1
|
Fuster MM. Integrating electromagnetic cancer stress with immunotherapy: a therapeutic paradigm. Front Oncol 2024; 14:1417621. [PMID: 39165679 PMCID: PMC11333800 DOI: 10.3389/fonc.2024.1417621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/11/2024] [Indexed: 08/22/2024] Open
Abstract
An array of published cell-based and small animal studies have demonstrated a variety of exposures of cancer cells or experimental carcinomas to electromagnetic (EM) wave platforms that are non-ionizing and non-thermal. Overall effects appear to be inhibitory, inducing cancer cell stress or death as well as inhibition in tumor growth in experimental models. A variety of physical input variables, including discrete frequencies, amplitudes, and exposure times, have been tested, but drawing methodologic rationale and mechanistic conclusions across studies is challenging. Nevertheless, outputs such as tumor cytotoxicity, apoptosis, tumor membrane electroporation and leak, and reactive oxygen species generation are intriguing. Early EM platforms in humans employ pulsed electric fields applied either externally or using interventional tumor contact to induce tumor cell electroporation with stromal, vascular, and immunologic sparing. It is also possible that direct or external exposures to non-thermal EM waves or pulsed magnetic fields may generate electromotive forces to engage with unique tumor cell properties, including tumor glycocalyx to induce carcinoma membrane disruption and stress, providing novel avenues to augment tumor antigen release, cross-presentation by tumor-resident immune cells, and anti-tumor immunity. Integration with existing checkpoint inhibitor strategies to boost immunotherapeutic effects in carcinomas may also emerge as a broadly effective strategy, but little has been considered or tested in this area. Unlike the use of chemo/radiation and/or targeted therapies in cancer, EM platforms may allow for the survival of tumor-associated immunologic cells, including naïve and sensitized anti-tumor T cells. Moreover, EM-induced cancer cell stress and apoptosis may potentiate endogenous tumor antigen-specific anti-tumor immunity. Clinical studies examining a few of these combined EM-platform approaches are in their infancy, and a greater thrust in research (including basic, clinical, and translational work) in understanding how EM platforms may integrate with immunotherapy will be critical in driving advances in cancer outcomes under this promising combination.
Collapse
Affiliation(s)
- Mark M. Fuster
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States
- Pulmonary & Critical Care Division, University of California, San Diego, San Diego, CA, United States
- Department of Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, San Diego, CA, United States
- Veterans Medical Research Foundation, San Diego, CA, United States
| |
Collapse
|
2
|
Keum H, Cevik E, Kim J, Demirlenk YM, Atar D, Saini G, Sheth RA, Deipolyi AR, Oklu R. Tissue Ablation: Applications and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310856. [PMID: 38771628 PMCID: PMC11309902 DOI: 10.1002/adma.202310856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Tissue ablation techniques have emerged as a critical component of modern medical practice and biomedical research, offering versatile solutions for treating various diseases and disorders. Percutaneous ablation is minimally invasive and offers numerous advantages over traditional surgery, such as shorter recovery times, reduced hospital stays, and decreased healthcare costs. Intra-procedural imaging during ablation also allows precise visualization of the treated tissue while minimizing injury to the surrounding normal tissues, reducing the risk of complications. Here, the mechanisms of tissue ablation and innovative energy delivery systems are explored, highlighting recent advancements that have reshaped the landscape of clinical practice. Current clinical challenges related to tissue ablation are also discussed, underlining unmet clinical needs for more advanced material-based approaches to improve the delivery of energy and pharmacology-based therapeutics.
Collapse
Affiliation(s)
- Hyeongseop Keum
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Enes Cevik
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Jinjoo Kim
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Yusuf M Demirlenk
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Dila Atar
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Gia Saini
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahul A Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Amy R Deipolyi
- Interventional Radiology, Department of Surgery, West Virginia University, Charleston Area Medical Center, Charleston, WV 25304, USA
| | - Rahmi Oklu
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
- Division of Vascular & Interventional Radiology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, Arizona 85054, USA
| |
Collapse
|
3
|
Cao J, Ball I, Humburg P, Dokos S, Rae C. Repeatability of brain phase-based magnetic resonance electric properties tomography methods and effect of compressed SENSE and RF shimming. Phys Eng Sci Med 2023; 46:753-766. [PMID: 36995580 DOI: 10.1007/s13246-023-01248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/19/2023] [Indexed: 03/31/2023]
Abstract
Magnetic resonance electrical properties tomography (MREPT) is an emerging imaging modality to noninvasively measure tissue conductivity and permittivity. Implementation of MREPT in the clinic requires repeatable measurements at a short scan time and an appropriate protocol. The aim of this study was to investigate the repeatability of conductivity measurements using phase-based MREPT and the effects of compressed SENSE (CS), and RF shimming on the precision of conductivity measurements. Conductivity measurements using turbo spin echo (TSE) and three-dimensional balanced fast field echo (bFFE) with CS factors were repeatable. Conductivity measurement using bFFE phase showed smaller mean and variance that those measured by TSE. The conductivity measurements using bFFE showed minimal deviation with CS factors up to 8, with deviation increasing at CS factors > 8. Subcortical structures produced less consistent measurements than cortical parcellations at higher CS factors. RF shimming using full slice coverage 2D dual refocusing echo acquisition mode (DREAM) and full coverage 3D dual TR approaches further improved measurement precision. BFFE is a more optimal sequence than TSE for phase-based MREPT in brain. Depending on the area of the brain being measured, the scan can be safely accelerated with compressed SENSE without sacrifice of precision, offering the potential to employ MREPT in clinical research and applications. RF shimming with better field mapping further improves precision of the conductivity measures.
Collapse
Affiliation(s)
- Jun Cao
- Neuroscience Research Australia, 139 Barker St, Randwick, NSW, 2031, Australia
- School of Biomedical Sciences, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Iain Ball
- Philips Australia & New Zealand, North Ryde, NSW, 2113, Australia
| | - Peter Humburg
- Neuroscience Research Australia, 139 Barker St, Randwick, NSW, 2031, Australia
- Mark Wainwright Analytical Centre, Stats Central, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Caroline Rae
- Neuroscience Research Australia, 139 Barker St, Randwick, NSW, 2031, Australia.
- School of Psychology, The University of New South Wales, Kensington, NSW, 2052, Australia.
| |
Collapse
|
4
|
Zhong S, Yao S, Zhao Q, Wang Z, Liu Z, Li L, Wang ZL. Electricity‐Assisted Cancer Therapy: From Traditional Clinic Applications to Emerging Methods Integrated with Nanotechnologies. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Songjing Zhong
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Qinyu Zhao
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- Center on Nanoenergy Research Guangxi University Nanning 530004 P.R. China
| | - Zhuo Wang
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
- Center on Nanoenergy Research Guangxi University Nanning 530004 P.R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- Center on Nanoenergy Research Guangxi University Nanning 530004 P.R. China
| |
Collapse
|
5
|
Eda N, Fushimi M, Hasegawa K, Nara T. A Method for Electrical Property Tomography Based on a Three-Dimensional Integral Representation of the Electric Field. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1400-1409. [PMID: 34968176 DOI: 10.1109/tmi.2021.3139455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetic resonance electrical properties tomography (MREPT) noninvasively reconstructs high-resolution electrical property (EP) maps using MRI scanners and is useful for diagnosing cancerous tissues. However, conventional MREPT methods have limitations: sensitivity to noise in the numerical Laplacian operation, difficulty in reconstructing three-dimensional (3D) EPs and convergence not guaranteed in the iterative process. We propose a novel, iterative 3D reconstruction MREPT method without a numerical Laplacian operation. We derive an integral representation of the electric field using its Helmholtz decomposition with Maxwell's equations, under the assumption that the EPs are known on the boundary of the region of interest with the approximation that the unmeasurable magnetic field components are zero. Then, we solve the simultaneous equations composed of the integral representation and Ampere's law using a convex projection algorithm whose convergence is theoretically guaranteed. The efficacy of the proposed method was validated through numerical simulations and a phantom experiment. The results showed that this method is effective in reconstructing 3D EPs and is robust to noise. It was also shown that our proposed method with the unmeasurable component H- enhances the accuracy of the EPs in a background and that with all the components of the magnetic field reduces the artifacts at the center of the slices except when all the components of the electric field are close to zero.
Collapse
|
6
|
Sachdev S, Potočnik T, Rems L, Miklavčič D. Revisiting the role of pulsed electric fields in overcoming the barriers to in vivo gene electrotransfer. Bioelectrochemistry 2022; 144:107994. [PMID: 34930678 DOI: 10.1016/j.bioelechem.2021.107994] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
Gene therapies are revolutionizing medicine by providing a way to cure hitherto incurable diseases. The scientific and technological advances have enabled the first gene therapies to become clinically approved. In addition, with the ongoing COVID-19 pandemic, we are witnessing record speeds in the development and distribution of gene-based vaccines. For gene therapy to take effect, the therapeutic nucleic acids (RNA or DNA) need to overcome several barriers before they can execute their function of producing a protein or silencing a defective or overexpressing gene. This includes the barriers of the interstitium, the cell membrane, the cytoplasmic barriers and (in case of DNA) the nuclear envelope. Gene electrotransfer (GET), i.e., transfection by means of pulsed electric fields, is a non-viral technique that can overcome these barriers in a safe and effective manner. GET has reached the clinical stage of investigations where it is currently being evaluated for its therapeutic benefits across a wide variety of indications. In this review, we formalize our current understanding of GET from a biophysical perspective and critically discuss the mechanisms by which electric field can aid in overcoming the barriers. We also identify the gaps in knowledge that are hindering optimization of GET in vivo.
Collapse
Affiliation(s)
- Shaurya Sachdev
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Tjaša Potočnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Lea Rems
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Zhang N, Li Z, Han X, Zhu Z, Li Z, Zhao Y, Liu Z, Lv Y. Irreversible Electroporation: An Emerging Immunomodulatory Therapy on Solid Tumors. Front Immunol 2022; 12:811726. [PMID: 35069599 PMCID: PMC8777104 DOI: 10.3389/fimmu.2021.811726] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 01/10/2023] Open
Abstract
Irreversible electroporation (IRE), a novel non-thermal ablation technique, is utilized to ablate unresectable solid tumors and demonstrates favorable safety and efficacy in the clinic. IRE applies electric pulses to alter the cell transmembrane voltage and causes nanometer-sized membrane defects or pores in the cells, which leads to loss of cell homeostasis and ultimately results in cell death. The major drawbacks of IRE are incomplete ablation and susceptibility to recurrence, which limit its clinical application. Recent studies have shown that IRE promotes the massive release of intracellular concealed tumor antigens that become an "in-situ tumor vaccine," inducing a potential antitumor immune response to kill residual tumor cells after ablation and inhibiting local recurrence and distant metastasis. Therefore, IRE can be regarded as a potential immunomodulatory therapy, and combined with immunotherapy, it can exhibit synergistic treatment effects on malignant tumors, which provides broad application prospects for tumor treatment. This work reviewed the current status of the clinical efficacy of IRE in tumor treatment, summarized the characteristics of local and systemic immune responses induced by IRE in tumor-bearing organisms, and analyzed the specific mechanisms of the IRE-induced immune response. Moreover, we reviewed the current research progress of IRE combined with immunotherapy in the treatment of solid tumors. Based on the findings, we present deficiencies of current preclinical studies of animal models and analyze possible reasons and solutions. We also propose possible demands for clinical research. This review aimed to provide theoretical and practical guidance for the combination of IRE with immunotherapy in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhuoqun Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuan Han
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ziyu Zhu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhujun Li
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yan Zhao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhijun Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
8
|
Leijsen R, Brink W, van den Berg C, Webb A, Remis R. Electrical Properties Tomography: A Methodological Review. Diagnostics (Basel) 2021; 11:176. [PMID: 33530587 PMCID: PMC7910937 DOI: 10.3390/diagnostics11020176] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 11/25/2022] Open
Abstract
Electrical properties tomography (EPT) is an imaging method that uses a magnetic resonance (MR) system to non-invasively determine the spatial distribution of the conductivity and permittivity of the imaged object. This manuscript starts by providing clear definitions about the data required for, and acquired in, EPT, followed by comprehensively formulating the physical equations underlying a large number of analytical EPT techniques. This thorough mathematical overview of EPT harmonizes several EPT techniques in a single type of formulation and gives insight into how they act on the data and what their data requirements are. Furthermore, the review describes machine learning-based algorithms. Matlab code of several differential and iterative integral methods is available upon request.
Collapse
Affiliation(s)
- Reijer Leijsen
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (R.L.); (W.B.); (A.W.)
| | - Wyger Brink
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (R.L.); (W.B.); (A.W.)
| | - Cornelis van den Berg
- Computational Imaging Group for MRI Diagnostics and Therapy, Centre for Image Sciences, University Medical Centre Utrecht, 3508GA Utrecht, The Netherlands;
| | - Andrew Webb
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (R.L.); (W.B.); (A.W.)
| | - Rob Remis
- Circuits and Systems Group, Faculty of Electrical Engineering, Mathematics and Computes Science, Delft University of Technology, 2628CD Delft, The Netherlands
| |
Collapse
|
9
|
Han J, Gao Y, Nan X, Yu X, Liu F, Xin SX. Effect of radiofrequency inhomogeneity on water-content based electrical properties tomography and its correction by flip angle maps. Magn Reson Imaging 2021; 78:25-34. [PMID: 33450296 DOI: 10.1016/j.mri.2020.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 10/22/2022]
Abstract
Water-content based electrical properties tomography (wEPT) can retrieve electrical properties (EPs) from water-content maps. B1+ field information is not involved in the traditional magnetic resonance electrical properties tomography approach. wEPT can be performed through conventional MR scanning, such as T1-weighted spin-echo imaging, which provides convenient access to multiple clinical applications. However, the inhomogeneous radiofrequency (RF) field induced by RF coils would cause inaccuracy in wEPT reconstructions during MR scanning. We conducted a detailed investigation to evaluate the effect of inhomogeneous RF field on wEPT reconstructions to guarantee that EP mapping is desired for clinical practice. Two important considerations are involved, namely, multiple typical coil configurations and various flip angles (FAs). We proposed a correction scheme with actual FA mapping to calibrate the RF inhomogeneity and finally validated it by using human imaging at 3 T. This study illustrates a detailed evaluation for wEPT under imperfect RF homogeneity and further provides a feasible correction procedure to mitigate it. The profound knowledge of wEPT provided in our work will benefit its performance in clinical applications.
Collapse
Affiliation(s)
- Jijun Han
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunyu Gao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiang Nan
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuefei Yu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Feng Liu
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia
| | - Sherman Xuegang Xin
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Han J, Gao Y, Nan X, Liu F, Xin SX. Statistical analysis of the accuracy of water content-based electrical properties tomography. NMR IN BIOMEDICINE 2020; 33:e4273. [PMID: 32048385 DOI: 10.1002/nbm.4273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/04/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Water content-based electrical properties tomography (wEPT) can retrieve electrical properties (EPs) from water content maps, thereby eliminating the need for B1 field measurement in the traditional magnetic resonance electrical properties tomography method. The wEPT is performed by conventional MR scanning, such as T1 -weighted spin-echo imaging, and thus can be directly applied to clinical settings. However, the random noise propagation involved in wEPT causes inaccuracy in EP mapping. To guarantee the EP estimates desired for clinical practice, this study statically investigates the noise-specific uncertainty of wEPT through probability density function models. We calculated the probability distribution of EP maps with different noise levels and examined the effects of scan parameters on reconstruction accuracy with various flip angles (FAs) and repetition time (TR) settings. The theoretical derivation was validated by Monte Carlo simulations and human imaging experiment at 3 T. Results showed that a serious deviation could occur in tissues with large conductivity value at a low signal-to-noise ratio and quantitatively demonstrate that such deviation could be mitigated by increased FAs or TRs. This study provided useful information for the setup of scan parameters, evaluation of accuracy of the wEPT under specific SNR levels, and promote its clinical applications.
Collapse
Affiliation(s)
- Jijun Han
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunyu Gao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiang Nan
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Feng Liu
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia
| | - Sherman Xuegang Xin
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Amouzandeh G, Mentink-Vigier F, Helsper S, Bagdasarian FA, Rosenberg JT, Grant SC. Magnetic resonance electrical property mapping at 21.1 T: a study of conductivity and permittivity in phantoms, ex vivo tissue and in vivo ischemia. Phys Med Biol 2020; 65:055007. [PMID: 31307020 PMCID: PMC7223161 DOI: 10.1088/1361-6560/ab3259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Electrical properties (EP), namely conductivity and permittivity, can provide endogenous contrast for tissue characterization. Using electrical property tomography (EPT), maps of EP can be generated from conventional MRI data. This report investigates the feasibility and accuracy of EPT at 21.1 T for multiple RF coils and modes of operation using phantoms. Additionally, it demonstrates the EP of the in vivo rat brain with and without ischemia. Helmholtz-based EPT was implemented in its Full-form, which demands the complex [Formula: see text] field, and a simplified form requiring either just the [Formula: see text] field phase for conductivity or the [Formula: see text] field magnitude for permittivity. Experiments were conducted at 21.1 T using birdcage and saddle coils operated in linear or quadrature transceive mode, respectively. EPT approaches were evaluated using a phantom, ex and in vivo Sprague-Dawley rats under naïve conditions and ischemic stroke via transient middle cerebral artery occlusion. Different conductivity reconstruction approaches applied to the phantom displayed average errors of 12%-73% to the target acquired from dielectric probe measurements. Permittivity reconstructions showed higher agreement and an average 3%-8% error to the target depending on reconstruction approach. Conductivity and permittivity of ex and in vivo rodent brain were measured. Elevated EP in the ischemia region correlated with the increased sodium content and the influx of water intracellularly following ischemia in the lesion were detected. The Full-form technique generated from the linear birdcage provided the best accuracy for EP of the phantom. Phase-based conductivity and magnitude-based permittivity mapping provided reasonable estimates but also demonstrated the limitations of Helmholtz-based EPT at 21.1 T. Permittivity reconstruction was improved significantly over lower fields, suggesting a novel metric for in vivo brain studies. EPT applied to ischemic rat brain proved sensitivity to physiological changes, motivating the future application of more advanced reconstruction approaches.
Collapse
Affiliation(s)
- Ghoncheh Amouzandeh
- Department of Physics, Florida State University, Tallahassee, FL, USA
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | | | - Shannon Helsper
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| | - F. Andrew Bagdasarian
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| | - Jens T. Rosenberg
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Samuel C. Grant
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
| |
Collapse
|
12
|
Duan S, Zhu Y, Liu F, Xin SX. Numerical Experiments on the Contrast Capability of Magnetic Resonance Electrical Property Tomography. Magn Reson Med Sci 2020; 19:77-85. [PMID: 31019159 PMCID: PMC7067912 DOI: 10.2463/mrms.mp.2018-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose: Magnetic resonance electrical property tomography (MR EPT) is a technique for non-invasively obtaining the electric property (EP) distribution of biological tissues, with a promising potential for application in the early detection of tumors. However, the contrast capability (CC) of this technique has not been fully studied. This work aims to theoretically explore the CC for detecting the variation of EP values and the size of the imaging region. Methods: A simulation scheme was specifically designed to evaluate the CC of MR EPT. The simulation study has the advantage that the magnetic field can be accurately obtained. EP maps of the designed phantom embedded with target regions of designated various sizes and EPs were reconstructed using the homogeneous Helmholtz equation based on B1+ with different signal-to-noise ratios (SNRs). The CC was estimated by determining the smallest detectable EP contrast when the target region size was as large as the Laplacian kernel and the smallest detectable target region size when the EP contrast was the same as the difference between healthy and malignant tissues in the brain, based on the reconstructed EP maps. Results: Using noise free B1+, the smallest detectable contrastσ and contrastεr were 1% and 3%, respectively, and the smallest detectable target region size was 1 mesh unit (the base unit size used in the simulation) for conductivity and relative permittivity. The smallest detectable EP contrast and target region size were decreased as the B1+ SNR increased. Conclusion: The CC of MR EPT was related with the SNR of the magnetic field. A small EP contrast and size were necessary for detection at a high-SNR magnetic field. Obtaining a high-SNR magnetic field is important for improving the CC of MR EPT.
Collapse
Affiliation(s)
- Song Duan
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University
| | - Yurong Zhu
- Department of Biomedical Engineering, Southern Medical University
| | - Feng Liu
- School of Information Technology and Electrical Engineering, University of Queensland
| | - Sherman Xuegang Xin
- School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre
| |
Collapse
|
13
|
Automated gradient-based electrical properties tomography in the human brain using 7 Tesla MRI. Magn Reson Imaging 2019; 63:258-266. [PMID: 31425805 DOI: 10.1016/j.mri.2019.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/01/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
Electrical properties of the brain tissues may yield useful biomarkers for neurological disorders and diseases, as well as contribute to safety assurance of ultra-high-field MRI. It has been reported that using B1 maps from a multi-channel RF coil, the spatial variation of the electrical properties can be robustly retrieved. The absolute electrical property values can then be obtained by spatial integration, given that an integration seed point is assigned. In this study, we propose to exploit automatically detected seed points based on tissue piece-wise homogeneity (Helmholtz equation) for spatial integration. Numerical simulations of a numerical brain model and experiments involving 12 healthy volunteers were performed to demonstrate its feasibility and robustness in various noisy conditions and head positions. For in vivo imaging, we consistently observed higher conductivity and permittivity values in the white and gray matter compared to tabulated ex vivo probe measurement results found in the literature, a discrepancy that may be attributed to ex vivo experimental constraints. Our results suggest that the proposed technique produces consistent brain electrical properties in vivo that may contribute to improving diagnostic and therapeutic decisions.
Collapse
|