1
|
Gursan A, Kahraman‐Agir B, Gosselink M, Welting D, Froeling M, Hoogduin H, Wiegers E, Prompers J, Klomp D. Development of a Double Tuned 2H/ 31P Whole-Body Birdcage Transmit Coil for 2H and 31P MR Applications From Head to Toe at 7 T. NMR IN BIOMEDICINE 2025; 38:e5325. [PMID: 39888087 PMCID: PMC11783138 DOI: 10.1002/nbm.5325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 02/01/2025]
Abstract
Deuterium (2H) and phosphorus (31P) magnetic resonance spectroscopy (MRS) are complementary methods for evaluating tissue metabolism noninvasively in vivo. Combined 2H and 31P MRS would therefore be of interest for various applications, from cancer to diabetes. Loop coils are commonly used in X-nuclei studies in the human body for both transmit and receive. However, loop coils suffer from limited penetration depth and inhomogeneous B1 + field. The purpose of this work is to develop a double tuned 2H/31P whole-body birdcage transmit coil for 7 T for 2H and 31P MRS imaging (MRSI) with homogeneous excitation over a large field-of-view. The performance of the 2H/31P birdcage coil was assessed on B1 + fields over a body-sized phantom at 2H and 31P frequencies using an 8-channel 2H/31P receive array. Using two elements of the 2H/31P receive array, natural abundance 2H and 31P 3D MRSI data at rest were acquired consecutively in the brain and lower leg muscles. Additionally, 2H and 31P 3D MRSI data were acquired from one volunteer 90 min after [6,6'-2H2]-glucose intake, using 8-channel 2H/31P receive array around the abdomen. The B1 + variation of the whole-body birdcage coil over the phantom was 12.1% for 2H and 19.2% for 31P. High-quality 2H and 31P 3D MRSI data were acquired from the brain and the lower leg. Whole liver coverage was achieved in both 2H and 31P 3D MRSI data. The developed 2H/31P whole-body birdcage transmit coil allows simultaneous 3D mapping of glucose and energy metabolism and membrane turnover throughout the human body.
Collapse
Affiliation(s)
- Ayhan Gursan
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Busra Kahraman‐Agir
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Mark Gosselink
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Dimitri Welting
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Martijn Froeling
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Hans Hoogduin
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Evita C. Wiegers
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jeanine J. Prompers
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
- Departments of Human Biology and Imaging, NUTRIM Institute of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Dennis W. J. Klomp
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
2
|
van den Wildenberg L, Runderkamp BA, Seelen LWF, van Laarhoven HWM, Gosselink MWJM, van der Kemp WJM, Haj Mohammad N, Klomp DWJ, Prompers JJ. Measurement of metabolite levels and treatment-induced changes in hepatic metastases of gastro-esophageal cancer using 7-T phosphorus magnetic resonance spectroscopic imaging. NMR IN BIOMEDICINE 2024; 37:e5155. [PMID: 38616046 DOI: 10.1002/nbm.5155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/16/2024]
Abstract
Methods for early treatment response evaluation to systemic therapy of liver metastases are lacking. Tumor tissue often exhibits an increased ratio of phosphomonoesters to phosphodiesters (PME/PDE), which can be noninvasively measured by phosphorus magnetic resonance spectroscopy (31P MRS), and may be a marker for early therapy response assessment in liver metastases. However, with commonly used 31P surface coils for liver 31P MRS, the liver is not fully covered, and metastases may be missed. The objective of this study was to demonstrate the feasibility of 31P MRS imaging (31P MRSI) with full liver coverage to assess 31P metabolite levels and chemotherapy-induced changes in liver metastases of gastro-esophageal cancer, using a 31P whole-body birdcage transmit coil in combination with a 31P body receive array at 7 T. 3D 31P MRSI data were acquired in two patients with hepatic metastases of esophageal cancer, before the start of chemotherapy and after 2 (and 9 in patient 2) weeks of chemotherapy. 3D 31P MRSI acquisitions were performed using an integrated 31P whole-body transmit coil in combination with a 16-channel body receive array at 7 T, with a field of view covering the full abdomen and a nominal voxel size of 20-mm isotropic. From the 31P MRSI data, 12 31P metabolite signals were quantified. Prior to chemotherapy initiation, both PMEs, that is, phosphocholine (PC) and phosphoethanolamine (PE), were significantly higher in all metastases compared with the levels previously determined in the liver of healthy volunteers. After 2 weeks of chemotherapy, PC and PE levels remained high or even increased further, resulting in increased PME/PDE ratios compared with healthy liver tissue, in correspondence with the clinical assessment of progressive disease after 2 months of chemotherapy. The suggested approach may present a viable tool for early therapy (non)response assessment of tumor metabolism in patients with liver metastases.
Collapse
Affiliation(s)
| | - Bobby A Runderkamp
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Leonard W F Seelen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Surgery, UMC Utrecht Cancer Center, Utrecht, The Netherlands
- Sint Antonius Hospital Nieuwegein, Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - Hanneke W M van Laarhoven
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark W J M Gosselink
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wybe J M van der Kemp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nadia Haj Mohammad
- Department of Medical Oncology, Utrecht Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeanine J Prompers
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Jonuscheit M, Wierichs S, Rothe M, Korzekwa B, Mevenkamp J, Bobrov P, Kupriyanova Y, Roden M, Schrauwen-Hinderling VB. Reproducibility of absolute quantification of adenosine triphosphate and inorganic phosphate in the liver with localized 31P-magnetic resonance spectroscopy at 3-T using different coils. NMR IN BIOMEDICINE 2024; 37:e5120. [PMID: 38404058 DOI: 10.1002/nbm.5120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/19/2023] [Accepted: 01/20/2024] [Indexed: 02/27/2024]
Abstract
Concentrations of the key metabolites of hepatic energy metabolism, adenosine triphosphate (ATP) and inorganic phosphate (Pi), can be altered in metabolic disorders such as diabetes mellitus. 31Phosphorus (31P)-magnetic resonance spectroscopy (MRS) is used to noninvasively measure hepatic metabolites, but measuring their absolute molar concentrations remains challenging. This study employed a 31P-MRS method based on the phantom replacement technique for quantifying hepatic 31P-metabolites on a 3-T clinical scanner. Two surface coils with different size and geometry were used to check for consistency in terms of repeatability and reproducibility and absolute concentrations of metabolites. Day-to-day (n = 8) and intra-day (n = 6) reproducibility was tested in healthy volunteers. In the day-to-day study, mean absolute concentrations of γ-ATP and Pi were 2.32 ± 0.24 and 1.73 ± 0.26 mM (coefficient of variation [CV]: 7.3% and 8.8%) for the single loop, and 2.32 ± 0.42 and 1.73 ± 0.27 mM (CVs 6.7% and 10.6%) for the quadrature coil, respectively. The intra-day study reproducibility using the quadrature coil yielded CVs of 4.7% and 6.8% for γ-ATP and Pi without repositioning, and 6.3% and 7.1% with full repositioning of the volunteer. The results of the day-to-day data did not differ between coils and visits. Both coils robustly yielded similar results for absolute concentrations of hepatic 31P-metabolites. The current method, applied with two different surface coils, can be readily utilized in long-term and interventional studies. In comparison with the single loop coil, the quadrature coil also allows measurements at a greater distance between the coil and liver, which is relevant for studying people with obesity.
Collapse
Affiliation(s)
- Marc Jonuscheit
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Stefan Wierichs
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Maik Rothe
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- University Clinic and Outpatient Clinic for Radiology, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Benedict Korzekwa
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Julian Mevenkamp
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Pavel Bobrov
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vera B Schrauwen-Hinderling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
4
|
Qi YM, Xiao EH. Advances in application of novel magnetic resonance imaging technologies in liver disease diagnosis. World J Gastroenterol 2023; 29:4384-4396. [PMID: 37576700 PMCID: PMC10415971 DOI: 10.3748/wjg.v29.i28.4384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
Liver disease is a major health concern globally, with high morbidity and mor-tality rates. Precise diagnosis and assessment are vital for guiding treatment approaches, predicting outcomes, and improving patient prognosis. Magnetic resonance imaging (MRI) is a non-invasive diagnostic technique that has been widely used for detecting liver disease. Recent advancements in MRI technology, such as diffusion weighted imaging, intravoxel incoherent motion, magnetic resonance elastography, chemical exchange saturation transfer, magnetic resonance spectroscopy, hyperpolarized MR, contrast-enhanced MRI, and ra-diomics, have significantly improved the accuracy and effectiveness of liver disease diagnosis. This review aims to discuss the progress in new MRI technologies for liver diagnosis. By summarizing current research findings, we aim to provide a comprehensive reference for researchers and clinicians to optimize the use of MRI in liver disease diagnosis and improve patient prognosis.
Collapse
Affiliation(s)
- Yi-Ming Qi
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan Province, China
| | - En-Hua Xiao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan Province, China
| |
Collapse
|
5
|
van den Wildenberg L, Gursan A, Seelen LWF, van der Velden TA, Gosselink MWJM, Froeling M, van der Kemp WJM, Klomp DWJ, Prompers JJ. In vivo phosphorus magnetic resonance spectroscopic imaging of the whole human liver at 7 T using a phosphorus whole-body transmit coil and 16-channel receive array: Repeatability and effects of principal component analysis-based denoising. NMR IN BIOMEDICINE 2023; 36:e4877. [PMID: 36400716 DOI: 10.1002/nbm.4877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Quantitative three-dimensional (3D) imaging of phosphorus (31 P) metabolites is potentially a promising technique with which to assess the progression of liver disease and monitor therapy response. However, 31 P magnetic resonance spectroscopy has a low sensitivity and commonly used 31 P surface coils do not provide full coverage of the liver. This study aimed to overcome these limitations by using a 31 P whole-body transmit coil in combination with a 16-channel 31 P receive array at 7 T. Using this setup, we determined the repeatability of whole-liver 31 P magnetic resonance spectroscopic imaging (31 P MRSI) in healthy subjects and assessed the effects of principal component analysis (PCA)-based denoising on the repeatability parameters. In addition, spatial variations of 31 P metabolites within the liver were analyzed. 3D 31 P MRSI data of the liver were acquired with a nominal voxel size of 20 mm isotropic in 10 healthy volunteers twice on the same day. Data were reconstructed without denoising, and with PCA-based denoising before or after channel combination. From the test-retest data, repeatability parameters for metabolite level quantification were determined for 12 31 P metabolite signals. On average, 31 P MR spectra from 100 ± 25 voxels in the liver were analyzed. Only voxels with contamination from skeletal muscle or the gall bladder were excluded and no voxels were discarded based on (low) signal-to-noise ratio (SNR). Repeatability for most quantified 31 P metabolite levels in the liver was good to excellent, with an intrasubject variability below 10%. PCA-based denoising increased the SNR ~ 3-fold, but did not improve the repeatability for mean liver 31 P metabolite quantification with the fitting constraints used. Significant spatial heterogeneity of various 31 P metabolite levels within the liver was observed, with marked differences for the phosphomonoester and phosphodiester metabolites between the left and right lobe. In conclusion, using a 31 P whole-body transmit coil in combination with a 16-channel 31 P receive array at 7 T allowed 31 P MRSI acquisitions with full liver coverage and good to excellent repeatability.
Collapse
Affiliation(s)
| | - Ayhan Gursan
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonard W F Seelen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tijl A van der Velden
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark W J M Gosselink
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn Froeling
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wybe J M van der Kemp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeanine J Prompers
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Increased cardiac Pi/PCr in the diabetic heart observed using phosphorus magnetic resonance spectroscopy at 7T. PLoS One 2022; 17:e0269957. [PMID: 35709167 PMCID: PMC9202907 DOI: 10.1371/journal.pone.0269957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Phosphorus magnetic resonance spectroscopy (31P-MRS) has previously demonstrated decreased energy reserves in the form of phosphocreatine to adenosine-tri-phosphate ratio (PCr/ATP) in the hearts of patients with type 2 diabetes (T2DM). Recent 31P-MRS techniques using 7T systems, e.g. long mixing time stimulated echo acquisition mode (STEAM), allow deeper insight into cardiac metabolism through assessment of inorganic phosphate (Pi) content and myocardial pH, which play pivotal roles in energy production in the heart. Therefore, we aimed to further explore the cardiac metabolic phenotype in T2DM using STEAM at 7T. Seventeen patients with T2DM and twenty-three healthy controls were recruited and their cardiac PCr/ATP, Pi/PCr and pH were assessed at 7T. Diastolic function of all patients with T2DM was assessed using echocardiography to investigate the relationship between diastolic dysfunction and cardiac metabolism. Mirroring the decreased PCr/ATP (1.70±0.31 vs. 2.07±0.39; p<0.01), the cardiac Pi/PCr was increased (0.13±0.07 vs. 0.10±0.03; p = 0.02) in T2DM patients in comparison to healthy controls. Myocardial pH was not significantly different between the groups (7.14±0.12 vs. 7.10±0.12; p = 0.31). There was a negative correlation between PCr/ATP and diastolic function (R2 = 0.33; p = 0.02) in T2DM. No correlation was observed between diastolic function and Pi/PCr and (R2 = 0.16; p = 0.21). In addition, we did not observe any correlation between cardiac PCr/ATP and Pi/PCr (p = 0.19). Using STEAM 31P-MRS at 7T we have for the first time explored Pi/PCr in the diabetic human heart and found it increased when compared to healthy controls. The lack of correlation between measured PCr/ATP and Pi/PCr suggests that independent mechanisms might contribute to these perturbations.
Collapse
|
7
|
Karlstaedt A, Barrett M, Hu R, Gammons ST, Ky B. Cardio-Oncology: Understanding the Intersections Between Cardiac Metabolism and Cancer Biology. JACC Basic Transl Sci 2021; 6:705-718. [PMID: 34466757 PMCID: PMC8385559 DOI: 10.1016/j.jacbts.2021.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/24/2022]
Abstract
An important priority in the cardiovascular care of oncology patients is to reduce morbidity and mortality, and improve the quality of life in cancer survivors through cross-disciplinary efforts. The rate of survival in cancer patients has improved dramatically over the past decades. Nonetheless, survivors may be more likely to die from cardiovascular disease in the long term, secondary, not only to the potential toxicity of cancer therapeutics, but also to the biology of cancer. In this context, efforts from basic and translational studies are crucial to understanding the molecular mechanisms causal to cardiovascular disease in cancer patients and survivors, and identifying new therapeutic targets that may prevent and treat both diseases. This review aims to highlight our current understanding of the metabolic interaction between cancer and the heart, including potential therapeutic targets. An overview of imaging techniques that can support both research studies and clinical management is also provided. Finally, this review highlights opportunities and challenges that are necessary to advance our understanding of metabolism in the context of cardio-oncology.
Collapse
Key Words
- 99mTc-MIBI, 99mtechnetium-sestamibi
- CVD, cardiovascular disease
- D2-HG, D-2-hydroxyglutarate
- FAO, fatty acid oxidation
- FASN, fatty acid synthase
- GLS, glutaminase
- HF, heart failure
- IDH, isocitrate dehydrogenase
- IGF, insulin-like growth factor
- MCT1, monocarboxylate transporter 1
- MRS, magnetic resonance spectroscopy
- PDH, pyruvate dehydrogenase
- PET, positron emission tomography
- PI3K, insulin-activated phosphoinositide-3-kinase
- PTM, post-translational modification
- SGLT2, sodium glucose co-transporter 2
- TRF, time-restricted feeding
- [18F]FDG, 2-deoxy-2-[fluorine-18]fluoro-D-glucose
- cancer
- cardio-oncology
- heart failure
- metabolism
- oncometabolism
- α-KG, α-ketoglutarate
Collapse
Affiliation(s)
- Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Matthew Barrett
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ray Hu
- Departments of Medicine and Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Seth Thomas Gammons
- Department of Cancer Systems Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Bonnie Ky
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Departments of Medicine and Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Ruhm L, Dorst J, Avdievitch N, Wright AM, Henning A. 3D 31 P MRSI of the human brain at 9.4 Tesla: Optimization and quantitative analysis of metabolic images. Magn Reson Med 2021; 86:2368-2383. [PMID: 34219281 DOI: 10.1002/mrm.28891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/14/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE To present 31 P whole brain MRSI with a high spatial resolution to probe quantitative tissue analysis of 31 P MRSI at an ultrahigh field strength of 9.4 Tesla. METHODS The study protocol included a 31 P MRSI measurement with an effective resolution of 2.47 mL. For SNR optimization, the nuclear Overhauser enhancement at 9.4 Tesla was investigated. A sensitivity correction was achieved by applying a low rank approximation of the γ-adenosine triphosphate signal. Group analysis and regression on individual volunteers were performed to investigate quantitative concentration differences between different tissue types. RESULTS Differences in gray and white matter tissue 31 P concentrations could be investigated for 12 different 31 P resonances. In addition, the first highly resolved quantitative MRSI images measured at B0 = 9.4 Tesla of 31 P detectable metabolites with high SNR could be presented. CONCLUSION With an ultrahigh field strength B0 = 9.4 Tesla, 31 P MRSI moves further toward quantitative metabolic imaging, and subtle differences in concentrations between different tissue types can be detected.
Collapse
Affiliation(s)
- Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, Eberhard-Karls University of Tübingen, Germany
| | - Johanna Dorst
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, Eberhard-Karls University of Tübingen, Germany
| | - Nikolai Avdievitch
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Andrew Martin Wright
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, Eberhard-Karls University of Tübingen, Germany
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Ischemia-Reperfusion Injuries Assessment during Pancreas Preservation. Int J Mol Sci 2021; 22:ijms22105172. [PMID: 34068301 PMCID: PMC8153272 DOI: 10.3390/ijms22105172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/25/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Maintaining organ viability between donation and transplantation is of critical importance for optimal graft function and survival. To date in pancreas transplantation, static cold storage (SCS) is the most widely practiced method of organ preservation. The first experiments in ex vivo perfusion of the pancreas were performed at the beginning of the 20th century. These perfusions led to organ oedema, hemorrhage, and venous congestion after revascularization. Despite these early hurdles, a number of factors now favor the use of perfusion during preservation: the encouraging results of HMP in kidney transplantation, the development of new perfusion solutions, and the development of organ perfusion machines for the lung, heart, kidneys and liver. This has led to a resurgence of research in machine perfusion for whole organ pancreas preservation. This review highlights the ischemia-reperfusion injuries assessment during ex vivo pancreas perfusion, both for assessment in pre-clinical experimental models as well for future use in the clinic. We evaluated perfusion dynamics, oedema assessment, especially by impedance analysis and MRI, whole organ oxygen consumption, tissue oxygen tension, metabolite concentrations in tissue and perfusate, mitochondrial respiration, cell death, especially by histology, total cell free DNA, caspase activation, and exocrine and endocrine assessment.
Collapse
|
10
|
Ohta H, Vo NMV, Hata J, Terawaki K, Shirakawa T, Okano HJ. Utilizing Dynamic Phosphorous-31 Magnetic Resonance Spectroscopy for the Early Detection of Acute Compartment Syndrome: A Pilot Study on Rats. Diagnostics (Basel) 2021; 11:586. [PMID: 33805144 PMCID: PMC8064087 DOI: 10.3390/diagnostics11040586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Disasters, including terrorism and earthquakes, are significant threats to people and may lead to many people requiring rescue. The longer the rescue takes, the higher the chances of an individual contracting acute compartment syndrome (ACS). ACS is fatal if diagnosed too late, and early diagnosis and treatment are essential. OBJECTIVE To assess the ability of dynamic phosphorus magnetic resonance spectroscopy (31P-MRS) in the early detection of muscular damage in ACS. MATERIALS AND METHODS Six ACS model rats were used for serial 31P-MRS scanning (9.4 Tesla). Skeletal muscle metabolism, represented by the levels of phosphocreatine (PCr), inorganic phosphate (Pi), and adenosine triphosphate (ATP), was assessed. The PCr/(Pi + PCr) ratio, which decreases with ischemia, was compared with simultaneously sampled plasma creatine phosphokinase (CPK), a muscle damage marker. RESULTS The PCr/(Pi + PCr) ratio significantly decreased after inducing ischemia (from 0.86 ± 0.10 to 0.18 ± 0.06; p < 0.05), while CPK did not change significantly (from 89 ± 29.46 to 241.50 ± 113.28; p > 0.05). The intracellular and arterial pH index decreased over time, revealing significant differences at 120 min post-ischemia (from 7.09 ± 0.01 to 6.43 ± 0.13, and from 7.47 ± 0.03 to 7.39 ± 0.04, respectively). In the reperfusion state, the spectra and pH did not return to the original values. CONCLUSIONS The dynamic 31P-MRS technique can rapidly detect changes in muscle bioenergetics. This technique is a promising non-invasive method for determining early muscular damage in ACS.
Collapse
Affiliation(s)
- Hiroki Ohta
- Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (H.O.); (N.-M.V.V.); (J.H.); (K.T.)
| | - Nhat-Minh Van Vo
- Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (H.O.); (N.-M.V.V.); (J.H.); (K.T.)
- Department of Radiological Sciences, Tokyo Metropolitan University, Tokyo 116-0012, Japan;
| | - Junichi Hata
- Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (H.O.); (N.-M.V.V.); (J.H.); (K.T.)
| | - Koshiro Terawaki
- Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (H.O.); (N.-M.V.V.); (J.H.); (K.T.)
- Department of Radiological Sciences, Tokyo Metropolitan University, Tokyo 116-0012, Japan;
| | - Takako Shirakawa
- Department of Radiological Sciences, Tokyo Metropolitan University, Tokyo 116-0012, Japan;
| | - Hirotaka James Okano
- Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (H.O.); (N.-M.V.V.); (J.H.); (K.T.)
| |
Collapse
|
11
|
Purvis LAB, Valkovič L, Robson MD, Rodgers CT. Feasibility of absolute quantification for 31 P MRS at 7 T. Magn Reson Med 2019; 82:49-61. [PMID: 30892732 PMCID: PMC6492160 DOI: 10.1002/mrm.27729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022]
Abstract
Purpose Phosphorus spectroscopy can differentiate among liver disease stages and types. To quantify absolute concentrations of phosphorus metabolites, sensitivity calibration and transmit field (B1+) correction are required. The trend toward ultrahigh fields (7 T) and the use of multichannel RF coils makes this ever more challenging. We investigated the constraints on reference phantoms, and implemented techniques for the absolute quantification of human liver phosphorus spectra acquired using a 10‐cm loop and a 16‐channel array at 7 T. Methods The effect of phantom conductivity was assessed at 25.8 MHz (1.5 T), 49.9 MHz (3 T), and 120.3 MHz (7 T) by electromagnetic modeling. Radiofrequency field maps (B1±) were measured in phosphate phantoms (18 mM and 40 mM) at 7 T. These maps were used to assess the correction of 4 phantom 3D‐CSI data sets using 3 techniques: phantom replacement, explicit normalization, and simplified normalization. In vivo liver spectra acquired with a 10‐cm loop were corrected with all 3 methods. Simplified normalization was applied to in vivo 16‐channel array data sets. Results Simulations show that quantification errors of less than 3% are achievable using a uniform electrolyte phantom with a conductivity of 0.23‐0.86 S.m−1 at 1.5 T, 0.39‐0.58 S.m−1 at 3 T, and 0.34‐0.42 S.m−1 (16‐19 mM KH2PO4(aq)) at 7 T. The mean γ‐ATP concentration quantified in vivo at 7 T was 1.39 ± 0.30 mmol.L−1 to 1.71 ± 0.35 mmol.L−1 wet tissue for the 10‐cm loop and 1.88 ± 0.25 mmol.L−1 wet tissue for the array. Conclusion It is essential to select a calibration phantom with appropriate conductivity for quantitative phosphorus spectroscopy at 7 T. Using an 18‐mM phosphate phantom and simplified normalization, human liver phosphate metabolite concentrations were successfully quantified at 7 T.
Collapse
Affiliation(s)
- Lucian A B Purvis
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.,Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Matthew D Robson
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Christopher T Rodgers
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.,Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|