1
|
Chen X, Wu J, Yang Y, Chen H, Zhou Y, Lin L, Wei Z, Xu J, Chen Z, Chen L. Boosting quantification accuracy of chemical exchange saturation transfer MRI with a spatial-spectral redundancy-based denoising method. NMR IN BIOMEDICINE 2024; 37:e5027. [PMID: 37644611 DOI: 10.1002/nbm.5027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
Chemical exchange saturation transfer (CEST) is a versatile technique that enables noninvasive detections of endogenous metabolites present in low concentrations in living tissue. However, CEST imaging suffers from an inherently low signal-to-noise ratio (SNR) due to the decreased water signal caused by the transfer of saturated spins. This limitation challenges the accuracy and reliability of quantification in CEST imaging. In this study, a novel spatial-spectral denoising method, called BOOST (suBspace denoising with nOnlocal lOw-rank constraint and Spectral local-smooThness regularization), was proposed to enhance the SNR of CEST images and boost quantification accuracy. More precisely, our method initially decomposes the noisy CEST images into a low-dimensional subspace by leveraging the global spectral low-rank prior. Subsequently, a spatial nonlocal self-similarity prior is applied to the subspace-based images. Simultaneously, the spectral local-smoothness property of Z-spectra is incorporated by imposing a weighted spectral total variation constraint. The efficiency and robustness of BOOST were validated in various scenarios, including numerical simulations and preclinical and clinical conditions, spanning magnetic field strengths from 3.0 to 11.7 T. The results demonstrated that BOOST outperforms state-of-the-art algorithms in terms of noise elimination. As a cost-effective and widely available post-processing method, BOOST can be easily integrated into existing CEST protocols, consequently promoting accuracy and reliability in detecting subtle CEST effects.
Collapse
Affiliation(s)
- Xinran Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Jian Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Yu Yang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Huan Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Yang Zhou
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Liangjie Lin
- Clinical & Technical Support, Philips Healthcare, Beijing, China
| | - Zhiliang Wei
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Li H, Yang M, Kim JH, Zhang C, Liu R, Huang P, Liang D, Zhang X, Li X, Ying L. SuperMAP: Deep ultrafast MR relaxometry with joint spatiotemporal undersampling. Magn Reson Med 2023; 89:64-76. [PMID: 36128884 PMCID: PMC9617769 DOI: 10.1002/mrm.29411] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To develop an ultrafast and robust MR parameter mapping network using deep learning. THEORY AND METHODS We design a deep learning framework called SuperMAP that directly converts a series of undersampled (both in k-space and parameter-space) parameter-weighted images into several quantitative maps, bypassing the conventional exponential fitting procedure. We also present a novel technique to simultaneously reconstruct T1rho and T2 relaxation maps within a single scan. Full data were acquired and retrospectively undersampled for training and testing using traditional and state-of-the-art techniques for comparison. Prospective data were also collected to evaluate the trained network. The performance of all methods is evaluated using the parameter qualification errors and other metrics in the segmented regions of interest. RESULTS SuperMAP achieved accurate T1rho and T2 mapping with high acceleration factors (R = 24 and R = 32). It exploited both spatial and temporal information and yielded low error (normalized mean square error of 2.7% at R = 24 and 2.8% at R = 32) and high resemblance (structural similarity of 97% at R = 24 and 96% at R = 32) to the gold standard. The network trained with retrospectively undersampled data also works well for the prospective data (with a slightly lower acceleration factor). SuperMAP is also superior to conventional methods. CONCLUSION Our results demonstrate the feasibility of generating superfast MR parameter maps through very few undersampled parameter-weighted images. SuperMAP can simultaneously generate T1rho and T2 relaxation maps in a short scan time.
Collapse
Affiliation(s)
- Hongyu Li
- Electrical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mingrui Yang
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, Ohio, USA
| | - Jee Hun Kim
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, Ohio, USA
| | - Chaoyi Zhang
- Electrical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ruiying Liu
- Electrical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Peizhou Huang
- Electrical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Medical AI research center, SIAT, CAS, Shenzhen, China
| | - Xiaoliang Zhang
- Biomedical Engineering, University at Buffalo, State University at New York, Buffalo, NY, USA
| | - Xiaojuan Li
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, Ohio, USA
| | - Leslie Ying
- Electrical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
- Biomedical Engineering, University at Buffalo, State University at New York, Buffalo, NY, USA
| |
Collapse
|
3
|
Liu S, Li H, Liu Y, Cheng G, Yang G, Wang H, Zheng H, Liang D, Zhu Y. Highly accelerated MR parametric mapping by undersampling the k-space and reducing the contrast number simultaneously with deep learning. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8c81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/24/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Introduction. To propose a novel deep learning-based method called RG-Net (reconstruction and generation network) for highly accelerated MR parametric mapping by undersampling k-space and reducing the acquired contrast number simultaneously. Methods. The proposed framework consists of a reconstruction module and a generative module. The reconstruction module reconstructs MR images from the acquired few undersampled k-space data with the help of a data prior. The generative module then synthesizes the remaining multi-contrast images from the reconstructed images, where the exponential model is implicitly incorporated into the image generation through the supervision of fully sampled labels. The RG-Net was trained and tested on the T1ρ
mapping data from 8 volunteers at net acceleration rates of 17, respectively. Regional T1ρ
analysis for cartilage and the brain was performed to assess the performance of RG-Net. Results. RG-Net yields a high-quality T1ρ
map at a high acceleration rate of 17. Compared with the competing methods that only undersample k-space, our framework achieves better performance in T1ρ
value analysis. Conclusion. The proposed RG-Net can achieve a high acceleration rate while maintaining good reconstruction quality by undersampling k-space and reducing the contrast number simultaneously for fast MR parametric mapping. The generative module of our framework can also be used as an insertable module in other fast MR parametric mapping methods.
Collapse
|
4
|
Fu Z, Johnson K, Altbach MI, Bilgin A. Cancellation of streak artifacts in radial abdominal imaging using interference null space projection. Magn Reson Med 2022; 88:1355-1369. [PMID: 35608238 PMCID: PMC9973517 DOI: 10.1002/mrm.29285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE In radial abdominal imaging, it has been commonly observed that signal from the arms cause streaks due to system imperfections. We previously introduced a streak removal technique (B-STAR), which is inherently spatially variant and limited to work in image space. In this work, we propose a spatially invariant streak cancellation technique (CACTUS), which can be applied in either image space or k-space and is compatible with iterative reconstructions. THEORY AND METHODS Streak sources are typically spatially localized and can be represented using a low-dimensional subspace. CACTUS identifies the streak subspace by leveraging the spatial redundancy of receiver coils and projects the data onto the streak null space to eliminate the streaks. When applied in k-space, CACTUS can be combined with iterative reconstructions. CACTUS was tested in phantoms and in vivo abdominal imaging using a radial turbo spin-echo pulse sequence. RESULTS In phantoms, CACTUS improved T2 estimation in comparison to previous de-streaking methods. In vivo experiments showed that CACTUS reduced streaks and yielded T2 estimation, in regions affected by streaks, closer to a streak-free reference. Evaluation using a clinical abdominal dataset (n = 20) showed that CACTUS is comparable to B-STAR and yields significantly better signal preservation and streak cancellation than coil removal and suppression methods. CONCLUSION CACTUS provides superior signal preservation and streak reduction performance compared to coil removal and suppression methods. As a clear advantage over B-STAR, CACTUS can be integrated with iterative reconstruction methods. In abdominal T2 mapping, CACTUS improves the accuracy of parameter estimation in areas affected by streaks.
Collapse
Affiliation(s)
- Zhiyang Fu
- Department of Medical Imaging, The University of Arizona, Tucson, Arizona, USA
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona, USA
| | - Kevin Johnson
- Department of Medical Imaging, The University of Arizona, Tucson, Arizona, USA
| | - Maria I. Altbach
- Department of Medical Imaging, The University of Arizona, Tucson, Arizona, USA
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona, USA
| | - Ali Bilgin
- Department of Medical Imaging, The University of Arizona, Tucson, Arizona, USA
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona, USA
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
5
|
Byanju R, Klein S, Cristobal-Huerta A, Hernandez-Tamames JA, Poot DH. Time efficiency analysis for undersampled quantitative MRI acquisitions. Med Image Anal 2022; 78:102390. [DOI: 10.1016/j.media.2022.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/12/2021] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
|
6
|
Pandey S, Snider AD, Moreno WA, Ravi H, Bilgin A, Raghunand N. Joint total variation-based reconstruction of multiparametric magnetic resonance images for mapping tissue types. NMR IN BIOMEDICINE 2021; 34:e4597. [PMID: 34390047 PMCID: PMC11773768 DOI: 10.1002/nbm.4597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Multispectral analysis of coregistered multiparametric magnetic resonance (MR) images provides a powerful method for tissue phenotyping and segmentation. Acquisition of a sufficiently varied set of multicontrast MR images and parameter maps to objectively define multiple normal and pathologic tissue types can require long scan times. Accelerated MRI on clinical scanners with multichannel receivers exploits techniques such as parallel imaging, while accelerated preclinical MRI scanning must rely on alternate approaches. In this work, tumor-bearing mice were imaged at 7 T to acquire k-space data corresponding to a series of images with varying T1-, T2- and T2*-weighting. A joint reconstruction framework is proposed to reconstruct a series of T1-weighted images and corresponding T1 maps simultaneously from undersampled Cartesian k-space data. The ambiguity introduced by undersampling was resolved by using model-based constraints and structural information from a reference fully sampled image as the joint total variation prior. This process was repeated to reconstruct T2-weighted and T2*-weighted images and corresponding maps of T2 and T2* from undersampled Cartesian k-space data. Validation of the reconstructed images and parameter maps was carried out by computing tissue-type maps, as well as maps of the proton density fat fraction (PDFF), proton density water fraction (PDwF), fat relaxation rate ( R 2 f * ) and water relaxation rate ( R 2 w * ) from the reconstructed data, and comparing them with ground truth (GT) equivalents. Tissue-type maps computed using 18% k-space data were visually similar to GT tissue-type maps, with dice coefficients ranging from 0.43 to 0.73 for tumor, fluid adipose and muscle tissue types. The mean T1 and T2 values within each tissue type computed using only 18% k-space data were within 8%-10% of the GT values from fully sampled data. The PDFF and PDwF maps computed using 27% k-space data were within 3%-15% of GT values and showed good agreement with the expected values for the four tissue types.
Collapse
Affiliation(s)
- Shraddha Pandey
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33612, USA
| | - A. David Snider
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33612, USA
| | - Wilfrido A. Moreno
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33612, USA
| | - Harshan Ravi
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ali Bilgin
- Departments of Medical Imaging, Biomedical Engineering, and Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Natarajan Raghunand
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL, USA
| |
Collapse
|
7
|
Mandava S, Keerthivasan MB, Martin DR, Altbach MI, Bilgin A. Improving subspace constrained radial fast spin echo MRI using block matching driven non-local low rank regularization. Phys Med Biol 2021; 66:04NT03. [PMID: 33333497 PMCID: PMC8321599 DOI: 10.1088/1361-6560/abd4b8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Subspace-constrained reconstruction methods restrict the relaxation signals (of size M) in the scene to a pre-determined subspace (of size K≪M) and allow multi-contrast imaging and parameter mapping from accelerated acquisitions. However, these constraints yield poor image quality at some imaging contrasts, which can impact the parameter mapping performance. Additional regularization such as the use of joint-sparse (JS) or locally-low-rank (LLR) constraints can help improve the recovery of these images but are not sufficient when operating at high acceleration rates. We propose a method, non-local rank 3D (NLR3D), that is built on block matching and transform domain low rank constraints to allow high quality recovery of subspace-coefficient images (SCI) and subsequent multi-contrast imaging and parameter mapping. The performance of NLR3D was evaluated using Monte-Carlo (MC) simulations and compared against the JS and LLR methods. In vivo T 2 mapping results are presented on brain and knee datasets. MC results demonstrate improved bias, variance, and MSE behavior in both the multi-contrast images and parameter maps when compared to the JS and LLR methods. In vivo brain and knee results at moderate and high acceleration rates demonstrate improved recovery of high SNR early TE images as well as parameter maps. No significant difference was found in the T2 values measured in ROIs between the NLR3D reconstructions and the reference images (Wilcoxon signed rank test). The proposed method, NLR3D, enables recovery of high-quality SCI and, consequently, the associated multi-contrast images and parameter maps.
Collapse
Affiliation(s)
- Sagar Mandava
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| | - Mahesh B. Keerthivasan
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| | - Diego R. Martin
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| | - Maria I. Altbach
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - Ali Bilgin
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
8
|
Zi R, Zhu D, Qin Q. Quantitative T 2 mapping using accelerated 3D stack-of-spiral gradient echo readout. Magn Reson Imaging 2020; 73:138-147. [PMID: 32860871 PMCID: PMC7571618 DOI: 10.1016/j.mri.2020.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE To develop a rapid T2 mapping protocol using optimized spiral acquisition, accelerated reconstruction, and model fitting. MATERIALS AND METHODS A T2-prepared stack-of-spiral gradient echo (GRE) pulse sequence was applied. A model-based approach joined with compressed sensing was compared with the two methods applied separately for accelerated reconstruction and T2 mapping. A 2-parameter-weighted fitting method was compared with 2- or 3-parameter models for accurate T2 estimation under the influences of noise and B1 inhomogeneity. The performance was evaluated using both digital phantoms and healthy volunteers. Mitigating partial voluming with cerebrospinal fluid (CSF) was also tested. RESULTS Simulations demonstrates that the 2-parameter-weighted fitting approach was robust to a large range of B1 scales and SNR levels. With an in-plane acceleration factor of 5, the model-based compressed sensing-incorporated method yielded around 8% normalized errors compared to references. The T2 estimation with and without CSF nulling was consistent with literature values. CONCLUSION This work demonstrated the feasibility of a T2 quantification technique with 3D high-resolution and whole-brain coverage in 2-3 min. The proposed iterative reconstruction method, which utilized the model consistency, data consistency and spatial sparsity jointly, provided reasonable T2 estimation. The technique also allowed mitigation of CSF partial volume effect.
Collapse
Affiliation(s)
- Ruoxun Zi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan Zhu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qin Qin
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| |
Collapse
|
9
|
Fu Z, Mandava S, Keerthivasan MB, Li Z, Johnson K, Martin DR, Altbach MI, Bilgin A. A multi-scale residual network for accelerated radial MR parameter mapping. Magn Reson Imaging 2020; 73:152-162. [PMID: 32882339 PMCID: PMC7580302 DOI: 10.1016/j.mri.2020.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/17/2020] [Accepted: 08/20/2020] [Indexed: 01/04/2023]
Abstract
A deep learning MR parameter mapping framework which combines accelerated radial data acquisition with a multi-scale residual network (MS-ResNet) for image reconstruction is proposed. The proposed supervised learning strategy uses input image patches from multi-contrast images with radial undersampling artifacts and target image patches from artifact-free multi-contrast images. Subspace filtering is used during pre-processing to denoise input patches. For each anatomy and relaxation parameter, an individual network is trained. in vivo T1 mapping results are obtained on brain and abdomen datasets and in vivo T2 mapping results are obtained on brain and knee datasets. Quantitative results for the T2 mapping of the knee show that MS-ResNet trained using either fully sampled or undersampled data outperforms conventional model-based compressed sensing methods. This is significant because obtaining fully sampled training data is not possible in many applications. in vivo brain and abdomen results for T1 mapping and in vivo brain results for T2 mapping demonstrate that MS-ResNet yields contrast-weighted images and parameter maps that are comparable to those achieved by model-based iterative methods while offering two orders of magnitude reduction in reconstruction times. The proposed approach enables recovery of high-quality contrast-weighted images and parameter maps from highly accelerated radial data acquisitions. The rapid image reconstructions enabled by the proposed approach makes it a good candidate for routine clinical use.
Collapse
Affiliation(s)
- Zhiyang Fu
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA; Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Sagar Mandava
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA; Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Mahesh B Keerthivasan
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA; Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Zhitao Li
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA; Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Kevin Johnson
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Diego R Martin
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Maria I Altbach
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Ali Bilgin
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA; Department of Medical Imaging, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
10
|
Whitaker ST, Nataraj G, Nielsen JF, Fessler JA. Myelin water fraction estimation using small-tip fast recovery MRI. Magn Reson Med 2020; 84:1977-1990. [PMID: 32281179 PMCID: PMC7478173 DOI: 10.1002/mrm.28259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 11/09/2022]
Abstract
PURPOSE To demonstrate the feasibility of an optimized set of small-tip fast recovery (STFR) MRI scans for rapidly estimating myelin water fraction (MWF) in the brain. METHODS We optimized a set of STFR scans to minimize the Cramér-Rao Lower Bound of MWF estimates. We evaluated the RMSE of MWF estimates from the optimized scans in simulation. We compared STFR-based MWF estimates (both modeling exchange and not modeling exchange) to multi-echo spin echo (MESE)-based estimates. We used the optimized scans to acquire in vivo data from which a MWF map was estimated. We computed the STFR-based MWF estimates using PERK, a recently developed kernel regression technique, and the MESE-based MWF estimates using both regularized non-negative least squares (NNLS) and PERK. RESULTS In simulation, the optimized STFR scans led to estimates of MWF with low RMSE across a range of tissue parameters and across white matter and gray matter. The STFR-based MWF estimates that modeled exchange compared well to MESE-based MWF estimates in simulation. When the optimized scans were tested in vivo, the MWF map that was estimated using a 3-compartment model with exchange was closer to the MESE-based MWF map. CONCLUSIONS The optimized STFR scans appear to be well suited for estimating MWF in simulation and in vivo when we model exchange in training. In this case, the STFR-based MWF estimates are close to the MESE-based estimates.
Collapse
Affiliation(s)
- Steven T. Whitaker
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, USA
| | - Gopal Nataraj
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jon-Fredrik Nielsen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey A. Fessler
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Hu C, Peters DC. SUPER: A blockwise curve-fitting method for accelerating MR parametric mapping with fast reconstruction. Magn Reson Med 2019; 81:3515-3529. [PMID: 30656730 PMCID: PMC6435434 DOI: 10.1002/mrm.27662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 12/17/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE To investigate Shift Undersampling improves Parametric mapping Efficiency and Resolution (SUPER), a novel blockwise curve-fitting method for accelerating parametric mapping with very fast reconstruction. METHODS SUPER uses interleaved k-space undersampling, which enables a blockwise decomposition of the otherwise large-scale cost function to improve the reconstruction efficiency. SUPER can be readily combined with SENSE to achieve at least 4-fold acceleration. D-factor, a parametric-mapping counterpart of g-factor, was proposed and formulated to compare spatially heterogeneous noise amplification because of different acceleration methods. As a proof-of-concept, SUPER/SUPER-SENSE was validated using T1 mapping, by comparing them to alternative model-based methods, including MARTINI and GRAPPATINI, via simulations, phantom imaging, and in vivo brain imaging (N = 5), over criteria of normalized root-mean-squares error (NRMSE), average d-factor, and computational time per voxel (TPV). A novel SUPER-SENSE MOLLI cardiac T1 -mapping sequence with improved resolution (1.4 mm × 1.4 mm) was compared to standard MOLLI (1.9 mm × 2.5 mm) in 8 healthy subjects. RESULTS In brain imaging, 2-fold SUPER achieved lower NRMSE (0.04 ± 0.02 vs. 0.11 ± 0.02, P < 0.01), lower average d-factor (1.01 ± 0.002 vs. 1.12 ± 0.004, P < 0.001), and lower TPV (4.6 ms ± 0.2 ms vs. 79 ms ± 3 ms, P < 0.001) than 2-fold MARTINI. Similarly, 4-fold SUPER-SENSE achieved lower NRMSE (0.07 ± 0.01 vs. 0.13 ± 0.03, P = 0.02), lower average d-factor (1.15 ± 0.01 vs. 1.20 ± 0.01, P < 0.001), and lower TPV (4.0 ms ± 0.1 ms vs. 72 ms ± 3 ms, P < 0.001) than 4-fold GRAPPATINI. In cardiac T1 mapping, SUPER-SENSE MOLLI yielded similar myocardial T1 (1151 ms ± 63 ms vs. 1159 ms ± 32 ms, P = 0.6), slightly lower blood T1 (1643 ms ± 86 ms vs. 1680 ms ± 79 ms, P = 0.004), but improved spatial resolution compared with standard MOLLI in the same imaging time. CONCLUSION SUPER and SUPER-SENSE provide fast model-based reconstruction methods for accelerating parametric mapping and improving its clinical appeal.
Collapse
Affiliation(s)
- Chenxi Hu
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Dana C Peters
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|