $$ and3 T $$ 3\mathrm{T} $$ and a body coil with a configurable number of transmit channels (1, 2, 4, 8, 16). Three safety modes were considered: the 'SAR-controlled mode' (SCM), where specific absorption rate (SAR) is limited directly, a 'phase agnostic SAR-controlled mode' (PASCM), where phase information is neglected, and a 'power-controlled mode' (PCM), where the voltage amplitude for each channel is limited. For either mode, safety limits were established based on a set of 'anchor' simulations and then evaluated in 'target' simulations on previously unseen models. The comparison allowed to derive safety factors accounting for varying patient anatomies. All control modes were compared in terms of theB 1 + $$ {B}_1^{+} $$ amplitude and homogeneity they permit under their respective safety requirements. RESULTS Large safety factors (approximately five) are needed if only one or two anchor models are investigated but they shrink with increasing number of anchors. The achievableB 1 + $$ {B}_1^{+} $$ is highest for SCM but this advantage is reduced when the safety factor is included. PCM appears to be more robust against variations of subjects. PASCM performance is mostly in between SCM and PCM. Compared to standard circularly polarized (CP) excitation, pTx offers minorB 1 + $$ {B}_1^{+} $$ improvements if local SAR limits are always enforced. CONCLUSION PTx body coils can safely be used atB 0 ≤ 3 T $$ {B}_0\le 3\mathrm{T} $$ . Uncertainties in patient anatomy must be accounted for, however, by simulating many models.
Collapse
Affiliation(s)
- Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Berk Silemek
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Oliver Speck
- Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
7
|
Silemek B, Seifert F, Petzold J, Brühl R, Ittermann B, Winter L. Wirelessly interfacing sensor-equipped implants and MR scanners for improved safety and imaging. Magn Reson Med 2023; 90:2608-2626. [PMID: 37533167 DOI: 10.1002/mrm.29818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE To investigate a novel reduced RF heating method for imaging in the presence of active implanted medical devices (AIMDs) which employs a sensor-equipped implant that provides wireless feedback. METHODS The implant, consisting of a generator case and a lead, measures RF-inducedE $$ E $$ -fields at the implant tip using a simple sensor in the generator case and transmits these values wirelessly to the MR scanner. Based on the sensor signal alone, parallel transmission (pTx) excitation vectors were calculated to suppress tip heating and maintain image quality. A sensor-based imaging metric was introduced to assess the image quality. The methodology was studied at 7T in testbed experiments, and at a 3T scanner in an ASTM phantom containing AIMDs instrumented with six realistic deep brain stimulation (DBS) lead configurations adapted from patients. RESULTS The implant successfully measured RF-inducedE $$ E $$ -fields (Pearson correlation coefficient squared [R2 ] = 0.93) and temperature rises (R2 = 0.95) at the implant tip. The implant acquired the relevant data needed to calculate the pTx excitation vectors and transmitted them wirelessly to the MR scanner within a single shot RF sequence (<60 ms). Temperature rises for six realistic DBS lead configurations were reduced to 0.03-0.14 K for heating suppression modes compared to 0.52-3.33 K for the worst-case heating, while imaging quality remained comparable (five of six lead imaging scores were ≥0.80/1.00) to conventional circular polarization (CP) images. CONCLUSION Implants with sensors that can communicate with an MR scanner can substantially improve safety for patients in a fast and automated manner, easing the current burden for MR personnel.
Collapse
Affiliation(s)
- Berk Silemek
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
8
|
Jiang F, Henry KR, Bhusal B, Sanpitak P, Webster G, Popescu A, Laternser C, Kim D, Golestanirad L. Age Matters: A Comparative Study of RF Heating of Epicardial and Endocardial Electronic Devices in Pediatric and Adult Phantoms during Cardiothoracic MRI. Diagnostics (Basel) 2023; 13:2847. [PMID: 37685385 PMCID: PMC10486594 DOI: 10.3390/diagnostics13172847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/29/2023] [Accepted: 08/04/2023] [Indexed: 09/10/2023] Open
Abstract
This study focused on the potential risks of radiofrequency-induced heating of cardiac implantable electronic devices (CIEDs) in children and adults with epicardial and endocardial leads of varying lengths during cardiothoracic MRI scans. Infants and young children are the primary recipients of epicardial CIEDs, though the devices have not been approved as MR conditional by the FDA due to limited data, leading to pediatric hospitals either refusing the MRI service to most pediatric CIED patients or adopting a scan-all strategy based on results from adult studies. The study argues that risk-benefit decisions should be made on an individual basis. We used 120 clinically relevant epicardial and endocardial device configurations in adult and pediatric anthropomorphic phantoms to determine the temperature rise during RF exposure at 1.5 T. The results showed that there was significantly higher RF heating of epicardial leads than endocardial leads in the pediatric phantom, but not in the adult phantom. Additionally, body size and lead length significantly affected RF heating, with RF heating up to 12 °C observed in models based on younger children with short epicardial leads. The study provides evidence-based knowledge on RF-induced heating of CIEDs and highlights the importance of making individual risk-benefit decisions when assessing the potential risks of MRI scans in pediatric CIED patients.
Collapse
Affiliation(s)
- Fuchang Jiang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Kaylee R. Henry
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Bhumi Bhusal
- Department of Radiology, Northwestern University, Chicago, IL 60611, USA
| | - Pia Sanpitak
- Department of Radiology, Northwestern University, Chicago, IL 60611, USA
| | - Gregory Webster
- Division of Cardiology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, IL 60611, USA
| | - Andrada Popescu
- Division of Medical Imaging, Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, IL 60611, USA
| | - Christina Laternser
- Division of Cardiology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, IL 60611, USA
| | - Daniel Kim
- Department of Radiology, Northwestern University, Chicago, IL 60611, USA
| | - Laleh Golestanirad
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Radiology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
9
|
Jiang F, Henry KR, Bhusal B, Webster G, Bonmassar G, Kim D, Golestanirad L. RF-induced heating of capped and uncapped abandoned epicardial leads during MRI at 1.5 T and 3 T. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38082570 PMCID: PMC10838566 DOI: 10.1109/embc40787.2023.10340533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
There is a paucity of data regarding the safety of magnetic resonance imaging (MRI) in patients with abandoned epicardial leads. Few studies have reported temperature rises up to 76 °C during MRI at 1.5 T in gel phantoms implanted with epicardial leads; however, lead trajectories used in these experiments were not clinically relevant. This work reports patient-specific RF heating of both capped and uncapped abandoned epicardial lead configurations during MRI at both 1.5 T and 3 T field strengths. We found that leads routed along realistic, patient-derived trajectories generated substantially lower RF heating than the previously reported worst-case phantom experiments. We also found that MRI at the head imaging landmark leads to substantially lower RF heating compared to MRI at the chest or abdomen landmarks at both 1.5 T and 3 T. Our results suggest that patients with abandoned epicardial leads may safely undergo MRI for head imaging, but caution is warranted during chest and abdominal imaging.Clinical Relevance- Patients with abandoned epicardial leads may safely undergo MRI for head imaging, but caution is warranted during chest and abdominal imaging.
Collapse
|
10
|
Sanpitak P, Bhusal B, Vu J, Golestanirad L. Low-field MRI's Spark on Implant Safety: A Closer Look at Radiofrequency Heating. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38083021 PMCID: PMC10842192 DOI: 10.1109/embc40787.2023.10340861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Advances in low-field magnetic resonance imaging (MRI) are making imaging more accessible without significant losses in image quality. In addition to being more cost-effective and easier to place without as much needed infrastructure, it has been publicized that the lower field strengths make MRI safer for patients with implants. To test this claim, we conducted a total of 368 simulations with wires of various lengths and geometries in a gel phantom during radiofrequency (RF) exposure at 23 MHz and 63.6 MHz (corresponding to MRI at 0.55 T and 1.5 T). Our results showed that heating in the gel around wire tips could be higher in certain cases at 0.55 T. To examine the impact on real patients, we simulated two models of patients with deep brain stimulation (DBS) implants of different lengths. These simulations provide quantitative evidence that low-field MRI is not always safer, and this paper serves to illustrate some of the basic principles involved in RF heating of elongated implants in MRI environments.Clinical Relevance- This paper illustrates the physical concepts of resonance and inductive coupling in RF heating during MRI scanning with implants through systematic simulations and discusses the impact of these principles in practice.
Collapse
|
11
|
Petzold J, Schmitter S, Silemek B, Winter L, Speck O, Ittermann B, Seifert F. Towards an integrated radiofrequency safety concept for implant carriers in MRI based on sensor-equipped implants and parallel transmission. NMR IN BIOMEDICINE 2023; 36:e4900. [PMID: 36624556 DOI: 10.1002/nbm.4900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/11/2022] [Accepted: 01/04/2023] [Indexed: 06/15/2023]
Abstract
To protect implant carriers in MRI from excessive radiofrequency (RF) heating it has previously been suggested to assess that hazard via sensors on the implant. Other work recommended parallel transmission (pTx) to actively mitigate implant-related heating. Here, both ideas are integrated into one comprehensive safety concept where native pTx safety (without implant) is ensured by state-of-the-art field simulations and the implant-specific hazard is quantified in situ using physical sensors. The concept is demonstrated by electromagnetic simulations performed on a human voxel model with a simplified spinal-cord implant in an eight-channel pTx body coil at 3 T . To integrate implant and native safety, the sensor signal must be calibrated in terms of an established safety metric (e.g., specific absorption rate [SAR]). Virtual experiments show that E -field and implant-current sensors are well suited for this purpose, while temperature sensors require some caution, and B 1 probes are inadequate. Based on an implant sensor matrix Q s , constructed in situ from sensor readings, and precomputed native SAR limits, a vector space of safe RF excitations is determined where both global (native) and local (implant-related) safety requirements are satisfied. Within this safe-excitation subspace, the solution with the best image quality in terms of B 1 + magnitude and homogeneity is then found by a straightforward optimization algorithm. In the investigated example, the optimized pTx shim provides a 3-fold higher mean B 1 + magnitude compared with circularly polarized excitation for a maximum implant-related temperature increase ∆ T imp ≤ 1 K . To date, sensor-equipped implants interfaced to a pTx scanner exist as demonstrator items in research labs, but commercial devices are not yet within sight. This paper aims to demonstrate the significant benefits of such an approach and how this could impact implant-related RF safety in MRI. Today, the responsibility for safe implant scanning lies with the implant manufacturer and the MRI operator; within the sensor concept, the MRI manufacturer would assume much of the operator's current responsibility.
Collapse
Affiliation(s)
- Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Berk Silemek
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Oliver Speck
- Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
12
|
Vu J, Bhusal B, Rosenow J, Pilitsis J, Golestanirad L. Optimizing the trajectory of deep brain stimulation leads reduces RF heating during MRI at 3 T: Characteristics and clinical translation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38083480 PMCID: PMC10838567 DOI: 10.1109/embc40787.2023.10340979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Radiofrequency (RF) induced tissue heating around deep brain stimulation (DBS) leads is a well-known safety risk during magnetic resonance imaging (MRI), hindering routine protocols for patients. Known factors that contribute to variations in the magnitude of RF heating across patients include the implanted lead's trajectory and its orientation with respect to the MRI electric fields. Currently, there are no consistent requirements for surgically implanting the extracranial portion of the DBS lead. Recent studies have shown that incorporating concentric loops in the extracranial trajectory of the lead can reduce RF heating, but the optimal positioning of the loop is unknown. In this study, we evaluated RF heating of 77 unique lead trajectories to determine how different characteristics of the trajectory affect RF heating during MRI at 3 T. We performed phantom experiments with commercial DBS systems from two manufacturers to determine how consistently modifying the lead trajectory mitigates RF heating. We also presented the first surgical implementation of these modified trajectories in patients. Low-heating trajectories included small concentric loops near the surgical burr hole which were readily implemented during the surgical procedure; these trajectories generated nearly a 2-fold reduction in RF heating compared to unmodified trajectories.Clinical Relevance- Surgically modifying the DBS lead trajectory can be a cost-effective strategy for reducing RF-induced heating during MRI at 3 T.
Collapse
|
13
|
Chen X, Zheng C, Golestanirad L. Application of Machine learning to predict RF heating of cardiac leads during magnetic resonance imaging at 1.5 T and 3 T: A simulation study. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107384. [PMID: 36842429 DOI: 10.1016/j.jmr.2023.107384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 01/04/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Predicting magnetic resonance imaging (MRI)-induced heating of elongated conductive implants, such as leads in cardiovascular implantable electronic devices, is essential to assessing patient safety. Phantom experiments have traditionally been used to estimate radio-frequency (RF) heating of implants, but they are time-consuming. Recently, machine learning has shown promise for fast prediction of RF heating of orthopaedic implants when the implant position within the MRI RF coil was predetermined. We explored whether deep learning could be applied to predict RF heating of conductive leads with variable positions and orientations during MRI at 1.5 T and 3 T. Models of 600 cardiac leads with clinically relevant trajectories were generated, and electromagnetic simulations were performed to calculate the maximum of the 1 g-averaged specific absorption rate (SAR) of RF energy at the tips of lead models during MRI at 1.5 T and 3 T. Neural networks were trained to predict the maximum SAR at the lead tip from the knowledge of the coordinates of points along the lead trajectory. Despite the large range of SAR values (∼230 W/kg to ∼ 3200 W/kg and ∼ 10 W/kg to ∼ 3300 W/kg), the root- mean-square error of the predicted vs ground truth SAR remained at 223 W/kg and 206 W/kg, with the R2 scores of 0.89 and 0.85 on the testing set for 1.5 T and 3 T models, respectively. The results suggest that machine learning is a promising approach for fast assessment of RF heating of lead-like implants when only the knowledge of the lead geometry and MRI RF coil features are in hand.
Collapse
Affiliation(s)
- Xinlu Chen
- Department of Electrical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Can Zheng
- Department of Electrical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - L Golestanirad
- Department of Electrical Engineering, Northwestern University, Evanston, IL, 60208, USA; Departmeng of Radiology, Northwestern University Chicago, IL 60611, USA; Departmeng of Biomedical Engineering, Northwestern University, Evanston, IL 60608, USA.
| |
Collapse
|
14
|
Vu J, Bhusal B, Nguyen BT, Sanpitak P, Nowac E, Pilitsis J, Rosenow J, Golestanirad L. A comparative study of RF heating of deep brain stimulation devices in vertical vs. horizontal MRI systems. PLoS One 2022; 17:e0278187. [PMID: 36490249 PMCID: PMC9733854 DOI: 10.1371/journal.pone.0278187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
The majority of studies that assess magnetic resonance imaging (MRI) induced radiofrequency (RF) heating of the tissue when active electronic implants are present have been performed in horizontal, closed-bore MRI systems. Vertical, open-bore MRI systems have a 90° rotated magnet and a fundamentally different RF coil geometry, thus generating a substantially different RF field distribution inside the body. Little is known about the RF heating of elongated implants such as deep brain stimulation (DBS) devices in this class of scanners. Here, we conducted the first large-scale experimental study investigating whether RF heating was significantly different in a 1.2 T vertical field MRI scanner (Oasis, Fujifilm Healthcare) compared to a 1.5 T horizontal field MRI scanner (Aera, Siemens Healthineers). A commercial DBS device mimicking 30 realistic patient-derived lead trajectories extracted from postoperative computed tomography images of patients who underwent DBS surgery at our institution was implanted in a multi-material, anthropomorphic phantom. RF heating around the DBS lead was measured during four minutes of high-SAR RF exposure. Additionally, we performed electromagnetic simulations with leads of various internal structures to examine this effect on RF heating. When controlling for RMS B1+, the temperature increase around the DBS lead-tip was significantly lower in the vertical scanner compared to the horizontal scanner (0.33 ± 0.24°C vs. 4.19 ± 2.29°C). Electromagnetic simulations demonstrated up to a 17-fold reduction in the maximum of 0.1g-averaged SAR in the tissue surrounding the lead-tip in the vertical scanner compared to the horizontal scanner. Results were consistent across leads with straight and helical internal wires. Radiofrequency heating and power deposition around the DBS lead-tip were substantially lower in the 1.2 T vertical scanner compared to the 1.5 T horizontal scanner. Simulations with different lead structures suggest that the results may extend to leads from other manufacturers.
Collapse
Affiliation(s)
- Jasmine Vu
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Bhumi Bhusal
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Bach T. Nguyen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Pia Sanpitak
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Elizabeth Nowac
- Illinois Bone and Joint Institute (IBJI), Wilmette, Illinois, United States of America
| | - Julie Pilitsis
- Department of Neurosciences & Experimental Therapeutics, Albany Medical College, Albany, New York, United States of America
| | - Joshua Rosenow
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Laleh Golestanirad
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
15
|
Nuzov NB, Bhusal B, Henry KR, Jiang F, Rosenow J, Elahi B, Golestanirad L. True location of deep brain stimulation electrodes differs from what is seen on postoperative magnetic resonance images: An anthropomorphic phantom study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1863-1866. [PMID: 36086639 PMCID: PMC10848148 DOI: 10.1109/embc48229.2022.9871619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Deep brain stimulation (DBS) is an established yet growing treatment for a range of neurological and psychiatric disorders. Over the last decade, numerous studies have underscored the effect of electrode placement on the clinical outcome of DBS. As a result, imaging is now extensively used for DBS electrode localization, even though the accuracy of different modalities in determining the true coordinates of DBS electrodes is less explored. Postoperative magnetic resonance imaging (MRI) is a gold standard method for DBS electrode localization, however, the geometrical distortion induced by the lead's artifact could limit the accuracy. In this work, we investigated to what degree the difference between the true location of the lead's tip and the location of the tip estimated from the MRI artifact varies depending on the MRI sequence parameters, acquisition plane, phase encoding direction, and the implant"s extracranial trajectory. Clinical Relevance- Results will help researchers and clinicians to estimate the true location of DBS leads and contacts from postoperative MRI scans.
Collapse
|
16
|
Novel materials in magnetic resonance imaging: high permittivity ceramics, metamaterials, metasurfaces and artificial dielectrics. MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE 2022; 35:875-894. [PMID: 35471464 PMCID: PMC9596558 DOI: 10.1007/s10334-022-01007-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 11/01/2022]
Abstract
AbstractThis article reviews recent developments in designing and testing new types of materials which can be: (i) placed around the body for in vivo imaging, (ii) be integrated into a conventional RF coil, or (iii) form the resonator itself. These materials can improve the quality of MRI scans for both in vivo and magnetic resonance microscopy applications. The methodological section covers the basic operation and design of two different types of materials, namely high permittivity materials constructed from ceramics and artificial dielectrics/metasurfaces formed by coupled conductive subunits, either in air or surrounded by dielectric material. Applications of high permittivity materials and metasurfaces placed next to the body to neuroimaging and extremity imaging at 7 T, body and neuroimaging at 3 T, and extremity imaging at 1.5 T are shown. Results using ceramic resonators for both high field in vivo imaging and magnetic resonance microscopy are also shown. The development of new materials to improve MR image quality remains an active area of research, but has not yet found significant use in clinical applications. This is mainly due to practical issues such as specific absorption rate modelling, accurate and reproducible placement, and acceptable size/weight of such materials. The most successful area has been simple “dielectric pads” for neuroimaging at 7 T which were initially developed somewhat as a stop-gap while parallel transmit technology was being developed, but have continued to be used at many sites. Some of these issues can potentially be overcome using much lighter metasurfaces and artificial dielectrics, which are just beginning to be assessed.
Collapse
|
17
|
Sanpitak P, Bhusal B, Nguyen BT, Vu J, Chow K, Bi X, Golestanirad L. On the accuracy of Tier 4 simulations to predict RF heating of wire implants during magnetic resonance imaging at 1.5 T. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4982-4985. [PMID: 34892326 DOI: 10.1109/embc46164.2021.9630220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetic Resonance Imaging (MRI) access remains conditional to patients with conductive medical implants, as RF heating generated around the implant during scanning may cause tissue burns. Experiments have been traditionally used to assess this heating, but they are time-consuming and expensive, and in many cases cannot faithfully replicate the in-vivo scenario. Alternatively, ISO TS 10974 outlines a four-tier RF heating assessment approach based on a combination of experiments and full-wave electromagnetic (EM) simulations with varying degrees of complexity. From these, Tier 4 approach relies entirely on EM simulations. There are, however, very few studies validating such numerical models against direct thermal measurements. In this work, we evaluated the agreement between simulated and measured RF heating around wire implants during RF exposure at 63.6 MHz (proton imaging at 1.5 T). Heating was assessed around wire implants with 25 unique trajectories within an ASTM phantom. The root mean square percentage error (RMSPE) of simulated vs. measured RF heating remained <1.6% despite the wide range of observed heating (0.2 °C-53 °C). Our results suggest that good agreement can be achieved between experiments and simulations as long as important experimental features such as characteristics of the MRI RF coil, implant's geometry, position, and trajectory, as well as electric and thermal properties of gel are closely mimicked in simulations.Clinical Relevance- This work validates the application of full-wave EM simulations for modeling and predicting RF heating of conductive wires in an MRI environment, providing researchers with a validated tool to assess MRI safety in patients with implants.
Collapse
|
18
|
Zheng C, Chen X, Nguyen BT, Sanpitak P, Vu J, Bagci U, Golestanirad L. Predicting RF Heating of Conductive Leads During Magnetic Resonance Imaging at 1.5 T: A Machine Learning Approach . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4204-4208. [PMID: 34892151 PMCID: PMC9940641 DOI: 10.1109/embc46164.2021.9630718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The number of patients with active implantable medical devices continues to rise in the United States and around the world. It is estimated that 50-75% of patients with conductive implants will need magnetic resonance imaging (MRI) in their lifetime. A major risk of performing MRI in patients with elongated conductive implants is the radiofrequency (RF) heating of the tissue surrounding the implant's tip due to the antenna effect. Currently, applying full-wave electromagnetic simulation is the standard way to predict the interaction of MRI RF fields with the human body in the presence of conductive implants; however, these simulations are notoriously extensive in terms of memory requirement and computational time. Here we present a proof-of-concept simulation study to demonstrate the feasibility of applying machine learning to predict MRI-induced power deposition in the tissue surrounding conductive wires. We generated 600 clinically relevant trajectories of leads as observed in patients with cardiac conductive implants and trained a feedforward neural network to predict the 1g-averaged SAR at the lead tips knowing only the background field of MRI RF coil and coordinates of points along the lead trajectory. Training of the network was completed in 11.54 seconds and predictions were made within a second with R2 = 0.87 and Root Mean Squared Error (RMSE) = 14.5 W/kg. Our results suggest that machine learning could provide a promising approach for safety assessment of MRI in patients with conductive leads.Clinical Relevance- Machine learning can potentially allow real-time assessment of MRI RF safety in patients with conductive leads when only the knowledge of lead's trajectory (image-based) and MRI RF coil features (vendor-specific) are in hand.
Collapse
Affiliation(s)
- Can Zheng
- Department of Electrical Engineering, Northwestern University, Evanston, IL 60208 USA
| | - Xinlu Chen
- Department of Electrical Engineering, Northwestern University, Evanston, IL 60208 USA
| | - Bach T. Nguyen
- Department of Radiology, Northwestern University Chicago, IL 60611 USA
| | - Pia Sanpitak
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60608 USA
| | - Jasmine Vu
- Department of Radiology, Northwestern University Chicago, IL 60611 USA
| | - Ulas Bagci
- Department of Radiology, Northwestern University Chicago, IL 60611 USA
| | - Laleh Golestanirad
- Department of Radiology and Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60611 USA
| |
Collapse
|
19
|
Vu J, Bhusal B, Rosenow J, Pilitsis J, Golestanirad L. Modifying surgical implantation of deep brain stimulation leads significantly reduces RF-induced heating during 3 T MRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4978-4981. [PMID: 34892325 DOI: 10.1109/embc46164.2021.9629553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Radiofrequency (RF) heating of tissue during magnetic resonance imaging (MRI) is a known safety risk in the presence of active implantable medical devices (AIMDs). As a result, access to MRI is limited for patients with these implants including those with deep brain stimulation (DBS) systems. Numerous factors contribute to excessive RF tissue heating at the DBS lead-tip, most notable being the trajectory of the lead. Phantom studies have demonstrated that looping the extracranial portion of the DBS lead at the surgical burr hole reduces the heating at the lead-tip; however, clinical implementation of this technique is challenging due to surgical constraints. As such, the intended looped trajectory is usually different from what is implanted in patients. To date, no data is available to quantify the extent by which surgical trajectory modification reduces RF heating of DBS leads compared to the typical surgical approach. In this work, we measured RF heating of a commercial DBS system during 3 T MRI, where the trajectory of the lead and extension cable mimicked lead trajectories constructed from postoperative CT images of 13 patients undergoing modified DBS surgery and 2 patients with unmodified trajectories. Two manually created trajectories mimicking typical heating cases seen in the literature were also evaluated. We found that modified lead trajectories reduced the average heating by 3-folds compared to unmodified lead trajectories.Clinical Relevance- This study evaluates the performance of a surgical modification in the routing of DBS leads in reducing RF-induced heating during MRI at 3 T.
Collapse
|
20
|
Vu J, Nguyen BT, Bhusal B, Baraboo J, Rosenow J, Bagci U, Bright MG, Golestanirad L. Machine learning-based prediction of MRI-induced power absorption in the tissue in patients with simplified deep brain stimulation lead models. IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY 2021; 63:1757-1766. [PMID: 34898696 PMCID: PMC8654205 DOI: 10.1109/temc.2021.3106872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Interaction of an active electronic implant such as a deep brain stimulation (DBS) system and MRI RF fields can induce excessive tissue heating, limiting MRI accessibility. Efforts to quantify RF heating mostly rely on electromagnetic (EM) simulations to assess individualized specific absorption rate (SAR), but such simulations require extensive computational resources. Here, we investigate if a predictive model using machine learning (ML) can predict the local SAR in the tissue around tips of implanted leads from the distribution of the tangential component of the MRI incident electric field, Etan. A dataset of 260 unique patient-derived and artificial DBS lead trajectories was constructed, and the 1 g-averaged SAR, 1gSARmax, at the lead-tip during 1.5 T MRI was determined by EM simulations. Etan values along each lead's trajectory and the simulated SAR values were used to train and test the ML algorithm. The resulting predictions of the ML algorithm indicated that the distribution of Etan could effectively predict 1gSARmax at the DBS lead-tip (R = 0.82). Our results indicate that ML has the potential to provide a fast method for predicting MR-induced power absorption in the tissue around tips of implanted leads such as those in active electronic medical devices.
Collapse
Affiliation(s)
- Jasmine Vu
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Bach T Nguyen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bhumi Bhusal
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Justin Baraboo
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Joshua Rosenow
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ulas Bagci
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Molly G Bright
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Laleh Golestanirad
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
21
|
Bhusal B, Stockmann J, Guerin B, Mareyam A, Kirsch J, Wald LL, Nolt MJ, Rosenow J, Lopez-Rosado R, Elahi B, Golestanirad L. Safety and image quality at 7T MRI for deep brain stimulation systems: Ex vivo study with lead-only and full-systems. PLoS One 2021; 16:e0257077. [PMID: 34492090 PMCID: PMC8423254 DOI: 10.1371/journal.pone.0257077] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/23/2021] [Indexed: 11/19/2022] Open
Abstract
Ultra-high field MRI at 7 T can produce much better visualization of sub-cortical structures compared to lower field, which can greatly help target verification as well as overall treatment monitoring for patients with deep brain stimulation (DBS) implants. However, use of 7 T MRI for such patients is currently contra-indicated by guidelines from the device manufacturers due to the safety issues. The aim of this study was to provide an assessment of safety and image quality of ultra-high field magnetic resonance imaging at 7 T in patients with deep brain stimulation implants. We performed experiments with both lead-only and complete DBS systems implanted in anthropomorphic phantoms. RF heating was measured for 43 unique patient-derived device configurations. Magnetic force measurements were performed according to ASTM F2052 test method, and device integrity was assessed before and after experiments. Finally, we assessed electrode artifact in a cadaveric brain implanted with an isolated DBS lead. RF heating remained below 2°C, similar to a fever, with the 95% confidence interval between 0.38°C-0.52°C. Magnetic forces were well below forces imposed by gravity, and thus not a source of concern. No device malfunctioning was observed due to interference from MRI fields. Electrode artifact was most noticeable on MPRAGE and T2*GRE sequences, while it was minimized on T2-TSE images. Our work provides the safety assessment of ultra-high field MRI at 7 T in patients with DBS implants. Our results suggest that 7 T MRI may be performed safely in patients with DBS implants for specific implant models and MRI hardware.
Collapse
Affiliation(s)
- Bhumi Bhusal
- Department of Radiology, Northwestern University, Chicago, IL, United States of America
| | - Jason Stockmann
- Department of Radiology, Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States of America
| | - Bastien Guerin
- Department of Radiology, Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States of America
| | - Azma Mareyam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States of America
| | - John Kirsch
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States of America
| | - Lawrence L. Wald
- Department of Radiology, Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States of America
| | - Mark J. Nolt
- Department of Neurosurgery, Northwestern University, Chicago, IL, United States of America
| | - Joshua Rosenow
- Department of Neurosurgery, Northwestern University, Chicago, IL, United States of America
| | - Roberto Lopez-Rosado
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States of America
| | - Behzad Elahi
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States of America
| | - Laleh Golestanirad
- Department of Radiology, Northwestern University, Chicago, IL, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
| |
Collapse
|
22
|
Silemek B, Seifert F, Petzold J, Hoffmann W, Pfeiffer H, Speck O, Rose G, Ittermann B, Winter L. Rapid safety assessment and mitigation of radiofrequency induced implant heating using small root mean square sensors and the sensor matrix Q s. Magn Reson Med 2021; 87:509-527. [PMID: 34397114 DOI: 10.1002/mrm.28968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE Rapid detection and mitigation of radiofrequency (RF)-induced implant heating during MRI based on small and low-cost embedded sensors. THEORY AND METHODS A diode and a thermistor are embedded at the tip of an elongated mock implant. RF-induced voltages or temperature change measured by these root mean square (RMS) sensors are used to construct the sensor Q-Matrix (QS ). Hazard prediction, monitoring and parallel transmit (pTx)-based mitigation using these sensors is demonstrated in benchtop measurements at 300 MHz and within a 3T MRI. RESULTS QS acquisition and mitigation can be performed in <20 ms demonstrating real-time capability. The acquisitions can be performed using safe low powers (<3 W) due to the high reading precision of the diode (126 µV) and thermistor (26 µK). The orthogonal projection method used for pTx mitigation was able to reduce the induced signals and temperatures in all 155 investigated locations. Using the QS approach in a pTx capable 3T MRI with either a two-channel body coil or an eight-channel head coil, RF-induced heating was successfully assessed, monitored and mitigated while the image quality outside the implant region was preserved. CONCLUSION Small (<1.5 mm3 ) and low-cost (<1 €) RMS sensors embedded in an implant can provide all relevant information to predict, monitor and mitigate RF-induced heating in implants, while preserving image quality. The proposed pTx-based QS approach is independent of simulations or in vitro testing and therefore complements these existing safety assessments.
Collapse
Affiliation(s)
- Berk Silemek
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Werner Hoffmann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Harald Pfeiffer
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Oliver Speck
- Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Georg Rose
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Institute for Medical Engineering and Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
23
|
Kazemivalipour E, Bhusal B, Vu J, Lin S, Nguyen BT, Kirsch J, Nowac E, Pilitsis J, Rosenow J, Atalar E, Golestanirad L. Vertical open-bore MRI scanners generate significantly less radiofrequency heating around implanted leads: A study of deep brain stimulation implants in 1.2T OASIS scanners versus 1.5T horizontal systems. Magn Reson Med 2021; 86:1560-1572. [PMID: 33961301 DOI: 10.1002/mrm.28818] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Patients with active implants such as deep brain stimulation (DBS) devices are often denied access to MRI due to safety concerns associated with the radiofrequency (RF) heating of their electrodes. The majority of studies on RF heating of conductive implants have been performed in horizontal close-bore MRI scanners. Vertical MRI scanners which have a 90° rotated transmit coil generate fundamentally different electric and magnetic field distributions, yet very little is known about RF heating of implants in this class of scanners. We performed numerical simulations as well as phantom experiments to compare RF heating of DBS implants in a 1.2T vertical scanner (OASIS, Hitachi) compared to a 1.5T horizontal scanner (Aera, Siemens). METHODS Simulations were performed on 90 lead models created from post-operative CT images of patients with DBS implants. Experiments were performed with wires and commercial DBS devices implanted in an anthropomorphic phantom. RESULTS We found significant reduction of 0.1 g-averaged specific absorption rate (30-fold, P < 1 × 10-5 ) and RF heating (9-fold, P < .026) in the 1.2T vertical scanner compared to the 1.5T conventional scanner. CONCLUSION Vertical MRI scanners appear to generate lower RF heating around DBS leads, providing potentially heightened safety or the flexibility to use sequences with higher power levels than on conventional systems.
Collapse
Affiliation(s)
- Ehsan Kazemivalipour
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Bhumi Bhusal
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jasmine Vu
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | - Stella Lin
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Bach Thanh Nguyen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John Kirsch
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Elizabeth Nowac
- Department of Neurosurgery, Albany Medical Center, Albany, New York, USA
| | - Julie Pilitsis
- Illinois Bone and Joint Institute (IBJI), Wilmette, Illinois, USA
| | - Joshua Rosenow
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Laleh Golestanirad
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
24
|
Bhusal B, Keil B, Rosenow J, Kazemivalipour E, Golestanirad L. Patient's body composition can significantly affect RF power deposition in the tissue around DBS implants: ramifications for lead management strategies and MRI field-shaping techniques. Phys Med Biol 2021; 66:015008. [PMID: 33238247 DOI: 10.1088/1361-6560/abcde9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Patients with active implants such as deep brain stimulation (DBS) devices have limited access to magnetic resonance imaging (MRI) due to risks associated with RF heating of implants in MRI environment. With an aging population and increased prevalence of neurodegenerative disease, the indication for MRI exams in patients with such implants increases as well. In response to this growing need, many groups have investigated strategies to mitigate RF heating of DBS implants during MRI. These efforts fall into two main categories: MRI field-shaping methods, where the electric field of the MRI RF coil is modified to reduce the interaction with implanted leads, and lead management techniques where surgical modifications in the trajectory reduces the coupling with RF fields. Studies that characterize these techniques, however, have relied either on simulations with homogenous body models, or experiments with box-shaped single-material phantoms. It is well established, however, that the shape and heterogeneity of human body affects the distribution of RF electric fields, which by proxy, alters the heating of an implant inside the body. In this contribution, we applied numerical simulations and phantom experiments to examine the degree to which variations in patient's body composition affects RF power deposition. We then assessed effectiveness of RF-heating mitigation strategies under variant patient body compositions. Our results demonstrated that patient's body composition substantially alters RF power deposition in the tissue around implanted leads. However, both techniques based on MRI field-shaping and DBS lead management performed well under variant body types.
Collapse
Affiliation(s)
- Bhumi Bhusal
- Department of Radiology, Northwestern University, Chicago, IL, United States of America
| | | | | | | | | |
Collapse
|
25
|
Nguyen BT, Pilitsis J, Golestanirad L. The effect of simulation strategies on prediction of power deposition in the tissue around electronic implants during magnetic resonance imaging. ACTA ACUST UNITED AC 2020; 65:185007. [DOI: 10.1088/1361-6560/abac9f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Bhusal B, Nguyen BT, Sanpitak PP, Vu J, Elahi B, Rosenow J, Nolt MJ, Lopez‐Rosado R, Pilitsis J, DiMarzio M, Golestanirad L. Effect of Device Configuration and Patient's Body Composition on the
RF
Heating and Nonsusceptibility Artifact of Deep Brain Stimulation Implants During
MRI
at 1.5T and 3T. J Magn Reson Imaging 2020; 53:599-610. [DOI: 10.1002/jmri.27346] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Bhumi Bhusal
- Department of Radiology Northwestern University Chicago Illinois USA
| | - Bach T. Nguyen
- Department of Radiology Northwestern University Chicago Illinois USA
| | - Pia P. Sanpitak
- Department of Biomedical Engineering Northwestern University Chicago Illinois USA
| | - Jasmine Vu
- Department of Radiology Northwestern University Chicago Illinois USA
- Department of Biomedical Engineering Northwestern University Chicago Illinois USA
| | - Behzad Elahi
- Department of Physical Therapy and Human Movement Sciences Northwestern University Chicago Illinois USA
| | - Joshua Rosenow
- Department of Neurosurgery Northwestern University Chicago Illinois USA
| | - Mark J. Nolt
- Department of Neurosurgery Northwestern University Chicago Illinois USA
| | - Roberto Lopez‐Rosado
- Department of Physical Therapy and Human Movement Sciences Northwestern University Chicago Illinois USA
| | - Julie Pilitsis
- Department of Neurosciences and Experimental Therapeutics Albany Medical College Albany New York USA
| | - Marisa DiMarzio
- Department of Neurosciences and Experimental Therapeutics Albany Medical College Albany New York USA
| | - Laleh Golestanirad
- Department of Radiology Northwestern University Chicago Illinois USA
- Department of Biomedical Engineering Northwestern University Chicago Illinois USA
| |
Collapse
|
27
|
Winter L, Silemek B, Petzold J, Pfeiffer H, Hoffmann W, Seifert F, Ittermann B. Parallel transmission medical implant safety testbed: Real‐time mitigation of RF induced tip heating using time‐domain E‐field sensors. Magn Reson Med 2020; 84:3468-3484. [DOI: 10.1002/mrm.28379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Lukas Winter
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Berk Silemek
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Johannes Petzold
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Harald Pfeiffer
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Werner Hoffmann
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Frank Seifert
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Bernd Ittermann
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| |
Collapse
|
28
|
Kazemivalipour E, Vu J, Lin S, Bhusal B, Thanh Nguyen B, Kirsch J, Elahi B, Rosenow J, Atalar E, Golestanirad L. RF heating of deep brain stimulation implants during MRI in 1.2 T vertical scanners versus 1.5 T horizontal systems: A simulation study with realistic lead configurations. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:6143-6146. [PMID: 33019373 PMCID: PMC10882580 DOI: 10.1109/embc44109.2020.9175737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Patients with deep brain stimulation (DBS) implants are often denied access to magnetic resonance imaging (MRI) due to safety concerns associated with RF heating of implants. Although MR-conditional DBS devices are available, complying with manufacturer guidelines has proved to be difficult as pulse sequences that optimally visualize DBS target structures tend to have much higher specific absorption rate (SAR) of radiofrequency energy than current guidelines allow. The MR-labeling of DBS devices, as well as the majority of studies on RF heating of conductive implants have been limited to horizontal close-bore MRI scanners. Vertical MRI scanners, originally introduced as open low-field MRI systems, are now available at 1.2 T field strength, capable of high-resolution structural and functional imaging. No literature exists on DBS SAR in this class of scanners which have a 90° rotated transmit coil and thus, generate a fundamentally different electric and magnetic field distributions. Here we present a simulation study of RF heating in a cohort of forty patient-derived DBS lead models during MRI in a commercially available vertical openbore MRI system (1.2 T OASIS, Hitachi) and a standard horizontal 1.5 T birdcage coil. Simulations were performed at two major imaging landmarks representing head and chest imaging. We calculated the maximum of 0.1g-averaged SAR (0.1g-SARMax) around DBS lead tips when a B1+ = 4 µT was generated on an axial plane passing through patients body. For head landmark, 0.1g-SARMax reached 220±188 W/kg in the 1.5 T birdcage coil, but only 14±11 W/kg in the OASIS coil. For chest landmark, 0.1g-SARMax was 24±17 W/kg in the 1.5 T birdcage coil and 3±2 W/kg in the OASIS coil. A paired two-tail t-test revealed a significant reduction in SAR with a large effect-size during head MRI (p < 1.5×10-8, Cohen's d = 1.5) as well as chest MRI (p < 6.5×10-10, Cohen's d = 1.7) in 1.2 T Hitachi OASIS coil compared to a standard 1.5 T birdcage transmitter. Our findings suggest that open-bore vertical scanners may offer an untapped opportunity for MRI of patients with DBS implants.
Collapse
|
29
|
Bhusal B, Nguyen BT, Vu J, Elahi B, Rosenow J, Nolt MJ, Pilitsis J, DiMarzio M, Golestanirad L. Device Configuration and Patient's Body Composition Significantly Affect RF Heating of Deep Brain Stimulation Implants During MRI: An Experimental Study at 1.5T and 3T. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:5192-5197. [PMID: 33019155 PMCID: PMC10900233 DOI: 10.1109/embc44109.2020.9175833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Patients with deep brain stimulation (DBS) devices have limited access to magnetic resonance imaging (MRI) due to safety concerns associated with RF heating generated around the implant. The problem of predicting RF heating of conductive leads is complex with a large parameter space and several interplaying factors. Recently however, off-label use of MRI in patients with DBS devices has been reported based on limited safety assessments, raising the concern that potentially dangerous scenarios may have been overlooked. In this work, we present results of a systematic assessment of RF heating of a commercial DBS device during MRI at 1.5T and 3T, taking into account the effect of device configuration, imaging landmark, and patient's body composition. Ninety-six (96) RF heating measurements were performed using anthropomorphic phantoms implanted with a full DBS system. We evaluated eight clinically relevant device configurations, implanted in phantoms with different material compositions, and imaged at three different landmarks (head, shoulder, and lower chest) in 1.5 T and 3T scanners. We observed a substantial fluctuation in the RF heating depending on phantom's composition and device configuration. RF heating in the brain-mimicking gel varied from 0.1°C to 12°C during 1.5 T MRI and from <0.1°C to 4.5°C during 3T MRI. We also observed that certain device configurations consistently reduced RF heating across different phantom compositions, imaging landmarks, and MRI transmit frequencies.
Collapse
|
30
|
Vu J, Bhusal B, Nguyen BT, Golestanirad L. Evaluating Accuracy of Numerical Simulations in Predicting Heating of Wire Implants During MRI at 1.5 T. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:6107-6110. [PMID: 33019364 PMCID: PMC10900227 DOI: 10.1109/embc44109.2020.9175724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Patients with long conductive implants such as deep brain stimulation (DBS) leads are often denied access to magnetic resonance imaging (MRI) exams due to safety concerns associated with radiofrequency (RF) heating of implants. Experimental temperature measurements in tissue-mimicking gel phantoms under MRI RF exposure conditions are common practices to predict in-vivo heating in the tissue surrounding wire implants. Such experiments are both expensive-as they require access to MRI units-and time-consuming due to complex implant setups. Recently, full-wave numerical simulations, which include realistic MRI RF coil models and human phantoms, are suggested as an alternative to experiments. There is however, little literature available on the accuracy of such numerical models against direct thermal measurements. This study aimed to evaluate the agreement between simulations and measurements of temperature rise at the tips of wire implants exposed to RF exposure at 64 MHz (1.5 T) for different implant trajectories typically encountered in patients with DBS leads. Heating was assessed in seven patient-derived lead configurations using both simulations and RF heating measurements during imaging of an anthropomorphic head phantom with implanted wires. We found substantial variation in RF heating as a function of lead trajectory; there was a 9.5-fold and 9-fold increase in temperature rise from ID1 to ID7 during simulations and experimental measurements, respectively. There was a strong correlation (r2 = 0.74) between simulated and measured temperatures for different lead trajectories. The maximum difference between simulated and measured temperature was 0.26 °C with simulations overestimating the temperature rise.
Collapse
|
31
|
Boutet A, Chow CT, Narang K, Elias GJB, Neudorfer C, Germann J, Ranjan M, Loh A, Martin AJ, Kucharczyk W, Steele CJ, Hancu I, Rezai AR, Lozano AM. Improving Safety of MRI in Patients with Deep Brain Stimulation Devices. Radiology 2020; 296:250-262. [PMID: 32573388 DOI: 10.1148/radiol.2020192291] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MRI is a valuable clinical and research tool for patients undergoing deep brain stimulation (DBS). However, risks associated with imaging DBS devices have led to stringent regulations, limiting the clinical and research utility of MRI in these patients. The main risks in patients with DBS devices undergoing MRI are heating at the electrode tips, induced currents, implantable pulse generator dysfunction, and mechanical forces. Phantom model studies indicate that electrode tip heating remains the most serious risk for modern DBS devices. The absence of adverse events in patients imaged under DBS vendor guidelines for MRI demonstrates the general safety of MRI for patients with DBS devices. Moreover, recent work indicates that-given adequate safety data-patients may be imaged outside these guidelines. At present, investigators are primarily focused on improving DBS device and MRI safety through the development of tools, including safety simulation models. Existing guidelines provide a standardized framework for performing safe MRI in patients with DBS devices. It also highlights the possibility of expanding MRI as a tool for research and clinical care in these patients going forward.
Collapse
Affiliation(s)
- Alexandre Boutet
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Clement T Chow
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Keshav Narang
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Gavin J B Elias
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Clemens Neudorfer
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Jürgen Germann
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Manish Ranjan
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Aaron Loh
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Alastair J Martin
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Walter Kucharczyk
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Christopher J Steele
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Ileana Hancu
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Ali R Rezai
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Andres M Lozano
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| |
Collapse
|
32
|
Zheng J, Lan Q, Kainz W, Long SA, Chen J. Genetic algorithm search for the worst-case MRI RF exposure for a multiconfiguration implantable fixation system modeled using artificial neural networks. Magn Reson Med 2020; 84:2754-2764. [PMID: 32459032 DOI: 10.1002/mrm.28319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/20/2020] [Accepted: 04/21/2020] [Indexed: 11/09/2022]
Abstract
PURPOSE This paper presents a method to search for the worst-case configuration leading to the highest RF exposure for a multiconfiguration implantable fixation system under MRI. METHODS A two-step method combining an artificial neural network and a genetic algorithm is developed to achieve this purpose. In the first step, the level of RF exposure in terms of peak 1-g and/or 10-g averaged specific absorption rate (SAR1g/10g ), related to the multiconfiguration system, is predicted using an artificial neural network. A genetic algorithm is then used to search for the worst-case configuration of this multidimensional nonlinear problem within both the enumerated discrete sample space and generalized continuous sample space. As an example, a generic plate system with a total of 576 configurations is used for both 1.5T and 3T MRI systems. RESULTS The presented method can effectively identify the worst-case configuration and accurately predict the SAR1g/10g with no more than 20% of the samples in the studied discrete sample space, and can even predict the worst case in the generalized continuous sample space. The worst-case prediction error in the generalized continuous sample space is less than 1.6% for SAR1g and less than 1.3% for SAR10g compared with the simulation results. CONCLUSION The combination of an artificial neural network with genetic algorithm is a robust technique to determine the worst-case RF exposure level for a multiconfiguration system, and only needs a small amount of training data from the entire system.
Collapse
Affiliation(s)
- Jianfeng Zheng
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Qianlong Lan
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Wolfgang Kainz
- Center for Devices and Radiological Health, Food and Drug Administration, Rockville, Maryland, USA
| | - Stuart A Long
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Ji Chen
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| |
Collapse
|
33
|
Winter L, Seifert F, Zilberti L, Murbach M, Ittermann B. MRI‐Related Heating of Implants and Devices: A Review. J Magn Reson Imaging 2020; 53:1646-1665. [DOI: 10.1002/jmri.27194] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Lukas Winter
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Frank Seifert
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Luca Zilberti
- Istituto Nazionale di Ricerca Metrologica Torino Italy
| | - Manuel Murbach
- ZMT Zurich MedTech AG Zurich Switzerland
- Institute for Molecular Instrumentation and Imaging (i3M) Universidad Politécnica de Valencia (UPV) Valencia Spain
| | - Bernd Ittermann
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| |
Collapse
|
34
|
Yang B, Tam F, Davidson B, Wei PS, Hamani C, Lipsman N, Chen CH, Graham SJ. Technical Note: An anthropomorphic phantom with implanted neurostimulator for investigation of MRI safety. Med Phys 2020; 47:3745-3751. [PMID: 32350868 DOI: 10.1002/mp.14214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The objective of this work was to design and construct an improved anthropomorphic phantom for use in studying magnetic resonance imaging (MRI) radiofrequency (RF) safety at 3 T related to deep brain stimulation (DBS), and especially the role of DBS lead trajectories. METHOD Based on a computer-aided design including reasonable representation of human features, the phantom was fabricated by three-dimensional (3D) printing and then fully assembled with a human skull, a commercial DBS device implanted using the surgical standard at our institution, and fiber-optic temperature sensors embedded in two tissue mimicking solutions (e.g., the heterogeneous setup). Preliminary MRI safety experiments were conducted using turbo spin-echo (TSE) imaging with the device powered on and powered off. These results were then compared to analogous results for a homogeneous phantom setup that filled the structure with a standard body average solution. RESULT Both phantom setups produced temperature increases of ~1.0°C, with a maximum increase of 1.1 ± 0.2°C recorded during imaging of the heterogeneous phantom setup. The preliminary experimental results suggest that improved phantom structures capable of replicating actual DBS lead trajectories may be advisable when conducting DBS-related MRI safety studies. CONCLUSION An anthropomorphic phantom was constructed with promising initial results indicating different DBS lead trajectories and phantom setups may impact temperature elevations along an implanted DBS lead. Although additional work will be necessary to validate its efficacy over conventional phantoms, the anthropomorphic phantom can likely be used in the future to assess different procedures for DBS lead placement, the RF power deposition of MRI protocols applicable to DBS patients, and to validate novel methods to reduce localized heating effects associated with DBS devices, such as parallel RF transmission.
Collapse
Affiliation(s)
- Benson Yang
- Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.,Department of Electrical and Computer Engineering, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Benjamin Davidson
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Pei-Shan Wei
- Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Nir Lipsman
- Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Chih-Hung Chen
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.,Department of Medical Biophysics, University of Toronto, 101 College St Suite 15-701, Toronto, ON, M5G 1L7, Canada
| |
Collapse
|
35
|
Golestanirad L, Kazemivalipour E, Lampman D, Habara H, Atalar E, Rosenow J, Pilitsis J, Kirsch J. RF heating of deep brain stimulation implants in open-bore vertical MRI systems: A simulation study with realistic device configurations. Magn Reson Med 2019; 83:2284-2292. [PMID: 31677308 DOI: 10.1002/mrm.28049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Patients with deep brain stimulation (DBS) implants benefit highly from MRI, however, access to MRI is restricted for these patients because of safety hazards associated with RF heating of the implant. To date, all MRI studies on RF heating of medical implants have been performed in horizontal closed-bore systems. Vertical MRI scanners have a fundamentally different distribution of electric and magnetic fields and are now available at 1.2T, capable of high-resolution structural and functional MRI. This work presents the first simulation study of RF heating of DBS implants in high-field vertical scanners. METHODS We performed finite element electromagnetic simulations to calculate specific absorption rate (SAR) at tips of DBS leads during MRI in a commercially available 1.2T vertical coil compared to a 1.5T horizontal scanner. Both isolated leads and fully implanted systems were included. RESULTS We found 10- to 30-fold reduction in SAR implication at tips of isolated DBS leads, and up to 19-fold SAR reduction at tips of leads in fully implanted systems in vertical coils compared to horizontal birdcage coils. CONCLUSIONS If confirmed in larger patient cohorts and verified experimentally, this result can open the door to plethora of structural and functional MRI applications to guide, interpret, and advance DBS therapy.
Collapse
Affiliation(s)
- Laleh Golestanirad
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois
| | - Ehsan Kazemivalipour
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | | | - Hideta Habara
- Hitachi, Ltd. Healthcare Business Unit, Tokyo, Japan
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Joshua Rosenow
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Julie Pilitsis
- Department of Neurosurgery, Albany Medical Center, Albany, New York
| | - John Kirsch
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
36
|
Golestanirad L, Kazemivalipour E, Keil B, Downs S, Kirsch J, Elahi B, Pilitsis J, Wald LL. Reconfigurable MRI coil technology can substantially reduce RF heating of deep brain stimulation implants: First in-vitro study of RF heating reduction in bilateral DBS leads at 1.5 T. PLoS One 2019; 14:e0220043. [PMID: 31390346 PMCID: PMC6685612 DOI: 10.1371/journal.pone.0220043] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Patients with deep brain stimulation (DBS) implants can significantly benefit from magnetic resonance imaging (MRI), however access to MRI is restricted in these patients because of safety concerns due to RF heating of the leads. Recently we introduced a patient-adjustable reconfigurable transmit coil for low-SAR imaging of DBS at 1.5T. A previous simulation study demonstrated a substantial reduction in the local SAR around single DBS leads in 9 unilateral lead models. This work reports the first experimental results of temperature measurement at the tips of bilateral DBS leads with realistic trajectories extracted from postoperative CT images of 10 patients (20 leads in total). A total of 200 measurements were performed to record temperature rise at the tips of the leads during 2 minutes of scanning with the coil rotated to cover all accessible rotation angles. In all patients, we were able to find an optimum coil rotation angle and reduced the heating of both left and right leads to a level below the heating produced by the body coil. An average heat reduction of 65% was achieved for bilateral leads. When considering each lead alone, an average heat reduction of 80% was achieved. Our results suggest that reconfigurable coil technology introduces a promising approach for imaging of patients with DBS implants.
Collapse
Affiliation(s)
- Laleh Golestanirad
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States of America
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Ehsan Kazemivalipour
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
| | - Boris Keil
- Department of Life Science Engineering, Institute of Medical Physics and Radiation Protection, Giessen, Germany
| | - Sean Downs
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States of America
| | - John Kirsch
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States of America
| | - Behzad Elahi
- Department of Neurology, Bryan Health, Lincoln, NE, United States of America
| | - Julie Pilitsis
- Department of Neurosurgery, Albany Medical Center, Albany, NY, United States of America
| | - Lawrence L. Wald
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States of America
| |
Collapse
|
37
|
A Platform for 4-Channel Parallel Transmission MRI at 3 T: Demonstration of Reduced Radiofrequency Heating in a Test Object Containing an Implanted Wire. J Med Biol Eng 2019. [DOI: 10.1007/s40846-019-00478-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Reconfigurable MRI technology for low-SAR imaging of deep brain stimulation at 3T: Application in bilateral leads, fully-implanted systems, and surgically modified lead trajectories. Neuroimage 2019; 199:18-29. [PMID: 31096058 DOI: 10.1016/j.neuroimage.2019.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 11/22/2022] Open
Abstract
Patients with deep brain stimulation devices highly benefit from postoperative MRI exams, however MRI is not readily accessible to these patients due to safety risks associated with RF heating of the implants. Recently we introduced a patient-adjustable reconfigurable coil technology that substantially reduced local SAR at tips of single isolated DBS leads during MRI at 1.5 T in 9 realistic patient models. This contribution extends our work to higher fields by demonstrating the feasibility of scaling the technology to 3T and assessing its performance in patients with bilateral leads as well as fully implanted systems. We developed patient-derived models of bilateral DBS leads and fully implanted DBS systems from postoperative CT images of 13 patients and performed finite element simulations to calculate SAR amplification at electrode contacts during MRI with a reconfigurable rotating coil at 3T. Compared to a conventional quadrature body coil, the reconfigurable coil system reduced the SAR on average by 83% for unilateral leads and by 59% for bilateral leads. A simple surgical modification in trajectory of implanted leads was demonstrated to increase the SAR reduction efficiency of the rotating coil to >90% in a patient with a fully implanted bilateral DBS system. Thermal analysis of temperature-rise around electrode contacts during typical brain exams showed a 15-fold heating reduction using the rotating coil, generating <1°C temperature rise during ∼4-min imaging with high-SAR sequences where a conventional CP coil generated >10°C temperature rise in the tissue for the same flip angle.
Collapse
|
39
|
Golestanirad L, Angelone LM, Kirsch J, Downs S, Keil B, Bonmassar G, Wald LL. Reducing RF-induced Heating near Implanted Leads through High-Dielectric Capacitive Bleeding of Current (CBLOC). IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 2019; 67:1265-1273. [PMID: 31607756 PMCID: PMC6788634 DOI: 10.1109/tmtt.2018.2885517] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Patients with implanted medical devices such as deep brain stimulation or spinal cord stimulation are often unable to receive magnetic resonance imaging (MRI). This is because once the device is within the radiofrequency (RF) field of the MRI scanner, electrically conductive leads act as antenna, amplifying the RF energy deposition in the tissue and causing possible excessive tissue heating. Here we propose a novel concept in lead design in which 40cm lead wires are coated with a ~1.2mm layer of high dielectric constant material (155 < ε r < 250) embedded in a weakly conductive insulation (σ = 20S/m). The technique called High-Dielectric Capacitive Bleeding of Current, or CBLOC, works by forming a distributed capacitance along the lengths of the lead, efficiently dissipating RF energy before it reaches the exposed tip. Measurements during RF exposure at 64 MHz and 123 MHz demonstrated that CBLOC leads generated 20-fold less heating at 1.5 T, and 40-fold less heating at 3 T compared to control leads. Numerical simulations of RF exposure at 297 MHz (7T) predicted a 15-fold reduction in specific absorption rate (SAR) of RF energy around the tip of CBLOC leads compared to control leads.
Collapse
Affiliation(s)
- Laleh Golestanirad
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Charlestown, MA 02129 USA, and the Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Leonardo M Angelone
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Device and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD
| | - John Kirsch
- A. A. Martinos Center for Biomedical Imaging, Charlestown MA 02129 USA (, , , )
| | - Sean Downs
- A. A. Martinos Center for Biomedical Imaging, Charlestown MA 02129 USA (, , , )
| | - Boris Keil
- Department of Life Science Engineering, Institute of Medical Physics and Radiation Protection, Giessen, Germany
| | - Giorgio Bonmassar
- A. A. Martinos Center for Biomedical Imaging, Charlestown MA 02129 USA (, , , )
| | - Lawrence L Wald
- A. A. Martinos Center for Biomedical Imaging, Charlestown MA 02129 USA (, , , )
| |
Collapse
|
40
|
McElcheran CE, Golestanirad L, Iacono MI, Wei PS, Yang B, Anderson KJT, Bonmassar G, Graham SJ. Numerical Simulations of Realistic Lead Trajectories and an Experimental Verification Support the Efficacy of Parallel Radiofrequency Transmission to Reduce Heating of Deep Brain Stimulation Implants during MRI. Sci Rep 2019; 9:2124. [PMID: 30765724 PMCID: PMC6375985 DOI: 10.1038/s41598-018-38099-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Patients with deep brain stimulation (DBS) implants may be subject to heating during MRI due to interaction with excitatory radiofrequency (RF) fields. Parallel RF transmit (pTx) has been proposed to minimize such RF-induced heating in preliminary proof-of-concept studies. The present work evaluates the efficacy of pTx technique on realistic lead trajectories obtained from nine DBS patients. Electromagnetic simulations were performed using 4- and 8-element pTx coils compared with a standard birdcage coil excitation using patient models and lead trajectories obtained by segmentation of computed tomography data. Numerical optimization was performed to minimize local specific absorption rate (SAR) surrounding the implant tip while maintaining spatial homogeneity of the transmitted RF magnetic field (B1+), by varying the input amplitude and phase for each coil element. Local SAR was significantly reduced at the lead tip with both 4-element and 8-element pTx (median decrease of 94% and 97%, respectively), whereas the median coefficient of spatial variation of B1+ inhomogeneity was moderately increased (30% for 4-element pTx and 20% for 8-element pTx) compared to that of the birdcage coil (17%). Furthermore, the efficacy of optimized 4-element pTx was verified experimentally by imaging a head phantom that included a wire implanted to approximate the worst-case lead trajectory for localized heating, based on the simulations. Negligible temperature elevation was observed at the lead tip, with reasonable image uniformity in the surrounding region. From this experiment and the simulations based on nine DBS patient models, optimized pTx provides a robust approach to minimizing local SAR with respect to lead trajectory.
Collapse
Affiliation(s)
- C E McElcheran
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - L Golestanirad
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - M I Iacono
- Division of Biomedical Physic, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - P-S Wei
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
| | - B Yang
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
| | - K J T Anderson
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
| | - G Bonmassar
- Athinoula A. Martinos Center For Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - S J Graham
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
41
|
Zivkovic I, Teeuwisse W, Slobozhanyuk A, Nenasheva E, Webb A. High permittivity ceramics improve the transmit field and receive efficiency of a commercial extremity coil at 1.5 Tesla. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 299:59-65. [PMID: 30580045 DOI: 10.1016/j.jmr.2018.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE The purpose of this work is to investigate the use of ceramic materials (based on BaTiO3 with ZrO2 and CeO2-additives) with very high relative permittivity (εr ∼ 4500) to increase the local transmit field and signal-to-noise ratio (SNR) for commercial extremity coils on a clinical 1.5 T MRI system. METHODS Electromagnetic simulations of transmit efficiency and specific absorption rate (SAR) were performed using four ferroelectric ceramic blocks placed around a cylindrical phantom, as well as placing these ceramics around the wrist of a human body model. Results were compared with experimental scans using the transmit body coil of the 1.5 T MRI system and an eight-element extremity receive array designed for the wrist. SNR measurements were also performed for both phantom and in vivo scans. RESULTS Electromagnetic simulations and phantom/in vivo experiments showed an increased in the local transmit efficiency from the body coil of ∼20-30%, resulting in an ∼50% lower transmit power level and a significant reduction in local and global SAR throughout the body. For in vivo wrist experiments, the SNR of a commercial eight-channel receive array, integrated over the entire volume, was improved by ∼45% with the ceramic. CONCLUSION The local transmit efficiency as well as the SNR can be increased for 1.5 T extremity MRI with commercial array coils by using materials with very high permittivity.
Collapse
Affiliation(s)
- Irena Zivkovic
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Wouter Teeuwisse
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alexey Slobozhanyuk
- Department of Nanophotonics and Metamaterials, ITMO University, Saint Petersburg, Russia
| | | | - Andrew Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
42
|
RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management. Neuroimage 2018; 184:566-576. [PMID: 30243973 DOI: 10.1016/j.neuroimage.2018.09.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 11/21/2022] Open
Abstract
Access to MRI is limited for patients with deep brain stimulation (DBS) implants due to safety hazards, including radiofrequency (RF) heating of tissue surrounding the leads. Computational models provide an exquisite tool to explore the multi-variate problem of RF heating and help better understand the interaction of electromagnetic fields and biological tissues. This paper presents a computational approach to assess RF-induced heating, in terms of specific absorption rate (SAR) in the tissue, around the tip of bilateral DBS leads during MRI at 64MHz/1.5 T and 127 MHz/3T. Patient-specific realistic lead models were constructed from post-operative CT images of nine patients operated for sub-thalamic nucleus DBS. Finite element method was applied to calculate the SAR at the tip of left and right DBS contact electrodes. Both transmit head coils and transmit body coils were analyzed. We found a substantial difference between the SAR and temperature rise at the tip of right and left DBS leads, with the lead contralateral to the implanted pulse generator (IPG) exhibiting up to 7 times higher SAR in simulations, and up to 10 times higher temperature rise during measurements. The orientation of incident electric field with respect to lead trajectories was explored and a metric to predict local SAR amplification was introduced. Modification of the lead trajectory was shown to substantially reduce the heating in phantom experiments using both conductive wires and commercially available DBS leads. Finally, the surgical feasibility of implementing the modified trajectories was demonstrated in a patient operated for bilateral DBS.
Collapse
|
43
|
Golestanirad L, Gale JT, Manzoor NF, Park HJ, Glait L, Haer F, Kaltenbach JA, Bonmassar G. Solenoidal Micromagnetic Stimulation Enables Activation of Axons With Specific Orientation. Front Physiol 2018; 9:724. [PMID: 30140230 PMCID: PMC6094965 DOI: 10.3389/fphys.2018.00724] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/24/2018] [Indexed: 01/28/2023] Open
Abstract
Electrical stimulation of the central and peripheral nervous systems - such as deep brain stimulation, spinal cord stimulation, and epidural cortical stimulation are common therapeutic options increasingly used to treat a large variety of neurological and psychiatric conditions. Despite their remarkable success, there are limitations which if overcome, could enhance outcomes and potentially reduce common side-effects. Micromagnetic stimulation (μMS) was introduced to address some of these limitations. One of the most remarkable properties is that μMS is theoretically capable of activating neurons with specific axonal orientations. Here, we used computational electromagnetic models of the μMS coils adjacent to neuronal tissue combined with axon cable models to investigate μMS orientation-specific properties. We found a 20-fold reduction in the stimulation threshold of the preferred axonal orientation compared to the orthogonal direction. We also studied the directional specificity of μMS coils by recording the responses evoked in the inferior colliculus of rodents when a pulsed magnetic stimulus was applied to the surface of the dorsal cochlear nucleus. The results confirmed that the neuronal responses were highly sensitive to changes in the μMS coil orientation. Accordingly, our results suggest that μMS has the potential of stimulating target nuclei in the brain without affecting the surrounding white matter tracts.
Collapse
Affiliation(s)
- Laleh Golestanirad
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - John T Gale
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
| | - Nauman F Manzoor
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States.,Ear, Nose and Throat Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Hyun-Joo Park
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Lyall Glait
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States.,Ear, Nose and Throat Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | | | - James A Kaltenbach
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
44
|
Golestanirad L, Rahsepar AA, Kirsch JE, Suwa K, Collins JC, Angelone LM, Keil B, Passman RS, Bonmassar G, Serano P, Krenz P, DeLap J, Carr JC, Wald LL. Changes in the specific absorption rate (SAR) of radiofrequency energy in patients with retained cardiac leads during MRI at 1.5T and 3T. Magn Reson Med 2018; 81:653-669. [PMID: 29893997 PMCID: PMC6258273 DOI: 10.1002/mrm.27350] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/08/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE To evaluate the local specific absorption rate (SAR) and heating around retained cardiac leads during MRI at 64 MHz (1.5T) and 127 MHz (3T) as a function of RF coil type and imaging landmark. METHODS Numerical models of retained cardiac leads were built from CT and X-ray images of 6 patients with retained cardiac leads. Electromagnetic simulations and bio-heat modeling were performed with MRI RF body and head coils tuned to 64 MHz and 127 MHz and positioned at 9 different imaging landmarks covering an area from the head to the lower limbs. RESULTS For all patients and at both 1.5T and 3T, local transmit head coils produced negligible temperature rise ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>Δ</mml:mo> <mml:mi>T</mml:mi> <mml:mo><</mml:mo> <mml:mn>0.1</mml:mn> <mml:mo>°</mml:mo> <mml:mi>C</mml:mi></mml:mrow> </mml:math> ) for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mrow><mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo> <mml:mrow><mml:msubsup><mml:mi>B</mml:mi> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo></mml:msubsup> </mml:mrow> <mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo></mml:mrow> <mml:mo>≤</mml:mo> <mml:mn>3</mml:mn> <mml:mo> </mml:mo> <mml:mo>μ</mml:mo> <mml:mi>T</mml:mi></mml:mrow> </mml:math> . For body imaging with quadrature-driven coils at 1.5T, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>Δ</mml:mo> <mml:mi>T</mml:mi></mml:mrow> </mml:math> during a 10-min scan remained < 3°C at all imaging landmarks for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mrow><mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo> <mml:mrow><mml:msubsup><mml:mi>B</mml:mi> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo></mml:msubsup> </mml:mrow> <mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo></mml:mrow> <mml:mo>≤</mml:mo> <mml:mn>3</mml:mn> <mml:mo> </mml:mo> <mml:mo>μ</mml:mo> <mml:mi>T</mml:mi></mml:mrow> </mml:math> and <6°C for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mrow><mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo> <mml:mrow><mml:msubsup><mml:mi>B</mml:mi> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo></mml:msubsup> </mml:mrow> <mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo></mml:mrow> <mml:mo>≤</mml:mo> <mml:mn>4</mml:mn> <mml:mo> </mml:mo> <mml:mo>μ</mml:mo> <mml:mi>T</mml:mi></mml:mrow> </mml:math> . For body imaging at 3T, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>Δ</mml:mo> <mml:mi>T</mml:mi></mml:mrow> </mml:math> during a 10-min scan remained < 6°C at all imaging landmarks for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mrow><mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo> <mml:mrow><mml:msubsup><mml:mi>B</mml:mi> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo></mml:msubsup> </mml:mrow> <mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo></mml:mrow> <mml:mo>≤</mml:mo> <mml:mn>2</mml:mn> <mml:mo> </mml:mo> <mml:mo>μ</mml:mo> <mml:mi>T</mml:mi></mml:mrow> </mml:math> . For shorter pulse sequences up to 2 min, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>Δ</mml:mo> <mml:mi>T</mml:mi></mml:mrow> </mml:math> remained < 6°C for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mrow><mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo> <mml:mrow><mml:msubsup><mml:mi>B</mml:mi> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo></mml:msubsup> </mml:mrow> <mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo></mml:mrow> <mml:mo>≤</mml:mo> <mml:mn>3</mml:mn> <mml:mo> </mml:mo> <mml:mo>μ</mml:mo> <mml:mi>T</mml:mi></mml:mrow> </mml:math> . CONCLUSION For the models based on 6 patients studied, simulations suggest that MRI could be performed safely using a local head coil at both 1.5T and 3T, and with a body coil at 1.5T with pulses that produced <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mrow><mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo> <mml:mrow><mml:msubsup><mml:mi>B</mml:mi> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo></mml:msubsup> </mml:mrow> <mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo></mml:mrow> <mml:mo>≤</mml:mo> <mml:mn>4</mml:mn> <mml:mo> </mml:mo> <mml:mo>μ</mml:mo> <mml:mi>T</mml:mi></mml:mrow> </mml:math> . MRI at 3T could be performed safely in these patients using pulses with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mrow><mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo> <mml:mrow><mml:msubsup><mml:mi>B</mml:mi> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo></mml:msubsup> </mml:mrow> <mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo></mml:mrow> <mml:mo>≤</mml:mo> <mml:mn>2</mml:mn> <mml:mo> </mml:mo> <mml:mo>μ</mml:mo> <mml:mi>T</mml:mi></mml:mrow> </mml:math> .
Collapse
Affiliation(s)
- Laleh Golestanirad
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Amir Ali Rahsepar
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - John E Kirsch
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Kenichiro Suwa
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Jeremy C Collins
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Leonardo M Angelone
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Boris Keil
- Department of Life Science Engineering, Institute of Medical Physics and Radiation Protection, Giessen, Germany
| | - Rod S Passman
- Division of Cardiology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Peter Serano
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland
| | | | - Jim DeLap
- ANSYS Inc., Canonsburg, Pennsylvania
| | - James C Carr
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|