1
|
Zhang K, Akcicek H, Shi G, Canton G, Liu J, Guo Y, Wang X, Chen L, Pimentel KD, Akcicek EY, Tang X, Jin Y, Li X, Balu N, Hatsukami TS, Mossa-Basha M, Chen Z, Yuan C. Estimating Flow Direction of Circle of Willis Using Dynamic Arterial Spin-Labeling MR Angiography. AJNR Am J Neuroradiol 2024; 45:1419-1426. [PMID: 38789121 PMCID: PMC11448990 DOI: 10.3174/ajnr.a8355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND AND PURPOSE The circle of Willis (COW) is a crucial mechanism for cerebral collateral circulation. This proof-of-concept study aims to develop and assess an analysis method to characterize the hemodynamics of the arterial segments in the COW by using arterial spin-labeling (ASL) based non-contrast-enhanced dynamic MR angiography (dMRA). MATERIALS AND METHODS The developed analysis method uses a graph model, bootstrap strategy, and ensemble learning methodologies to determine the time curve shift from ASL dMRA to estimate the flow direction within the COW. The performance of the method was assessed on 52 subjects, by using the flow direction, either antegrade or retrograde, derived from 3D phase-contrast MR imaging as the reference. RESULTS A total of 340 arterial segments in the COW were evaluated, among which 30 (8.8%) had retrograde flow according to 3D phase-contrast MRI. The ASL dMRA-based flow direction estimation has an accuracy, sensitivity, and specificity of 95.47%, 80%, and 96.34%, respectively. CONCLUSIONS Using ASL dMRA and the developed image analysis method to estimate the flow direction in COW is feasible. This study provides a new method to assess the hemodynamics of the COW, which could be useful for the diagnosis and study of cerebrovascular diseases.
Collapse
Affiliation(s)
- Kaiyu Zhang
- From the Department of Bioengineering (K.Z., J.L., Y.G., C.Y.), University of Washington, Seattle, WA, United States of America
| | - Halit Akcicek
- Department of Radiology and Imaging Sciences (H.A., E.Y.A., C.Y.), University of Utah, Salt Lake City, Utah
| | - Gen Shi
- School of Engineering Medicine and School of Biological Science and Medical Engineering (G.S.), Beihang University, Beijing, China
| | - Gador Canton
- Department of Electrical and Computer Engineering (G.C., X.W., L.C.), University of Washington, Seattle, WA, United States of America
| | - Josh Liu
- From the Department of Bioengineering (K.Z., J.L., Y.G., C.Y.), University of Washington, Seattle, WA, United States of America
| | - Yin Guo
- From the Department of Bioengineering (K.Z., J.L., Y.G., C.Y.), University of Washington, Seattle, WA, United States of America
| | - Xin Wang
- Department of Electrical and Computer Engineering (G.C., X.W., L.C.), University of Washington, Seattle, WA, United States of America
| | - Li Chen
- Department of Electrical and Computer Engineering (G.C., X.W., L.C.), University of Washington, Seattle, WA, United States of America
| | - Kristi D Pimentel
- Department of Radiology (K.D.P., N.B., M.M.-B., Z.C., C.Y.), University of Washington, Seattle, WA, United States of America
| | - Ebru Yaman Akcicek
- Department of Radiology and Imaging Sciences (H.A., E.Y.A., C.Y.), University of Utah, Salt Lake City, Utah
| | - Xihe Tang
- Department of Neurosurgery (X.T., Y.J.), Aviation General Hospital of China Medical University, Beijing, China
| | - Yongjian Jin
- Department of Neurosurgery (X.T., Y.J.), Aviation General Hospital of China Medical University, Beijing, China
| | - Xuesong Li
- School of Computer Science and Technology (X.L.), Beijing Institute of Technology, Beijing, China
| | - Niranjan Balu
- Department of Radiology (K.D.P., N.B., M.M.-B., Z.C., C.Y.), University of Washington, Seattle, WA, United States of America
| | - Thomas S Hatsukami
- Department of Surgery (T.S.H.), University of Washington, Seattle, WA, United States of America
| | - Mahmud Mossa-Basha
- Department of Radiology (K.D.P., N.B., M.M.-B., Z.C., C.Y.), University of Washington, Seattle, WA, United States of America
| | - Zhensen Chen
- Department of Radiology (K.D.P., N.B., M.M.-B., Z.C., C.Y.), University of Washington, Seattle, WA, United States of America
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University)(Z.C.), Ministry of Education, Beijing, China
- Institute of Science and Technology for Brain-Inspired Intelligence (Z.C.), Fudan University, Shanghai, China
| | - Chun Yuan
- From the Department of Bioengineering (K.Z., J.L., Y.G., C.Y.), University of Washington, Seattle, WA, United States of America
- Department of Radiology and Imaging Sciences (H.A., E.Y.A., C.Y.), University of Utah, Salt Lake City, Utah
- Department of Radiology (K.D.P., N.B., M.M.-B., Z.C., C.Y.), University of Washington, Seattle, WA, United States of America
| |
Collapse
|
2
|
Lee S, Schmit BD, Kurpad SN, Budde MD. Cervical spinal cord angiography and vessel-selective perfusion imaging in the rat. NMR IN BIOMEDICINE 2024; 37:e5115. [PMID: 38355219 PMCID: PMC11078600 DOI: 10.1002/nbm.5115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Arterial spin labeling (ASL) has been widely used to evaluate arterial blood and perfusion dynamics, particularly in the brain, but its application to the spinal cord has been limited. The purpose of this study was to optimize vessel-selective pseudocontinuous arterial spin labeling (pCASL) for angiographic and perfusion imaging of the rat cervical spinal cord. A pCASL preparation module was combined with a train of gradient echoes for dynamic angiography. The effects of the echo train flip angle, label duration, and a Cartesian or radial readout were compared to examine their effects on visualizing the segmental arteries and anterior spinal artery (ASA) that supply the spinal cord. Lastly, vessel-selective encoding with either vessel-encoded pCASL (VE-pCASL) or super-selective pCASL (SS-pCASL) were compared. Vascular territory maps were obtained with VE-pCASL perfusion imaging of the spinal cord, and the interanimal variability was evaluated. The results demonstrated that longer label durations (200 ms) resulted in greater signal-to-noise ratio in the vertebral arteries, improved the conspicuity of the ASA, and produced better quality maps of blood arrival times. Cartesian and radial readouts demonstrated similar image quality. Both VE-pCASL and SS-pCASL adequately labeled the right or left vertebral arteries, which revealed the interanimal variability in the segmental artery with variations in their location, number, and laterality. VE-pCASL also demonstrated unique interanimal variations in spinal cord perfusion with a right-sided dominance across the six animals. Vessel-selective pCASL successfully achieved visualization of the arterial inflow dynamics and corresponding perfusion territories of the spinal cord. These methodological developments provide unique insights into the interanimal variations in the arterial anatomy and dynamics of spinal cord perfusion.
Collapse
Affiliation(s)
- Seongtaek Lee
- Joint Department of Biomedical Engineering, Marquette University & Medical College of Wisconsin, Milwaukee, WI
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI
| | - Brian D Schmit
- Joint Department of Biomedical Engineering, Marquette University & Medical College of Wisconsin, Milwaukee, WI
| | - Shekar N Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI
| |
Collapse
|
3
|
Fan H, Bunker L, Wang Z, Durfee AZ, Lin DDM, Yedavalli V, Ge Y, Zhou XJ, Hillis AE, Lu H. Simultaneous perfusion, diffusion, T 2 *, and T 1 mapping with MR fingerprinting. Magn Reson Med 2024; 91:558-569. [PMID: 37749847 PMCID: PMC10872728 DOI: 10.1002/mrm.29880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE Quantitative mapping of brain perfusion, diffusion, T2 *, and T1 has important applications in cerebrovascular diseases. At present, these sequences are performed separately. This study aims to develop a novel MRI technique to simultaneously estimate these parameters. METHODS This sequence to measure perfusion, diffusion, T2 *, and T1 mapping with magnetic resonance fingerprinting (MRF) was based on a previously reported MRF-arterial spin labeling (ASL) sequence, but the acquisition module was modified to include different TEs and presence/absence of bipolar diffusion-weighting gradients. We compared parameters derived from the proposed method to those derived from reference methods (i.e., separate sequences of MRF-ASL, conventional spin-echo DWI, and T2 * mapping). Test-retest repeatability and initial clinical application in two patients with stroke were evaluated. RESULTS The scan time of our proposed method was 24% shorter than the sum of the reference methods. Parametric maps obtained from the proposed method revealed excellent image quality. Their quantitative values were strongly correlated with those from reference methods and were generally in agreement with values reported in the literature. Repeatability assessment revealed that ADC, T2 *, T1 , and B1 + estimation was highly reliable, with voxelwise coefficient of variation (CoV) <5%. The CoV for arterial transit time and cerebral blood flow was 16% ± 3% and 25% ± 9%, respectively. The results from the two patients with stroke demonstrated that parametric maps derived from the proposed method can detect both ischemic and hemorrhagic stroke. CONCLUSION The proposed method is a promising technique for multi-parametric mapping and has potential use in patients with stroke.
Collapse
Affiliation(s)
- Hongli Fan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lisa Bunker
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zihan Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alexandra Zezinka Durfee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Doris Da May Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vivek Yedavalli
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yulin Ge
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, Unites States
| | - Xiaohong Joe Zhou
- Center for Magnetic Resonance Research and Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
4
|
Gou Y, Golden WC, Lin Z, Shepard J, Tekes A, Hu Z, Li X, Oishi K, Albert M, Lu H, Liu P, Jiang D. Automatic Rejection based on Tissue Signal (ARTS) for motion-corrected quantification of cerebral venous oxygenation in neonates and older adults. Magn Reson Imaging 2024; 105:92-99. [PMID: 37939974 PMCID: PMC10841989 DOI: 10.1016/j.mri.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVE Cerebral venous oxygenation (Yv) is a key parameter for the brain's oxygen utilization and has been suggested to be a valuable biomarker in various brain diseases including hypoxic ischemic encephalopathy in neonates and Alzheimer's disease in older adults. T2-Relaxation-Under-Spin-Tagging (TRUST) MRI is a widely used technique to measure global Yv level and has been validated against gold-standard PET. However, subject motion during TRUST MRI scan can introduce considerable errors in Yv quantification, especially for noncompliant subjects. The aim of this study was to develop an Automatic Rejection based on Tissue Signal (ARTS) algorithm for automatic detection and exclusion of motion-contaminated images to improve the precision of Yv quantification. METHODS TRUST MRI data were collected from a neonatal cohort (N = 37, 16 females, gestational age = 39.12 ± 1.11 weeks, postnatal age = 1.89 ± 0.74 days) and an older adult cohort (N = 223, 134 females, age = 68.02 ± 9.01 years). Manual identification of motion-corrupted images was conducted for both cohorts to serve as a gold-standard. 9.3% of the images in the neonatal datasets and 0.4% of the images in the older adult datasets were manually identified as motion-contaminated. The ARTS algorithm was trained using the neonatal datasets. TRUST Yv values, as well as the estimation uncertainty (ΔR2) and test-retest coefficient-of-variation (CoV) of Yv, were calculated with and without ARTS motion exclusion. The ARTS algorithm was tested on datasets of older adults: first on the original adult datasets with little motion, and then on simulated adult datasets where the percentage of motion-corrupted images matched that of the neonatal datasets. RESULTS In the neonatal datasets, the ARTS algorithm exhibited a sensitivity of 0.95 and a specificity of 0.97 in detecting motion-contaminated images. Compared to no motion exclusion, ARTS significantly reduced the ΔR2 (median = 3.68 Hz vs. 4.89 Hz, P = 0.0002) and CoV (median = 2.57% vs. 6.87%, P = 0.0005) of Yv measurements. In the original older adult datasets, the sensitivity and specificity of ARTS were 0.70 and 1.00, respectively. In the simulated adult datasets, ARTS demonstrated a sensitivity of 0.91 and a specificity of 1.00. Additionally, ARTS significantly reduced the ΔR2 compared to no motion exclusion (median = 2.15 Hz vs. 3.54 Hz, P < 0.0001). CONCLUSION ARTS can improve the reliability of Yv estimation in noncompliant subjects, which may enhance the utility of Yv as a biomarker for brain diseases.
Collapse
Affiliation(s)
- Yifan Gou
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - W Christopher Golden
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zixuan Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer Shepard
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aylin Tekes
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiyi Hu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Xin Li
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kumiko Oishi
- Center for Imaging Science, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Pérez-Alfayate R, Grasso G. State of the Art and Future Direction in Diagnosis, Molecular Biology, Genetics, and Treatment of Brain Arteriovenous Malformations. World Neurosurg 2022; 159:362-372. [PMID: 35255635 DOI: 10.1016/j.wneu.2021.08.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
Brain arteriovenous malformations (bAVMs) are uncommon and represent a heterogeneous group of lesions. Although these 2 facts have delayed research on this topic, knowledge about the pathophysiology, diagnosis, and treatment of bAVMs has evolved in recent years. We conducted a review of the literature to update the knowledge about diagnosis, molecular biology, genetic, pathology, and treatment by searching for the following terms: "Epidemiology AND Natural History," "risk of hemorrhage," "intracranial hemorrhage," "diagnosis," "angiogenesis," "molecular genetics," "VEGF," "KRAS," "radiosurgery," "endovascular," "microsurgery," or "surgical resection." Our understanding of bAVMs has significantly evolved in recent years. The latest investigations have helped in defining some molecular pathways involved in the pathology of bAVM. Although there is still more to learn and discover, describing these pathways will allow the creation of targeted treatments that could improve the prognosis of patients with bAVMs.
Collapse
Affiliation(s)
- Rebeca Pérez-Alfayate
- Department of Neurosurgery, Neuroscience Institute, Hospital Clínico San Carlos, Madrid, Spain.
| | - Giovanni Grasso
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
k-space weighted image average (KWIA) for ASL-based dynamic MR angiography and perfusion imaging. Magn Reson Imaging 2021; 86:94-106. [PMID: 34871715 PMCID: PMC8713133 DOI: 10.1016/j.mri.2021.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/17/2021] [Accepted: 11/29/2021] [Indexed: 11/23/2022]
Abstract
A novel denoising algorithm termed k-space weighted image average (KWIA) was proposed to improve the signal-to-noise ratio (SNR) of dynamic MRI, such as arterial spin labeling (ASL)-based dynamic magnetic resonance angiography (dMRA) and perfusion imaging. KWIA divides the k-space of each time frame into multiple rings, the central ring of the k-space remains intact to preserve the image contrast and temporal resolution, while outer rings are progressively averaged with neighboring time frames to increase SNR. Simulations and in-vivo dMRA and multi-delay ASL studies were performed to evaluate the performance of KWIA under various MRI acquisition conditions. SNR ratios and temporal signal errors between KWIA-processed and the original data were measured. Visualization of dynamic blood flow signals as well as quantitative parametric maps were evaluated for KWIA-processed images as compared to the original images. KWIA achieved a SNR ratio of 1.73 for dMRA and 2.0 for multi-delay ASL respectively, which were in accordance with the theoretical predictions. Improved visualization of dynamic blood flow signals was demonstrated using KWIA in distal small vessels in dMRA and small brain structures in multi-delay ASL. Approximately 5% temporal errors were observed in both KWIA-processed dMRA and ASL signals. Fine anatomical features were revealed in the quantitative parametric maps of dMRA, and the residuals of model fitting were reduced for multi-delay ASL. Compared to other conventional denoising methods, KWIA is a flexible denoising algorithm that improves the SNR of ASL-based dMRA and perfusion MRI by up to 2-fold without compromising spatial and temporal resolution or quantification accuracy.
Collapse
|
7
|
Shao X, Yan L, Ma SJ, Wang K, Wang DJJ. High-Resolution Neurovascular Imaging at 7T: Arterial Spin Labeling Perfusion, 4-Dimensional MR Angiography, and Black Blood MR Imaging. Magn Reson Imaging Clin N Am 2021; 29:53-65. [PMID: 33237015 PMCID: PMC7694883 DOI: 10.1016/j.mric.2020.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ultrahigh field offers increased resolution and contrast for neurovascular imaging. Arterial spin labeling methods benefit from an increased intrinsic signal-to-noise ratio of MR imaging signal and a prolonged tracer half-life at ultrahigh field, allowing the visualization of layer-dependent microvascular perfusion. Arterial spin labeling-based time-resolved 4-dimensional MR angiography at 7T provides a detailed depiction of the vascular architecture and dynamic blood flow pattern with high spatial and temporal resolutions. High-resolution black blood MR imaging at 7T allows detailed characterization of small perforating arteries such as lenticulostriate arteries. All techniques benefit from advances in parallel radiofrequency transmission technologies at ultrahigh field.
Collapse
Affiliation(s)
- Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Lirong Yan
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Samantha J Ma
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA; Siemens Healthcare, Los Angeles, CA, USA
| | - Kai Wang
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA.
| |
Collapse
|
8
|
Heidari Pahlavian S, Geri O, Russin J, Ma SJ, Amar A, Wang DJJ, Ben Bashat D, Yan L. Semiautomatic cerebrovascular territory mapping based on dynamic ASL MR angiography without vessel-encoded labeling. Magn Reson Med 2020; 85:2735-2746. [PMID: 33347641 DOI: 10.1002/mrm.28623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 11/11/2022]
Abstract
PURPOSE Characterizing vessel territories can provide crucial information for evaluation of cerebrovascular disorders. In this study, we present a novel postprocessing pipeline for vascular territorial imaging of cerebral arteries based on a noncontrast enhanced time-resolved 4D magnetic resonance angiography (MRA). METHODS Eight healthy participants, 1 Moyamoya patient, and 1 arteriovenous malformations patient were recruited. Territorial segmentation and relative blood flow rate calculations of cerebral arteries including left and right middle cerebral arteries and left and right posterior cerebral arteries were carried out based on the 4D MRA-derived arterial arrival time maps of intracranial vessels. RESULTS Among healthy young subjects, the average relative blood flow rate values corresponding to left and right middle cerebral arteries and left and right posterior cerebral arteries were 35.9 ± 5.9%, 32.9 ± 7.5%, 15.4 ± 3.8%, and 15.9 ± 2.5%, respectively. Excellent agreement was observed between relative blood flow rate values obtained from the proposed 4D MRA-based method and reference 2D phase contrast MRI. Abnormal cerebral circulations were visualized and quantified on both patients using the developed technique. CONCLUSION The vascular territorial imaging technique developed in this study allowed for the generation of territorial maps with user-defined level of details within a clinically feasible scan time, and as such may provide useful information to assess cerebral circulation balance in different pathologies.
Collapse
Affiliation(s)
- Soroush Heidari Pahlavian
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | | | - Jonathan Russin
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Samantha J Ma
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Arun Amar
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Danny J J Wang
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Dafna Ben Bashat
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Lirong Yan
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Chen Z, Zhou Z, Qi H, Chen H, Chu B, Hatsukami TS, Yuan C, Balu N. A novel sequence for simultaneous measurement of whole-brain static and dynamic MRA, intracranial vessel wall image, and T 1 -weighted structural brain MRI. Magn Reson Med 2020; 85:316-325. [PMID: 32738091 DOI: 10.1002/mrm.28431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 11/08/2022]
Abstract
PURPOSE To propose a highly time-efficient imaging technique named improved simultaneous noncontrast angiography and intraplaque hemorrhage (iSNAP) for simultaneous assessment of lumen, vessel wall, and blood flow in intracranial arteries. METHODS iSNAP consists of pulsed arterial spin labeling preparations and 3D golden angle radial acquisition. Images were reconstructed by k-space weighted image contrast (KWIC) method with optimized data-sharing strategies. Dynamic MRA for blood flow assessment was obtained from iSNAP by reconstruction at multiple inversion times and image subtraction, static MRA by both image subtraction approach and phase-sensitive inversion recovery technique, and vessel wall images by both reconstruction at zero-crossing time-point of blood and phase-sensitive inversion recovery. A T1 -weighted brain MRI was also reconstructed from iSNAP. Preliminary comparison of iSNAP against the dedicated dynamic MRA sequence 4D-TRANCE, MRA/vessel wall imaging sequence SNAP, and vessel wall imaging sequence T1 -weighted VISTA was performed in healthy volunteers and patients. RESULTS iSNAP has whole-brain coverage and takes ~6.5 min. The dedicated reconstruction strategies are feasible for each iSNAP image contrast and beneficial for image SNR. iSNAP-dynamic MRA yields similar dynamic flow information as 4D-TRANCE and allows more flexible temporal resolution. The 2 types of iSNAP static MRA images complement each other in characterizing both proximal large arteries and distal small arteries. Depiction of vessel wall lesions in iSNAP vessel wall images is better than SNAP and may be similar to T1 -weighted VISTA, although the images are slightly blurred. CONCLUSION iSNAP provides a time-efficient evaluation of intracranial arteries and may have great potential for comprehensive assessment of intracranial vascular conditions using a single sequence.
Collapse
Affiliation(s)
- Zhensen Chen
- Vascular Imaging Lab and BioMolecular Imaging Center, Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Zechen Zhou
- Philips Research North America, Cambridge, Massachusetts, USA
| | - Haikun Qi
- School of Biomedical Engineering & Imaging Science, King's College London, London, United Kingdom
| | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, People's Republic of China
| | - Baocheng Chu
- Vascular Imaging Lab and BioMolecular Imaging Center, Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Thomas S Hatsukami
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Chun Yuan
- Vascular Imaging Lab and BioMolecular Imaging Center, Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Niranjan Balu
- Vascular Imaging Lab and BioMolecular Imaging Center, Department of Radiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
Suzuki Y, Fujima N, van Osch MJP. Intracranial 3D and 4D MR Angiography Using Arterial Spin Labeling: Technical Considerations. Magn Reson Med Sci 2019; 19:294-309. [PMID: 31761840 PMCID: PMC7809141 DOI: 10.2463/mrms.rev.2019-0096] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the 1980’s some of the earliest studies of arterial spin labeling (ASL) MRI have demonstrated its ability to generate MR angiography (MRA) images. Thanks to many technical improvements, ASL has been successfully moving its position from the realm of research into the clinical area, albeit more known as perfusion imaging than as MRA. For MRA imaging, other techniques such as time-of-flight, phase contrast MRA and contrast-enhanced (CE) MRA are more popular choices for clinical applications. In the last decade, however, ASL-MRA has been experiencing a remarkable revival, especially because of its non-invasive nature, i.e. the fact that it does not rely on the use of contrast agent. Very importantly, there are additional benefits of using ASL for MRA. For example, its higher flexibility to achieve both high spatial and temporal resolution than CE dynamic MRA, and the capability of vessel specific visualization, in which the vascular tree arising from a selected artery can be exclusively visualized. In this article, the implementation and recent developments of ASL-based MRA are discussed; not only focusing on the basic sequences based upon pulsed ASL or pseudo-continuous ASL, but also including more recent labeling approaches, such as vessel-selective labeling, velocity-selective ASL, vessel-encoded ASL and time-encoded ASL. Although these ASL techniques have been already utilized in perfusion imaging and their usefulness has been suggested by many studies, some additional considerations should be made when employing them for MRA, since there is something more than the difference of the spatial resolution of the readout sequence. Moreover, extensive discussion is included on what readout sequence to use, especially by highlighting how to achieve high spatial resolution while keeping scan-time reasonable such that the ASL-MRA sequence can easily be included into a clinical examination.
Collapse
Affiliation(s)
- Yuriko Suzuki
- Institute of Biomedical Engineering, University of Oxford
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
| | | |
Collapse
|
11
|
Shaligram SS, Winkler E, Cooke D, Su H. Risk factors for hemorrhage of brain arteriovenous malformation. CNS Neurosci Ther 2019; 25:1085-1095. [PMID: 31359618 PMCID: PMC6776739 DOI: 10.1111/cns.13200] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
Patients with brain arteriovenous malformation (bAVM) are at risk of intracranial hemorrhage (ICH). Overall, bAVM accounts for 25% of hemorrhagic strokes in adults <50 years of age. The treatment of unruptured bAVMs has become controversial, because the natural history of these patients may be less morbid than invasive therapies. Available treatments include observation, surgical resection, endovascular embolization, stereotactic radiosurgery, or combination thereof. Knowing the risk factors for bAVM hemorrhage is crucial for selecting appropriate therapeutic strategies. In this review, we discussed several biological risk factors, which may contribute to bAVM hemorrhage.
Collapse
Affiliation(s)
- Sonali S Shaligram
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative care, University of California, San Francisco, California
| | - Ethan Winkler
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Daniel Cooke
- Department of Radiology, University of California, San Francisco, California
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative care, University of California, San Francisco, California
| |
Collapse
|