1
|
Kim GS, Chandio BQ, Benavidez SM, Feng Y, Thompson PM, Lawrence KE. Mapping Along-Tract White Matter Microstructural Differences in Autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644498. [PMID: 40196471 PMCID: PMC11974747 DOI: 10.1101/2025.03.21.644498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Previous diffusion magnetic resonance imaging (dMRI) research has indicated altered white matter microstructure in autism, but the implicated regions are highly inconsistent across studies. Such prior work has largely used conventional dMRI analysis methods, including the traditional microstructure model, based on diffusion tensor imaging (DTI). However, these methods are limited in their ability to precisely map microstructural differences and accurately resolve complex fiber configurations. In our study, we investigated white matter microstructure alterations in autism using the refined along-tract analytic approach, BUndle ANalytics (BUAN), and an advanced microstructure model, the tensor distribution function (TDF). We analyzed dMRI data from 365 autistic and neurotypical participants (5-24 years; 34% female) from 10 cohorts to examine commissural and association tracts. Autism was associated with lower fractional anisotropy and higher diffusivity in localized portions of nearly every commissural and association tract examined; these tracts inter-connected a wide range of brain regions, including frontal, temporal, parietal, and occipital. Taken together, BUAN and TDF allow robust and spatially precise mapping of microstructural properties in autism. Our findings rigorously demonstrate that white matter microstructure alterations in autism may be greater within specific regions of individual tracts, and that the implicated tracts are distributed across the brain.
Collapse
Affiliation(s)
- Gaon S Kim
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| | - Bramsh Q Chandio
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| | - Sebastian M Benavidez
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| | - Yixue Feng
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| | - Katherine E Lawrence
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| |
Collapse
|
2
|
Brusini L, Dolci G, Pini L, Cruciani F, Pizzagalli F, Provero P, Menegaz G, Boscolo Galazzo I. Morphometric Similarity Patterning of Amyloid- β and Tau Proteins Correlates with Transcriptomics in the Alzheimer's Disease Continuum. Int J Mol Sci 2024; 25:12871. [PMID: 39684582 DOI: 10.3390/ijms252312871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Bridging the gap between cortical morphometric remodeling and gene expression can help to clarify the effects of the selective brain accumulation of Amyloid-β (Aβ) and tau proteins occurring in the Alzheimer's disease (AD). To this aim, we derived morphometric similarity (MS) networks from 126 Aβ- and tau-positive (Aβ+/tau+) and 172 Aβ-/tau- subjects, and we investigated the association between group-wise regional MS differences and transcriptional correlates thanks to an imaging transcriptomics approach grounded in the Allen Human Brain Atlas (AHBA). The expressed gene with the highest correlation with MS alterations was BCHE, a gene related to Aβ homeostasis. In addition, notably, among the most promising results derived from the enrichment analysis, we found the immune response to be a biological process and astrocytes, microglia, and oligodendrocyte precursors for the cell types. In summary, by relating cortical MS and AHBA-derived transcriptomics, we were able to retrieve findings suggesting the biological mechanisms underlying the Aβ- and tau- induced cortical MS alterations in the AD continuum.
Collapse
Affiliation(s)
- Lorenza Brusini
- Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy
| | - Giorgio Dolci
- Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy
- Department of Computer Science, University of Verona, 37134 Verona, Italy
| | - Lorenzo Pini
- Department of Neuroscience, University of Padova, 35121 Padova, Italy
| | - Federica Cruciani
- Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy
- Istituto Fondazione Oncologia Molecolare Ente del Terzo Settore (IFOM ETS)-The Associazione Italiana per la Ricerca sul Cancro (AIRC) Institute of Molecular Oncology, 20139 Milano, Italy
| | - Fabrizio Pizzagalli
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, 10126 Turin, Italy
| | - Paolo Provero
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, 10126 Turin, Italy
| | - Gloria Menegaz
- Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy
| | - Ilaria Boscolo Galazzo
- Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy
| |
Collapse
|
3
|
Brusini L, Cruciani F, Dall’Aglio G, Zajac T, Boscolo Galazzo I, Zucchelli M, Menegaz G. XAI-Based Assessment of the AMURA Model for Detecting Amyloid-β and Tau Microstructural Signatures in Alzheimer's Disease. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2024; 12:569-579. [PMID: 39155922 PMCID: PMC11329216 DOI: 10.1109/jtehm.2024.3430035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/24/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024]
Abstract
Brain microstructural changes already occur in the earliest phases of Alzheimer's disease (AD) as evidenced in diffusion magnetic resonance imaging (dMRI) literature. This study investigates the potential of the novel dMRI Apparent Measures Using Reduced Acquisitions (AMURA) as imaging markers for capturing such tissue modifications.Tract-based spatial statistics (TBSS) and support vector machines (SVMs) based on different measures were exploited to distinguish between amyloid-beta/tau negative (A[Formula: see text]-/tau-) and A[Formula: see text]+/tau+ or A[Formula: see text]+/tau- subjects. Moreover, eXplainable Artificial Intelligence (XAI) was used to highlight the most influential features in the SVMs classifications and to validate the results by seeing the explanations' recurrence across different methods.TBSS analysis revealed significant differences between A[Formula: see text]-/tau- and other groups in line with the literature. The best SVM classification performance reached an accuracy of 0.73 by using advanced measures compared to more standard ones. Moreover, the explainability analysis suggested the results' stability and the central role of the cingulum to show early sign of AD.By relying on SVM classification and XAI interpretation of the outcomes, AMURA indices can be considered viable markers for amyloid and tau pathology. Clinical impact: This pre-clinical research revealed AMURA indices as viable imaging markers for timely AD diagnosis by acquiring clinically feasible dMR images, with advantages compared to more invasive methods employed nowadays.
Collapse
Affiliation(s)
- Lorenza Brusini
- Department of Engineering for Innovation MedicineUniversity of VeronaVerona37134Italy
| | - Federica Cruciani
- Department of Engineering for Innovation MedicineUniversity of VeronaVerona37134Italy
| | | | - Tommaso Zajac
- Department of Computer ScienceUniversity of VeronaVerona37134Italy
| | | | - Mauro Zucchelli
- Department of Research and Development Advanced ApplicationsOlea MedicalLa Ciotat13600France
| | - Gloria Menegaz
- Department of Engineering for Innovation MedicineUniversity of VeronaVerona37134Italy
| |
Collapse
|
4
|
Benavidez SM, Abaryan Z, Kim GS, Laltoo E, McCracken JT, Thompson PM, Lawrence KE. Sex Differences in the Brain's White Matter Microstructure during Development assessed using Advanced Diffusion MRI Models. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-7. [PMID: 40039411 DOI: 10.1109/embc53108.2024.10781992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Typical sex differences in white matter (WM) microstructure during development are incompletely understood. Here we evaluated sex differences in WM microstructure during typical brain development using a sample of neurotypical individuals across a wide developmental age (N=239, aged 5-22 years). We used the conventional diffusion-weighted MRI (dMRI) model, diffusion tensor imaging (DTI), and two advanced dMRI models, the tensor distribution function (TDF) and neurite orientation dispersion density imaging (NODDI) to assess WM microstructure. WM microstructure exhibited significant, regionally consistent sex differences across the brain during typical development. Additionally, the TDF model was most sensitive in detecting sex differences. These findings highlight the importance of considering sex in neurodevelopmental research and underscore the value of the advanced TDF model.
Collapse
|
5
|
Feng Y, Chandio BQ, Villalon-Reina JE, Benavidez S, Chattopadhyay T, Chehrzadeh S, Laltoo E, Thomopoulos SI, Joshi H, Venkatasubramanian G, John JP, Jahanshad N, Thompson PM. Deep Normative Tractometry for Identifying Joint White Matter Macro- and Micro-structural Abnormalities in Alzheimer's Disease. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-7. [PMID: 40039444 DOI: 10.1109/embc53108.2024.10781681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
This study introduces the Deep Normative Tractometry (DNT) framework, that encodes the joint distribution of both macrostructural and microstructural profiles of the brain white matter tracts through a variational autoencoder (VAE). By training on data from healthy controls, DNT learns the normative distribution of tract data, and can delineate along-tract micro- and macro-structural abnormalities. Leveraging a large sample size via generative pre-training, we assess DNT's generalizability using transfer learning on data from an independent cohort acquired in India. Our findings demonstrate DNT's capacity to detect widespread diffusivity abnormalities along tracts in mild cognitive impairment and Alzheimer's disease, aligning closely with results from the Bundle Analytics (BUAN) tractometry pipeline. By incorporating tract geometry information, DNT may be able to distinguish disease-related abnormalities in anisotropy from tract macrostructure, and shows promise in enhancing fine-scale mapping and detection of white matter alterations in neurodegenerative conditions.
Collapse
|
6
|
Chattopadhyay T, Joshy NA, Ozarkar SS, Buwa K, Feng Y, Laltoo E, Thomopoulos SI, Villalon JE, Joshi H, Venkatasubramanian G, John JP, Thompson PM. Brain Age Analysis and Dementia Classification using Convolutional Neural Networks trained on Diffusion MRI: Tests in Indian and North American Cohorts. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-7. [PMID: 40039079 DOI: 10.1109/embc53108.2024.10781599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Deep learning models based on convolutional neural networks (CNNs) have been used to classify Alzheimer's disease or infer dementia severity from T1-weighted brain MRI scans. Here, we examine the value of adding diffusion-weighted MRI (dMRI) as an input to these models. Much research in this area focuses on specific datasets such as the Alzheimer's Disease Neuroimaging Initiative (ADNI), which assesses people of North American, largely European ancestry, so we examine how models trained on ADNI, generalize to a new population dataset from India (the NIMHANS cohort). We first benchmark our models by predicting "brain age" - the task of predicting a person's chronological age from their MRI scan and proceed to AD classification. We also evaluate the benefit of using a 3D CycleGAN approach to harmonize the imaging datasets before training the CNN models. Our experiments show that classification performance improves after harmonization in most cases, as well as better performance for dMRI as input.
Collapse
|
7
|
Chattopadhyay T, Joshy NA, Ozarkar SS, Buwa KS, Feng Y, Laltoo E, Thomopoulos SI, Villalon-Reina JE, Joshi H, Venkatasubramanian G, John JP, Thompson PM. Brain Age Analysis and Dementia Classification using Convolutional Neural Networks trained on Diffusion MRI: Tests in Indian and North American Cohorts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578829. [PMID: 38370641 PMCID: PMC10871286 DOI: 10.1101/2024.02.04.578829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Deep learning models based on convolutional neural networks (CNNs) have been used to classify Alzheimer's disease or infer dementia severity from T1-weighted brain MRI scans. Here, we examine the value of adding diffusion-weighted MRI (dMRI) as an input to these models. Much research in this area focuses on specific datasets such as the Alzheimer's Disease Neuroimaging Initiative (ADNI), which assesses people of North American, largely European ancestry, so we examine how models trained on ADNI, generalize to a new population dataset from India (the NIMHANS cohort). We first benchmark our models by predicting 'brain age' - the task of predicting a person's chronological age from their MRI scan and proceed to AD classification. We also evaluate the benefit of using a 3D CycleGAN approach to harmonize the imaging datasets before training the CNN models. Our experiments show that classification performance improves after harmonization in most cases, as well as better performance for dMRI as input.
Collapse
|
8
|
Benavidez SM, Abaryan Z, Kim GS, Laltoo E, McCracken JT, Thompson PM, Lawrence KE. Sex Differences in the Brain's White Matter Microstructure during Development assessed using Advanced Diffusion MRI Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578712. [PMID: 38352346 PMCID: PMC10862784 DOI: 10.1101/2024.02.02.578712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Typical sex differences in white matter (WM) microstructure during development are incompletely understood. Here we evaluated sex differences in WM microstructure during typical brain development using a sample of neurotypical individuals across a wide developmental age (N=239, aged 5-22 years). We used the conventional diffusion-weighted MRI (dMRI) model, diffusion tensor imaging (DTI), and two advanced dMRI models, the tensor distribution function (TDF) and neurite orientation dispersion density imaging (NODDI) to assess WM microstructure. WM microstructure exhibited significant, regionally consistent sex differences across the brain during typical development. Additionally, the TDF model was most sensitive in detecting sex differences. These findings highlight the importance of considering sex in neurodevelopmental research and underscore the value of the advanced TDF model.
Collapse
Affiliation(s)
- Sebastian M Benavidez
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA
| | - Zvart Abaryan
- Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Gaon S Kim
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA
| | - Emily Laltoo
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA
| | - James T McCracken
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA
| | - Katherine E Lawrence
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA
| |
Collapse
|
9
|
Feng Y, Chandio BQ, Villalon-Reina JE, Thomopoulos SI, Nir TM, Benavidez S, Laltoo E, Chattopadhyay T, Joshi H, Venkatasubramanian G, John JP, Jahanshad N, Reid RI, Jack CR, Weiner MW, Thompson PM. Microstructural Mapping of Neural Pathways in Alzheimer's Disease using Macrostructure-Informed Normative Tractometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591183. [PMID: 38712293 PMCID: PMC11071453 DOI: 10.1101/2024.04.25.591183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Introduction Diffusion MRI is sensitive to the microstructural properties of brain tissues, and shows great promise in detecting the effects of degenerative diseases. However, many approaches analyze single measures averaged over regions of interest, without considering the underlying fiber geometry. Methods Here, we propose a novel Macrostructure-Informed Normative Tractometry (MINT) framework, to investigate how white matter microstructure and macrostructure are jointly altered in mild cognitive impairment (MCI) and dementia. We compare MINT-derived metrics with univariate metrics from diffusion tensor imaging (DTI), to examine how fiber geometry may impact interpretation of microstructure. Results In two multi-site cohorts from North America and India, we find consistent patterns of microstructural and macrostructural anomalies implicated in MCI and dementia; we also rank diffusion metrics' sensitivity to dementia. Discussion We show that MINT, by jointly modeling tract shape and microstructure, has potential to disentangle and better interpret the effects of degenerative disease on the brain's neural pathways.
Collapse
Affiliation(s)
- Yixue Feng
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Bramsh Q. Chandio
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Julio E. Villalon-Reina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Talia M. Nir
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Sebastian Benavidez
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Emily Laltoo
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Tamoghna Chattopadhyay
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Himanshu Joshi
- Multimodal Brain Image Analysis Laboratory National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - John P. John
- Multimodal Brain Image Analysis Laboratory National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Robert I. Reid
- Department of Information Technology, Mayo Clinic and Foundation, Rochester, MN, United States
- Department of Radiology, Mayo Clinic and Foundation, Rochester, MN, United States
| | - Clifford R. Jack
- Department of Radiology, Mayo Clinic and Foundation, Rochester, MN, United States
| | - Michael W. Weiner
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, San Francisco, CA, United States
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | | |
Collapse
|
10
|
Feng Y, Chandio BQ, Villalon-Reina JE, Benavidez S, Chattopadhyay T, Chehrzadeh S, Laltoo E, Thomopoulos SI, Joshi H, Venkatasubramanian G, John JP, Jahanshad N, Thompson PM. Deep Normative Tractometry for Identifying Joint White Matter Macro- and Micro-structural Abnormalities in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578943. [PMID: 38370817 PMCID: PMC10871218 DOI: 10.1101/2024.02.05.578943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
This study introduces the Deep Normative Tractometry (DNT) framework, that encodes the joint distribution of both macrostructural and microstructural profiles of the brain white matter tracts through a variational autoencoder (VAE). By training on data from healthy controls, DNT learns the normative distribution of tract data, and can delineate along-tract micro-and macro-structural abnormalities. Leveraging a large sample size via generative pre-training, we assess DNT's generalizability using transfer learning on data from an independent cohort acquired in India. Our findings demonstrate DNT's capacity to detect widespread diffusivity abnormalities along tracts in mild cognitive impairment and Alzheimer's disease, aligning closely with results from the Bundle Analytics (BUAN) tractometry pipeline. By incorporating tract geometry information, DNT may be able to distinguish disease-related abnormalities in anisotropy from tract macrostructure, and shows promise in enhancing fine-scale mapping and detection of white matter alterations in neurodegenerative conditions.
Collapse
Affiliation(s)
- Yixue Feng
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Bramsh Q Chandio
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Julio E Villalon-Reina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Sebastian Benavidez
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Tamoghna Chattopadhyay
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Sasha Chehrzadeh
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Emily Laltoo
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Himanshu Joshi
- Multimodal Brain Image Analysis Laboratory, Translational Psychiatry Laboratory, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Ganesan Venkatasubramanian
- Multimodal Brain Image Analysis Laboratory, Translational Psychiatry Laboratory, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - John P John
- Multimodal Brain Image Analysis Laboratory, Translational Psychiatry Laboratory, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| |
Collapse
|
11
|
Dziadkowiak E, Koszewicz M, Podgórski P, Wieczorek M, Budrewicz S, Zimny A. Central nervous system involvement in chronic inflammatory demyelinating polyradiculoneuropathy-MRS and DTI study. Front Neurol 2024; 15:1301405. [PMID: 38333607 PMCID: PMC10850251 DOI: 10.3389/fneur.2024.1301405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Objective The current research aimed to analyze the alterations within the motor cortex and pyramidal pathways and their association with the degree of damage within the peripheral nerve fibers in patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). To achieve that goal, we investigated the microstructural changes within the pyramidal white matter tracts using diffusion tensor imaging (DTI) parameters, evaluated metabolic alterations in both precentral gyri using magnetic resonance spectroscopy (MRS) ratios, and correlated them with the neurographic findings in patients with CIDP. Methods The spectroscopic ratios of NAA/Cr, Cho/Cr, and mI/Cr from both precentral gyri and the values of fractional anisotropy (FA), axial diffusivity (AD), and mean diffusivity (MD) from both of the corticospinal tracts were correlated with the results of neurological and neurographic findings. The comparison of DTI parameters between the patients and controls was performed using Student's t-test or the Mann-Whitney U test. Due to the lack of normal distribution of most variables, Spearman's Rho rank coefficient was used to test all correlations. All analyses were performed at a significant level of alpha = 0.05 using STATISTICA 13.3. Results Compared to the control group (CG), the patient group showed significantly lower ratios of NAA/Cr (1.66 ± 0.11 vs. 1.61 ± 0.15; p = 0.022), higher ratios of ml/Cr in the right precentral gyrus (0.57 ± 0.15 vs. 0.61 ± 0.08; p = 0.005), and higher levels of Cho/Cr within the left precentral gyrus (0.83 ± 0.09 vs. 0.88 ± 0.14, p = 0.012). The DTI parameters of MD from the right CST and AD from the right and left CSTs showed a strong positive correlation (0.52-0.53) with the sural sensory nerve action potential (SNAP) latency of the right sural nerve. There were no other significant correlations between other DTI and MRS parameters and neurographic results. Significance In our study, significant metabolic alterations were found in the precentral gyri in patients with CIDP without clinical symptoms of central nervous system involvement. The revealed changes reflected neuronal loss or dysfunction, myelin degradation, and increased gliosis. Our results suggest coexisting CNS damage in these patients and may provide a new insight into the still unknown pathomechanism of CIDP.
Collapse
Affiliation(s)
- Edyta Dziadkowiak
- Department of Neurology, Wroclaw Medical University, Borowska, Wrocław, Poland
| | - Magdalena Koszewicz
- Department of Neurology, Wroclaw Medical University, Borowska, Wrocław, Poland
| | - Przemysław Podgórski
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska, Wrocław, Poland
| | - Małgorzata Wieczorek
- Faculty of Earth Sciences and Environmental Management, University of Wroclaw, Uniwersytecki, Wrocław, Poland
| | - Sławomir Budrewicz
- Department of Neurology, Wroclaw Medical University, Borowska, Wrocław, Poland
| | - Anna Zimny
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska, Wrocław, Poland
| |
Collapse
|
12
|
Miller B, Kim SJ, Mehta HH, Cao K, Kumagai H, Thumaty N, Leelaprachakul N, Braniff RG, Jiao H, Vaughan J, Diedrich J, Saghatelian A, Arpawong TE, Crimmins EM, Ertekin-Taner N, Tubi MA, Hare ET, Braskie MN, Décarie-Spain L, Kanoski SE, Grodstein F, Bennett DA, Zhao L, Toga AW, Wan J, Yen K, Cohen P. Mitochondrial DNA variation in Alzheimer's disease reveals a unique microprotein called SHMOOSE. Mol Psychiatry 2023; 28:1813-1826. [PMID: 36127429 PMCID: PMC10027624 DOI: 10.1038/s41380-022-01769-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 01/22/2023]
Abstract
Mitochondrial DNA variants have previously associated with disease, but the underlying mechanisms have been largely elusive. Here, we report that mitochondrial SNP rs2853499 associated with Alzheimer's disease (AD), neuroimaging, and transcriptomics. We mapped rs2853499 to a novel mitochondrial small open reading frame called SHMOOSE with microprotein encoding potential. Indeed, we detected two unique SHMOOSE-derived peptide fragments in mitochondria by using mass spectrometry-the first unique mass spectrometry-based detection of a mitochondrial-encoded microprotein to date. Furthermore, cerebrospinal fluid (CSF) SHMOOSE levels in humans correlated with age, CSF tau, and brain white matter volume. We followed up on these genetic and biochemical findings by carrying out a series of functional experiments. SHMOOSE acted on the brain following intracerebroventricular administration, differentiated mitochondrial gene expression in multiple models, localized to mitochondria, bound the inner mitochondrial membrane protein mitofilin, and boosted mitochondrial oxygen consumption. Altogether, SHMOOSE has vast implications for the fields of neurobiology, Alzheimer's disease, and microproteins.
Collapse
Affiliation(s)
- Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kevin Cao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hiroshi Kumagai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Neehar Thumaty
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Naphada Leelaprachakul
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Regina Gonzalez Braniff
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Henry Jiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Joan Vaughan
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jolene Diedrich
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Thalida E Arpawong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Eileen M Crimmins
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | | | - Meral A Tubi
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Evan T Hare
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Léa Décarie-Spain
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Scott E Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Francine Grodstein
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Lu Zhao
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Hoffman LJ, Mis RE, Brough C, Ramirez S, Langford D, Giovannetti T, Olson IR. Concussions in young adult athletes: No effect on cerebral white matter. Front Hum Neurosci 2023; 17:1113971. [PMID: 36936617 PMCID: PMC10014705 DOI: 10.3389/fnhum.2023.1113971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction The media's recent focus on possible negative health outcomes following sports- related concussion has increased awareness as well as anxiety among parents and athletes. However, the literature on concussion outcomes is equivocal and limited by a variety of diagnostic approaches. Methods The current study used a rigorous, open- access concussion identification method-the Ohio State University Traumatic Brain Injury Identification method (OSU TBI-ID) to identify concussion and periods of repeated, subclinical head trauma in 108 young adult athletes who also underwent a comprehensive protocol of cognitive tests, mood/anxiety questionnaires, and high-angular-resolution diffusion-weighted brain imaging to evaluate potential changes in white matter microstructure. Results Analyses showed that athletes with a history of repetitive, subclinical impacts to the head performed slightly worse on a measure of inhibitory impulse control and had more anxiety symptoms compared to those who never sustained any type of head injury but were otherwise the same as athletes with no history of concussion. Importantly, there were no group differences in cerebral white matter as measured by tract- based spatial statistics (TBSS), nor were there any associations between OSU TBI-ID measures and whole-brain principal scalars and free-water corrected scalars. Discussion Our results provide support for the hypothesis that it is not concussion per se, but repetitive head impacts that beget worse outcomes.
Collapse
Affiliation(s)
- Linda J. Hoffman
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, United States
| | - Rachel E. Mis
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, United States
| | - Caroline Brough
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, United States
| | - Servio Ramirez
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Dianne Langford
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Tania Giovannetti
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, United States
| | - Ingrid R. Olson
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, United States
- *Correspondence: Ingrid R. Olson,
| |
Collapse
|
14
|
Pomilio AB, Vitale AA, Lazarowski AJ. Neuroproteomics Chip-Based Mass Spectrometry and Other Techniques for Alzheimer´S Disease Biomarkers – Update. Curr Pharm Des 2022; 28:1124-1151. [DOI: 10.2174/1381612828666220413094918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Background:
Alzheimer's disease (AD) is a progressive neurodegenerative disease of growing interest given that there is cognitive damage and symptom onset acceleration. Therefore, it is important to find AD biomarkers for early diagnosis, disease progression, and discrimination of AD and other diseases.
Objective:
To update the relevance of mass spectrometry for the identification of peptides and proteins involved in AD useful as discriminating biomarkers.
Methods:
Proteomics and peptidomics technologies that show the highest possible specificity and selectivity for AD biomarkers are analyzed, together with the biological fluids used. In addition to positron emission tomography and magnetic resonance imaging, MALDI-TOF mass spectrometry is widely used to identify proteins and peptides involved in AD. The use of protein chips in SELDI technology and electroblotting chips for peptides makes feasible small amounts (L) of samples for analysis.
Results:
Suitable biomarkers are related to AD pathology, such as intracellular neurofibrillary tangles; extraneuronal senile plaques; neuronal and axonal degeneration; inflammation and oxidative stress. Recently, peptides were added to the candidate list, which are not amyloid-b or tau fragments, but are related to coagulation, brain plasticity, and complement/neuroinflammation systems involving the neurovascular unit.
Conclusion:
The progress made in the application of mass spectrometry and recent chip techniques is promising for discriminating between AD, mild cognitive impairment, and matched healthy controls. The application of this technique to blood samples from patients with AD has shown to be less invasive and fast enough to determine the diagnosis, stage of the disease, prognosis, and follow-up of the therapeutic response.
Collapse
Affiliation(s)
- Alicia B. Pomilio
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Arturo A. Vitale
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Alberto J. Lazarowski
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Córdoba 2351, C1120AAF Buenos Aires, Argentina
| |
Collapse
|
15
|
Badji A, Cohen-Adad J, Girouard H. Relationship Between Arterial Stiffness Index, Pulse Pressure, and Magnetic Resonance Imaging Markers of White Matter Integrity: A UK Biobank Study. Front Aging Neurosci 2022; 14:856782. [PMID: 35800980 PMCID: PMC9252854 DOI: 10.3389/fnagi.2022.856782] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/09/2022] [Indexed: 12/29/2022] Open
Abstract
Background Alzheimer's disease and dementia in general constitute one of the major public health problems of the 21st century. Research in arterial stiffness and pulse pressure (PP) play an important role in the quest to reduce the risk of developing dementia through controlling modifiable risk factors. Objective The aim of the study is to investigate the association between peripheral PP, arterial stiffness index (ASI) and brain integrity, and to discover if ASI is a better predictor of white matter integrity than peripheral PP. Materials and Methods 17,984 participants 63.09 ± 7.31 from the UK Biobank were used for this study. ASI was estimated using infrared light (photoplethysmography) and peripheral PP was calculated by subtracting the diastolic from the systolic brachial blood pressure value. Measure of fractional anisotropy (FA) was obtained from diffusion imaging to estimate white matter microstructural integrity. White matter hyperintensities were segmented from the combined T1 and T2-weighted FLAIR images as a measure of irreversible white matter damage. Results An important finding is that peripheral PP better predicts white matter integrity when compared to ASI. This finding is consistent until 75 years old. Interestingly, no significant relationship is found between either peripheral PP or ASI and white matter integrity after 75 years old. Conclusion These results suggest that ASI from plethysmography should not be used to estimate cerebrovascular integrity in older adults and further question the relationship between arterial stiffness, blood pressure, and white matter damage after the age of 75 years old.
Collapse
Affiliation(s)
- Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada.,Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada.,Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC, Canada.,Mila - Quebec AI Institute, Montréal, QC, Canada
| | - Hélène Girouard
- Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Groupe de Recherche sur le Système Nerveux Central, Montréal, QC, Canada.,Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Montréal, QC, Canada.,Groupe de Recherche Universitaire Sur le Médicament (GRUM), Montréal, QC, Canada
| |
Collapse
|
16
|
Lawrence KE, Nabulsi L, Santhalingam V, Abaryan Z, Villalon-Reina JE, Nir TM, Ba Gari I, Zhu AH, Haddad E, Muir AM, Laltoo E, Jahanshad N, Thompson PM. Age and sex effects on advanced white matter microstructure measures in 15,628 older adults: A UK biobank study. Brain Imaging Behav 2021; 15:2813-2823. [PMID: 34537917 PMCID: PMC8761720 DOI: 10.1007/s11682-021-00548-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
A comprehensive characterization of the brain's white matter is critical for improving our understanding of healthy and diseased aging. Here we used diffusion-weighted magnetic resonance imaging (dMRI) to estimate age and sex effects on white matter microstructure in a cross-sectional sample of 15,628 adults aged 45-80 years old (47.6% male, 52.4% female). Microstructure was assessed using the following four models: a conventional single-shell model, diffusion tensor imaging (DTI); a more advanced single-shell model, the tensor distribution function (TDF); an advanced multi-shell model, neurite orientation dispersion and density imaging (NODDI); and another advanced multi-shell model, mean apparent propagator MRI (MAPMRI). Age was modeled using a data-driven statistical approach, and normative centile curves were created to provide sex-stratified white matter reference charts. Participant age and sex substantially impacted many aspects of white matter microstructure across the brain, with the advanced dMRI models TDF and NODDI detecting such effects the most sensitively. These findings and the normative reference curves provide an important foundation for the study of healthy and diseased brain aging.
Collapse
Affiliation(s)
- Katherine E Lawrence
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA
| | - Leila Nabulsi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA
| | - Vigneshwaran Santhalingam
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA
| | - Zvart Abaryan
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA
| | - Julio E Villalon-Reina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA
| | - Talia M Nir
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA
| | - Iyad Ba Gari
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA
| | - Alyssa H Zhu
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA
| | - Elizabeth Haddad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA
| | - Alexandra M Muir
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA
| | - Emily Laltoo
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA, USA.
| |
Collapse
|
17
|
Toniolo S, Serra L, Olivito G, Caltagirone C, Mercuri NB, Marra C, Cercignani M, Bozzali M. Cerebellar White Matter Disruption in Alzheimer's Disease Patients: A Diffusion Tensor Imaging Study. J Alzheimers Dis 2021; 74:615-624. [PMID: 32065792 DOI: 10.3233/jad-191125] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The cognitive role of the cerebellum has recently gained much attention, and its pivotal role in Alzheimer's disease (AD) has now been widely recognized. Diffusion tensor imaging (DTI) has been used to evaluate the disruption of the microstructural milieu in AD, and though several white matter (WM) tracts such as corpus callosum, inferior and superior longitudinal fasciculus, cingulum, fornix, and uncinate fasciculus have been evaluated in AD, data on cerebellar WM tracts are currently lacking. We performed a tractography-based DTI reconstruction of the middle cerebellar peduncle (MCP), and the left and right superior cerebellar peduncles separately (SCPL and SCPR) and addressed the differences in fractional anisotropy (FA), axial diffusivity (Dax), radial diffusivity (RD), and mean diffusivity (MD) in the three tracts between 50 patients with AD and 25 healthy subjects. We found that AD patients showed a lower FA and a higher RD compared to healthy subjects in MCP, SCPL, and SCPR. Moreover, higher MD was found in SCPR and SCPL and higher Dax in SCPL. This result is important as it challenges the traditional view that WM bundles in the cerebellum are unaffected in AD and might identify new targets for therapeutic interventions.
Collapse
Affiliation(s)
- Sofia Toniolo
- Neuroimaging Laboratory, Fondazione Santa Lucia, IRCCS, Rome, Italy.,Department of Neuroscience, University of Rome 'Tor Vergata', Rome, Italy
| | - Laura Serra
- Neuroimaging Laboratory, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Research Laboratory-Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Caltagirone
- Department of Neuroscience, University of Rome 'Tor Vergata', Rome, Italy.,Ataxia Research Laboratory-Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Camillo Marra
- Department of Clinical and Behavioural Neurology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | | | - Marco Bozzali
- Neuroimaging Laboratory, Fondazione Santa Lucia, IRCCS, Rome, Italy.,Institute of Neurology, Catholic University, Rome, Italy
| |
Collapse
|
18
|
Dennis EL, Caeyenberghs K, Asarnow RF, Babikian T, Bartnik-Olson B, Bigler ED, Figaji A, Giza CC, Goodrich-Hunsaker NJ, Hodges CB, Hoskinson KR, Königs M, Levin HS, Lindsey HM, Livny A, Max JE, Merkley TL, Newsome MR, Olsen A, Ryan NP, Spruiell MS, Suskauer SJ, Thomopoulos SI, Ware AL, Watson CG, Wheeler AL, Yeates KO, Zielinski BA, Thompson PM, Tate DF, Wilde EA. Challenges and opportunities for neuroimaging in young patients with traumatic brain injury: a coordinated effort towards advancing discovery from the ENIGMA pediatric moderate/severe TBI group. Brain Imaging Behav 2021; 15:555-575. [PMID: 32734437 PMCID: PMC7855317 DOI: 10.1007/s11682-020-00363-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in children in both developed and developing nations. Children and adolescents suffer from TBI at a higher rate than the general population, and specific developmental issues require a unique context since findings from adult research do not necessarily directly translate to children. Findings in pediatric cohorts tend to lag behind those in adult samples. This may be due, in part, both to the smaller number of investigators engaged in research with this population and may also be related to changes in safety laws and clinical practice that have altered length of hospital stays, treatment, and access to this population. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric Moderate/Severe TBI (msTBI) group aims to advance research in this area through global collaborative meta-analysis of neuroimaging data. In this paper, we discuss important challenges in pediatric TBI research and opportunities that we believe the ENIGMA Pediatric msTBI group can provide to address them. With the paucity of research studies examining neuroimaging biomarkers in pediatric patients with TBI and the challenges of recruiting large numbers of participants, collaborating to improve statistical power and to address technical challenges like lesions will significantly advance the field. We conclude with recommendations for future research in this field of study.
Collapse
Affiliation(s)
- Emily L Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA.
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, MA, USA.
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Robert F Asarnow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- Brain Research Institute, UCLA, Los Angeles, CA, USA
- Department of Psychology, UCLA, Los Angeles, CA, USA
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Erin D Bigler
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Anthony Figaji
- Division of Neurosurgery, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Christopher C Giza
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Naomi J Goodrich-Hunsaker
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - Cooper B Hodges
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - Kristen R Hoskinson
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Marsh Königs
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Emma Neuroscience Group, Amsterdam, The Netherlands
| | - Harvey S Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Hannah M Lindsey
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - Abigail Livny
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat Gan, Tel-Hashomer, Israel
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Tel-Hashomer, Israel
| | - Jeffrey E Max
- Department of Psychiatry, University of California, La Jolla, San Diego, CA, USA
- Department of Psychiatry, Rady Children's Hospital, San Diego, CA, USA
| | - Tricia L Merkley
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Mary R Newsome
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Nicholas P Ryan
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
- Department of Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Matthew S Spruiell
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Stacy J Suskauer
- Kennedy Krieger Institute, Baltimore, MD, USA
- Departments of Physical Medicine & Rehabilitation and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
| | - Ashley L Ware
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Christopher G Watson
- Department of Pediatrics, Children's Learning Institute, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anne L Wheeler
- Hospital for Sick Children, Neuroscience and Mental Health Program, Toronto, Canada
- Physiology Department, University of Toronto, Toronto, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Brandon A Zielinski
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - David F Tate
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
- Missouri Institute of Mental Health and University of Missouri, St Louis, MO, USA
| | - Elisabeth A Wilde
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
19
|
Neuroimaging Advances in Diagnosis and Differentiation of HIV, Comorbidities, and Aging in the cART Era. Curr Top Behav Neurosci 2021; 50:105-143. [PMID: 33782916 DOI: 10.1007/7854_2021_221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the "cART era" of more widely available and accessible treatment, aging and HIV-related comorbidities, including symptoms of brain dysfunction, remain common among HIV-infected individuals on suppressive treatment. A better understanding of the neurobiological consequences of HIV infection is essential for developing thorough treatment guidelines and for optimizing long-term neuropsychological outcomes and overall brain health. In this chapter, we first summarize magnetic resonance imaging (MRI) methods used in over two decades of neuroHIV research. These methods evaluate brain volumetric differences and circuitry disruptions in adults living with HIV, and help map clinical correlations with brain function and tissue microstructure. We then introduce and discuss aging and associated neurological complications in people living with HIV, and processes by which infection may contribute to the risk for late-onset dementias. We describe how new technologies and large-scale international collaborations are helping to disentangle the effect of genetic and environmental risk factors on brain aging and neurodegenerative diseases. We provide insights into how these advances, which are now at the forefront of Alzheimer's disease research, may advance the field of neuroHIV. We conclude with a summary of how we see the field of neuroHIV research advancing in the decades to come and highlight potential clinical implications.
Collapse
|
20
|
Zhang Y, Vakhtin AA, Jennings JS, Massaband P, Wintermark M, Craig PL, Ashford JW, Clark JD, Furst AJ. Diffusion tensor tractography of brainstem fibers and its application in pain. PLoS One 2020; 15:e0213952. [PMID: 32069284 PMCID: PMC7028272 DOI: 10.1371/journal.pone.0213952] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 02/02/2020] [Indexed: 12/13/2022] Open
Abstract
Evaluation of brainstem pathways with diffusion tensor imaging (DTI) and tractography may provide insights into pathophysiologies associated with dysfunction of key brainstem circuits. However, identification of these tracts has been elusive, with relatively few in vivo human studies to date. In this paper we proposed an automated approach for reconstructing nine brainstem fiber trajectories of pathways that might be involved in pain modulation. We first performed native-space manual tractography of these fiber tracts in a small normative cohort of participants and confirmed the anatomical precision of the results using existing anatomical literature. Second, region-of-interest pairs were manually defined at each extracted fiber's termini and nonlinearly warped to a standard anatomical brain template to create an atlas of the region-of-interest pairs. The resulting atlas was then transformed non-linearly into the native space of 17 veteran patients' brains for automated brainstem tractography. Lastly, we assessed the relationships between the integrity levels of the obtained fiber bundles and pain severity levels. Fractional anisotropy (FA) measures derived using automated tractography reflected the respective tracts' FA levels obtained via manual tractography. A significant inverse relationship between FA and pain levels was detected within the automatically derived dorsal and medial longitudinal fasciculi of the brainstem. This study demonstrates the feasibility of DTI in exploring brainstem circuitries involved in pain processing. In this context, the described automated approach is a viable alternative to the time-consuming manual tractography. The physiological and functional relevance of the measures derived from automated tractography is evidenced by their relationships with individual pain severities.
Collapse
Affiliation(s)
- Yu Zhang
- War Related Illness and Injury Study Center (WRIISC), VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Andrei A. Vakhtin
- War Related Illness and Injury Study Center (WRIISC), VA Palo Alto Health Care System, Palo Alto, California, United States of America
- Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
| | - Jennifer S. Jennings
- War Related Illness and Injury Study Center (WRIISC), VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Payam Massaband
- Radiology, VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Max Wintermark
- Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
- Neuroradiology at Stanford University, Stanford, California, United States of America
| | - Patricia L. Craig
- Radiology, VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - J. Wesson Ashford
- War Related Illness and Injury Study Center (WRIISC), VA Palo Alto Health Care System, Palo Alto, California, United States of America
- Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
| | - J. David Clark
- Pain Clinic, VA Palo Alto Health Care System, Palo Alto, California, United States of America
- Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, California, United States of America
| | - Ansgar J. Furst
- War Related Illness and Injury Study Center (WRIISC), VA Palo Alto Health Care System, Palo Alto, California, United States of America
- Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
- Neurology and Neurological Sciences, Stanford University, Stanford, California, United States of America
| |
Collapse
|
21
|
Horgusluoglu-Moloch E, Xiao G, Wang M, Wang Q, Zhou X, Nho K, Saykin AJ, Schadt E, Zhang B. Systems modeling of white matter microstructural abnormalities in Alzheimer's disease. Neuroimage Clin 2020; 26:102203. [PMID: 32062565 PMCID: PMC7025138 DOI: 10.1016/j.nicl.2020.102203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 01/06/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Microstructural abnormalities in white matter (WM) are often reported in Alzheimer's disease (AD). However, it is unclear which brain regions have the strongest WM changes in presymptomatic AD and what biological processes underlie WM abnormality during disease progression. METHODS We developed a systems biology framework to integrate matched diffusion tensor imaging (DTI), genetic and transcriptomic data to investigate regional vulnerability to AD and identify genetic risk factors and gene subnetworks underlying WM abnormality in AD. RESULTS We quantified regional WM abnormality and identified most vulnerable brain regions. A SNP rs2203712 in CELF1 was most significantly associated with several DTI-derived features in the hippocampus, the top ranked brain region. An immune response gene subnetwork in the blood was most correlated with DTI features across all the brain regions. DISCUSSION Incorporation of image analysis with gene network analysis enhances our understanding of disease progression and facilitates identification of novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Emrin Horgusluoglu-Moloch
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Gaoyu Xiao
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA.
| |
Collapse
|
22
|
Zavaliangos-Petropulu A, Nir TM, Thomopoulos SI, Reid RI, Bernstein MA, Borowski B, Jack CR, Weiner MW, Jahanshad N, Thompson PM. Diffusion MRI Indices and Their Relation to Cognitive Impairment in Brain Aging: The Updated Multi-protocol Approach in ADNI3. Front Neuroinform 2019; 13:2. [PMID: 30837858 PMCID: PMC6390411 DOI: 10.3389/fninf.2019.00002] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/21/2019] [Indexed: 12/14/2022] Open
Abstract
Brain imaging with diffusion-weighted MRI (dMRI) is sensitive to microstructural white matter (WM) changes associated with brain aging and neurodegeneration. In its third phase, the Alzheimer's Disease Neuroimaging Initiative (ADNI3) is collecting data across multiple sites and scanners using different dMRI acquisition protocols, to better understand disease effects. It is vital to understand when data can be pooled across scanners, and how the choice of dMRI protocol affects the sensitivity of extracted measures to differences in clinical impairment. Here, we analyzed ADNI3 data from 317 participants (mean age: 75.4 ± 7.9 years; 143 men/174 women), who were each scanned at one of 47 sites with one of six dMRI protocols using scanners from three different manufacturers. We computed four standard diffusion tensor imaging (DTI) indices including fractional anisotropy (FADTI) and mean, radial, and axial diffusivity, and one FA index based on the tensor distribution function (FATDF), in 24 bilaterally averaged WM regions of interest. We found that protocol differences significantly affected dMRI indices, in particular FADTI. We ranked the diffusion indices for their strength of association with four clinical assessments. In addition to diagnosis, we evaluated cognitive impairment as indexed by three commonly used screening tools for detecting dementia and AD: the AD Assessment Scale (ADAS-cog), the Mini-Mental State Examination (MMSE), and the Clinical Dementia Rating scale sum-of-boxes (CDR-sob). Using a nested random-effects regression model to account for protocol and site, we found that across all dMRI indices and clinical measures, the hippocampal-cingulum and fornix (crus)/stria terminalis regions most consistently showed strong associations with clinical impairment. Overall, the greatest effect sizes were detected in the hippocampal-cingulum (CGH) and uncinate fasciculus (UNC) for associations between axial or mean diffusivity and CDR-sob. FATDF detected robust widespread associations with clinical measures, while FADTI was the weakest of the five indices for detecting associations. Ultimately, we were able to successfully pool dMRI data from multiple acquisition protocols from ADNI3 and detect consistent and robust associations with clinical impairment and age.
Collapse
Affiliation(s)
- Artemis Zavaliangos-Petropulu
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Talia M Nir
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Robert I Reid
- Department of Information Technology, Mayo Clinic and Foundation, Rochester, MN, United States
| | - Matt A Bernstein
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Bret Borowski
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Michael W Weiner
- Department of Radiology, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| |
Collapse
|
23
|
|
24
|
Gullett JM, Lamb DG, Porges E, Woods AJ, Rieke J, Thompson P, Jahanshad N, Nir TM, Tashima K, Cohen RA. The Impact of Alcohol Use on Frontal White Matter in HIV. Alcohol Clin Exp Res 2018; 42:1640-1649. [PMID: 29957870 PMCID: PMC6120768 DOI: 10.1111/acer.13823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/23/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alcohol use disorder (AUD) is prevalent among individuals diagnosed with human immunodeficiency virus (HIV), and both HIV and alcohol use have been shown to negatively affect the integrity of white matter pathways in the brain. Behavioral, functional, and anatomical impairments have been linked independently to HIV and alcohol use, and these impairments have bases in specific frontally mediated pathways within the brain. METHODS Magnetic resonance imaging data were acquired for 37 HIV+ participants without dementia or hepatitis C. Imaging data were processed through the FreeSurfer and TraCULA pipelines to obtain 4 bilateral frontal white matter tracts for each participant. Diffusion metrics of white matter integrity along the highest probability pathway for each tract were analyzed with respect to demographics, disease-specific variables, and reported substance use. RESULTS Significantly increased axial diffusivity (decreased axonal integrity) and a trending increase in mean diffusivity were observed along the anterior thalamic radiation (ATR) in participants with a history of AUD. A diagnosis of AUD explained over 36% of the variance in diffusivity along the ATR overall when accounting for clinical variables including nadir CD4 and age-adjusted HIV infection length. CONCLUSIONS This study provides evidence of HIV-related associations between alcohol use and indicators of axonal integrity loss along the ATR, a frontal pathway involved in the inhibition of addictive or unwanted behaviors. Reduced axonal integrity of this pathway was greatest in HIV+ participants with an AUD, even when considering the effect of age-adjusted disease length and severity (nadir CD4). This finding implicates a potential biological mechanism linking reduced integrity of frontal white matter to the high prevalence of AUD in an HIV+ population without dementia or hepatitis C.
Collapse
Affiliation(s)
- Joseph M. Gullett
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL
| | - Damon G. Lamb
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL
- Department of Neurology, University of Florida, Gainesville, FL
| | - Eric Porges
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL
| | - Adam J. Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL
| | - Jake Rieke
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL
| | - Paul Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, USC Keck School of Medicine, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, USC Keck School of Medicine, Marina del Rey, CA, USA
| | - Talia M. Nir
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, USC Keck School of Medicine, Marina del Rey, CA, USA
| | - Karen Tashima
- The Miriam Hospital, Alpert College of Medicine, Brown University, Providence, RI
| | - Ronald A. Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL
| |
Collapse
|