1
|
de Graaf RA, Thomas M, De Feyter HM. Parallel detection of MRI and 1H MRSI for multi-contrast anatomical and metabolic imaging. Magn Reson Med 2025. [PMID: 40079484 DOI: 10.1002/mrm.30501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/15/2025]
Abstract
PURPOSE MRI and MRSI provide unique and complementary information on anatomy, structure, function, and metabolism. The default strategy for a combined MRI and MRSI study is a sequential acquisition of both modalities, leading to long scan times. As MRI and MRSI primarily detect water and metabolites, respectively, the small frequency difference between resonances can be exploited with frequency-selective RF pulses to achieve interleaved or parallel detection of MRI and MRSI, without an increase in total scan time. METHODS Here, we describe the pulse sequence modifications necessary to allow acquisition of T1 and T2-weighted MRI and B0/B1 mapping in parallel with MRSI. In general, the MRSI module, including water suppression, can be used unmodified. MRI methods are executed in 3D using 3- to 4-ms frequency-selective Gaussian RF pulses with acceleration along the third dimension through repetitive small-angle nutation or multi-spin-echo acquisitions. RESULTS Phantom experiments demonstrated artifact-free 3D MRIs. MRSIs in the absence or presence of MRI elements were identical in sensitivity and spectral resolution (line width) and showed consistent water suppression. Parallel MRI-MRSI was applied to the brains of tumor-bearing rats in vivo. High-contrast, high-sensitivity metabolic MRSI data at 8 μL nominal resolution was acquired in parallel with 3D T1-weighted, T2-weighted, and B0/B1-weighted MRIs for an overall scan duration of 30 min. CONCLUSION Multi-contrast MRIs and MRSI can be acquired in parallel by utilizing the small frequency difference between water and metabolites. This opens the possibility for shorter overall scans times, or the acquisition of higher-resolution or additional contrast MRIs.
Collapse
Affiliation(s)
- Robin A de Graaf
- Magnetic Resonance Research Center (MRRC), Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Magnetic Resonance Research Center (MRRC), Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Monique Thomas
- Magnetic Resonance Research Center (MRRC), Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Henk M De Feyter
- Magnetic Resonance Research Center (MRRC), Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Magnetic Resonance Research Center (MRRC), Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Kumaragamage C, McIntyre S, Nixon TW, De Feyter HM, de Graaf RA. High-quality lipid suppression and B0 shimming for human brain 1H MRSI. Neuroimage 2024; 300:120845. [PMID: 39276817 PMCID: PMC11540284 DOI: 10.1016/j.neuroimage.2024.120845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/06/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
Magnetic Resonance Spectroscopic Imaging (MRSI) is a powerful technique that can map the metabolic profile in the brain non-invasively. Extracranial lipid contamination and insufficient B0 homogeneity however hampers robustness, and as a result has hindered widespread use of MRSI in clinical and research settings. Over the last six years we have developed highly effective extracranial lipid suppression methods with a second order gradient insert (ECLIPSE) utilizing inner volume selection (IVS) and outer volume suppression (OVS) methods. While ECLIPSE provides > 100-fold in lipid suppression with modest radio frequency (RF) power requirements and immunity to B1+ field variations, axial coverage is reduced for non-elliptical head shapes. In this work we detail the design, construction, and utility of MC-ECLIPSE, a pulsed second order gradient coil with Z2 and X2Y2 fields, combined with a 54-channel multi-coil (MC) array. The MC-ECLIPSE platform allows arbitrary region of interest (ROI) shaped OVS for full-axial slice coverage, in addition to MC-based B0 field shimming, for robust human brain proton MRSI. In vivo experiments demonstrate that MC-ECLIPSE allows axial brain coverage of 92-95 % is achieved following arbitrary ROI shaped OVS for various head shapes. The standard deviation (SD) of the residual B0 field following SH2 and MC shimming were 25 ± 9 Hz and 18 ± 8 Hz over a 5 cm slab, and 18 ± 5 Hz and 14 ± 6 Hz over a 1.5 cm slab, respectively. These results demonstrate that B0 magnetic field shimming with the MC array supersedes second order harmonic capabilities available on standard MRI systems for both restricted and large ROIs. Furthermore, MC based B0 shimming provides comparable shimming performance to an unrestricted SH5 shim set for both restricted, and 5-cm slab shim challenges. Phantom experiments demonstrate the high level of localization performance achievable with MC-ECLIPSE, with ROI edge chemical shift displacements ranging from 1-3 mm with a median value of 2 mm, and transition width metrics ranging from 1-2.5 mm throughout the ROI edge. Furthermore, MC based B0 shimming is comparable to performance following a full set of unrestricted spherical harmonic fields up to order 5. Short echo time MRSI and GABA-edited MRSI acquisitions in the human brain following MC-shimming and arbitrary ROI shaping demonstrate full-axial slice coverage and extracranial lipid artifact free spectra. MC-ECLIPSE allows full-axial coverage and robust MRSI acquisitions, while allowing interrogation of cortical tissue proximal to the skull, which has significant value in a wide range of neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Chathura Kumaragamage
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA.
| | - Scott McIntyre
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA
| | - Terence W Nixon
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA
| | - Henk M De Feyter
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA; Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
Nam KM, Hendriks AD, Boer VO, Klomp DWJ, Wijnen JP, Bhogal AA. Proton metabolic mapping of the brain at 7 T using a two-dimensional free induction decay-echo-planar spectroscopic imaging readout with lipid suppression. NMR IN BIOMEDICINE 2022; 35:e4771. [PMID: 35577344 PMCID: PMC9541868 DOI: 10.1002/nbm.4771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The increased signal-to-noise ratio (SNR) and chemical shift dispersion at high magnetic fields (≥7 T) have enabled neuro-metabolic imaging at high spatial resolutions. To avoid very long acquisition times with conventional magnetic resonance spectroscopic imaging (MRSI) phase-encoding schemes, solutions such as pulse-acquire or free induction decay (FID) sequences with short repetition time and inner volume selection methods with acceleration (echo-planar spectroscopic imaging [EPSI]), have been proposed. With the inner volume selection methods, limited spatial coverage of the brain and long echo times may still impede clinical implementation. FID-MRSI sequences benefit from a short echo time and have a high SNR per time unit; however, contamination from strong extra-cranial lipid signals remains a problem that can hinder correct metabolite quantification. L2-regularization can be applied to remove lipid signals in cases with high spatial resolution and accurate prior knowledge. In this work, we developed an accelerated two-dimensional (2D) FID-MRSI sequence using an echo-planar readout and investigated the performance of lipid suppression by L2-regularization, an external crusher coil, and the combination of these two methods to compare the resulting spectral quality in three subjects. The reduction factor of lipid suppression using the crusher coil alone varies from 2 to 7 in the lipid region of the brain boundary. For the combination of the two methods, the average lipid area inside the brain was reduced by 2% to 38% compared with that of unsuppressed lipids, depending on the subject's region of interest. 2D FID-EPSI with external lipid crushing and L2-regularization provides high in-plane coverage and is suitable for investigating brain metabolite distributions at high fields.
Collapse
Affiliation(s)
- Kyung Min Nam
- Center for Image Sciences, Department of Radiology, University Medical Centre Utrecht, Utrecht
| | - Arjan D Hendriks
- Center for Image Sciences, Department of Radiology, University Medical Centre Utrecht, Utrecht
| | - Vincent O Boer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Dennis W J Klomp
- Center for Image Sciences, Department of Radiology, University Medical Centre Utrecht, Utrecht
| | - Jannie P Wijnen
- Center for Image Sciences, Department of Radiology, University Medical Centre Utrecht, Utrecht
| | - Alex A Bhogal
- Center for Image Sciences, Department of Radiology, University Medical Centre Utrecht, Utrecht
| |
Collapse
|
4
|
Kumaragamage C, Coppoli A, Brown PB, McIntyre S, Nixon TW, De Feyter HM, Mason GF, de Graaf RA. Short symmetric and highly selective asymmetric first and second order gradient modulated offset independent adiabaticity (GOIA) pulses for applications in clinical MRS and MRSI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 341:107247. [PMID: 35691241 PMCID: PMC9933141 DOI: 10.1016/j.jmr.2022.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/04/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Gradient modulated RF pulses, especially gradient offset independent adiabaticity (GOIA) pulses, are increasingly gaining attention for high field clinical magnetic resonance spectroscopy and spectroscopic imaging (MRS/MRSI) due to the lower peak B1 amplitude and associated power demands achievable relative to its non-modulated adiabatic full passage counterparts. In this work we describe the development of two GOIA RF pulses: 1) A power efficient, 3.0 ms wideband uniform rate with smooth truncation (WURST) modulated RF pulse with 15 kHz bandwidth compatible with a clinically feasible peak B1 amplitude of 0.87 kHz (or 20 µT), and 2) A highly selective asymmetric 6.66 ms RF pulse with 20 kHz bandwidth designed to achieve a single-sided, fractional transition width of only 1.7%. Effects of potential asynchrony between RF and gradient-modulated (GM) waveforms for 3 ms GOIA-WURST RF pulses was evaluated by simulation and experimentally. Results demonstrate that a 20+ µs asynchrony between RF and GM functions substantially degrades inversion performance when using large RF offsets to achieve translation. A projection-based method is presented that allows a quick calibration of RF and GM asynchrony on pre-clinical/clinical MR systems. The asymmetric GOIA pulse was implemented within a multi-pulse OVS sequence to achieve power efficient, highly-selective, and B1 and T1-independent signal suppression for extracranial lipid suppression. The developed GOIA pulses were utilized with linear gradient modulation (X, Y, Z gradient fields), and with second-order-field modulations (Z2, X2Y2 gradient fields) to provide elliptically-shaped regions-of-interest for MRS and MRSI acquisitions. Both described GOIA-RF pulses have substantial clinical value; specifically, the 3.0 ms GOIA-WURST pulse is beneficial to realize short TE sLASER localized proton MRS/MRSI sequences, and the asymmetric GOIA RF pulse has applications in highly selective outer volume signal suppression to allow interrogation of tissue proximal to extracranial lipids with full-intensity.
Collapse
Affiliation(s)
- Chathura Kumaragamage
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA.
| | - Anastasia Coppoli
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Peter B Brown
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Scott McIntyre
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Terence W Nixon
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Henk M De Feyter
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Graeme F Mason
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Mandal PK, Guha Roy R, Samkaria A, Maroon JC, Arora Y. In Vivo 13C Magnetic Resonance Spectroscopy for Assessing Brain Biochemistry in Health and Disease. Neurochem Res 2022; 47:1183-1201. [PMID: 35089504 DOI: 10.1007/s11064-022-03538-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/27/2022]
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive technique that contributes to the elucidation of brain biochemistry. 13C MRS enables the detection of specific neurochemicals and their neuroenergetic correlation with neuronal function. The synergistic outcome of 13C MRS and the infusion of 13C-labeled substrates provide an understanding of neurometabolism and the role of glutamate/gamma-aminobutyric acid (GABA) neurotransmission in diseases, such as Alzheimer's disease, schizophrenia, and bipolar disorder. Moreover, 13C MRS provides a window into the altered flux rate of different pathways, including the tricarboxylic acid cycle (TCA) and the glutamate/glutamine/GABA cycle, in health and in various diseases. Notably, the metabolic flux rate of the TCA cycle often decreases in neurodegenerative diseases. Additionally, 13C MRS can be used to investigate several psychiatric and neurological disorders as it directly reflects the real-time production and alterations of key brain metabolites. This review aims to highlight the chronology, the technological advancements, and the applications of 13C MRS in various brain diseases.
Collapse
Affiliation(s)
- Pravat K Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre (NBRC), Gurgaon, India.
- Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne, Australia.
| | - Rimil Guha Roy
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre (NBRC), Gurgaon, India
| | - Avantika Samkaria
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre (NBRC), Gurgaon, India
| | - Joseph C Maroon
- Department of Neurosurgery, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Yashika Arora
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre (NBRC), Gurgaon, India
| |
Collapse
|
6
|
Klauser A, Klauser P, Grouiller F, Courvoisier S, Lazeyras F. Whole-brain high-resolution metabolite mapping with 3D compressed-sensing SENSE low-rank 1 H FID-MRSI. NMR IN BIOMEDICINE 2022; 35:e4615. [PMID: 34595791 PMCID: PMC9285075 DOI: 10.1002/nbm.4615] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 05/07/2023]
Abstract
There is a growing interest in the neuroscience community to map the distribution of brain metabolites in vivo. Magnetic resonance spectroscopic imaging (MRSI) is often limited by either a poor spatial resolution and/or a long acquisition time, which severely restricts its applications for clinical and research purposes. Building on a recently developed technique of acquisition-reconstruction for 2D MRSI, we combined a fast Cartesian 1 H-FID-MRSI acquisition sequence, compressed-sensing acceleration, and low-rank total-generalized-variation constrained reconstruction to produce 3D high-resolution whole-brain MRSI with a significant acquisition time reduction. We first evaluated the acceleration performance using retrospective undersampling of a fully sampled dataset. Second, a 20 min accelerated MRSI acquisition was performed on three healthy volunteers, resulting in metabolite maps with 5 mm isotropic resolution. The metabolite maps exhibited the detailed neurochemical composition of all brain regions and revealed parts of the underlying brain anatomy. The latter assessment used previous reported knowledge and a atlas-based analysis to show consistency of the concentration contrasts and ratio across all brain regions. These results acquired on a clinical 3 T MRI scanner successfully combined 3D 1 H-FID-MRSI with a constrained reconstruction to produce detailed mapping of metabolite concentrations at high resolution over the whole brain, with an acquisition time suitable for clinical or research settings.
Collapse
Affiliation(s)
- Antoine Klauser
- Department of Radiology and Medical InformaticsUniversity of GenevaSwitzerland
- Center for Biomedical Imaging (CIBM)GenevaSwitzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of PsychiatryLausanne University HospitalSwitzerland
- Service of Child and Adolescent Psychiatry, Department of PsychiatryLausanne University HospitalSwitzerland
| | - Frédéric Grouiller
- Swiss Center for Affective SciencesUniversity of GenevaSwitzerland
- Laboratory of Behavioral Neurology and Imaging of Cognition, Department of Fundamental NeuroscienceUniversity of GenevaSwitzerland
| | - Sébastien Courvoisier
- Department of Radiology and Medical InformaticsUniversity of GenevaSwitzerland
- Center for Biomedical Imaging (CIBM)GenevaSwitzerland
| | - François Lazeyras
- Department of Radiology and Medical InformaticsUniversity of GenevaSwitzerland
- Center for Biomedical Imaging (CIBM)GenevaSwitzerland
| |
Collapse
|
7
|
Tkáč I, Deelchand D, Dreher W, Hetherington H, Kreis R, Kumaragamage C, Považan M, Spielman DM, Strasser B, de Graaf RA. Water and lipid suppression techniques for advanced 1 H MRS and MRSI of the human brain: Experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4459. [PMID: 33327042 PMCID: PMC8569948 DOI: 10.1002/nbm.4459] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 11/23/2020] [Indexed: 05/09/2023]
Abstract
The neurochemical information provided by proton magnetic resonance spectroscopy (MRS) or MR spectroscopic imaging (MRSI) can be severely compromised if strong signals originating from brain water and extracranial lipids are not properly suppressed. The authors of this paper present an overview of advanced water/lipid-suppression techniques and describe their advantages and disadvantages. Moreover, they provide recommendations for choosing the most appropriate techniques for proper use. Methods of water signal handling are primarily focused on the VAPOR technique and on MRS without water suppression (metabolite cycling). The section on lipid-suppression methods in MRSI is divided into three parts. First, lipid-suppression techniques that can be implemented on most clinical MR scanners (volume preselection, outer-volume suppression, selective lipid suppression) are described. Second, lipid-suppression techniques utilizing the combination of k-space filtering, high spatial resolutions and lipid regularization are presented. Finally, three promising new lipid-suppression techniques, which require special hardware (a multi-channel transmit system for dynamic B1+ shimming, a dedicated second-order gradient system or an outer volume crusher coil) are introduced.
Collapse
Affiliation(s)
- Ivan Tkáč
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Dinesh Deelchand
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Wolfgang Dreher
- Department of Chemistry, In vivo-MR Group, University Bremen, Bremen, Germany
| | - Hoby Hetherington
- Department of Radiology Magnetic Resonance Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roland Kreis
- Departments of Radiology and Biomedical Research, University Bern, Bern, Switzerland
| | - Chathura Kumaragamage
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Michal Považan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel M. Spielman
- Department of Radiology, Stanford University, Stanford, California, CA, USA
| | - Bernhard Strasser
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Boston, MA, USA
| | - Robin A. de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Kumaragamage C, De Feyter HM, Brown P, McIntyre S, Nixon TW, de Graaf RA. ECLIPSE utilizing gradient-modulated offset-independent adiabaticity (GOIA) pulses for highly selective human brain proton MRSI. NMR IN BIOMEDICINE 2021; 34:e4415. [PMID: 33001485 PMCID: PMC9472321 DOI: 10.1002/nbm.4415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/16/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
A multitude of extracranial lipid suppression methods exist for proton MRSI acquisitions. Popular and emerging lipid suppression methods each have their inherent set of advantages and disadvantages related to the achievable level of lipid suppression, RF power deposition, insensitivity to B1+ field and lipid T1 heterogeneity, brain coverage, spatial selectivity, chemical shift displacement (CSD) errors and the reliability of spectroscopic data spanning the observed 0.9-4.7 ppm band. The utility of elliptical localization with pulsed second order fields (ECLIPSE) was previously demonstrated with a greater than 100-fold in extracranial lipid suppression and low power requirements utilizing 3 kHz bandwidth AFP pulses. Like all gradient-based localization methods, ECLIPSE is sensitive to CSD errors, resulting in a modified metabolic profile in edge-of-ROI voxels. In this work, ECLIPSE is extended with 15 kHz bandwidth second order gradient-modulated RF pulses based on the gradient offset-independent adiabaticity (GOIA) algorithm to greatly reduce CSD and improve spatial selectivity. An adiabatic double spin-echo ECLIPSE inner volume selection (TE = 45 ms) MRSI method and an ECLIPSE outer volume suppression (TE = 3.2 ms) FID-MRSI method were implemented. Both GOIA-ECLIPSE MRSI sequences provided artifact-free metabolite spectra in vivo, with a greater than 100-fold in lipid suppression and less than 2.6 mm in-plane CSD and less than 3.3 mm transition width for edge-of-ROI voxels, representing an ~5-fold improvement compared with the parent, nongradient-modulated method. Despite the 5-fold larger bandwidth, GOIA-ECLIPSE only required a 1.9-fold increase in RF power. The highly robust lipid suppression combined with low CSD and sharp ROI edge transitions make GOIA-ECLIPSE an attractive alternative to commonly employed lipid suppression methods. Furthermore, the low RF power deposition demonstrates that GOIA-ECLIPSE is very well suited for high field (≥3 T) MRSI applications.
Collapse
Affiliation(s)
- Chathura Kumaragamage
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Henk M. De Feyter
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Peter Brown
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Scott McIntyre
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Terence W. Nixon
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Robin A. de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|