1
|
Yang H, Wu Q, Li L, Wu Y. Evaluation of Brain Impairment Using Proton Exchange Rate MRI in a Kainic Acid-Induced Rat Model of Epilepsy. Mol Imaging Biol 2025; 27:1-9. [PMID: 39747781 DOI: 10.1007/s11307-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE Proton exchange rate (Kex) is a valuable biophysical metric. Kex MRI may augment conventional structural MRI by revealing brain impairments at the molecular level. This study aimed to investigate the feasibility of Kex MRI in evaluating brain injuries at multiple epilepsy stages. PROCEDURES Six adult rats with epilepsy induced by intra-amygdalae administration of kainic acid (KA) underwent MRI experiment at 11.7 T. Two MRI scans, including T1 mapping and CEST imaging under three B1 amplitudes of 0.75, 1.0, and 1.5 μT, were conducted before and 2, 7, and 28 days after KA injection. Quasi-steady-state analysis was performed to reconstruct equilibrium Z spectra. Direct saturation was resolved using a multi-pool Lorentzian model and removed from Z spectra. The residual spectral signal (ΔZ) was used to construct the omega plot of (1-ΔZ)/ΔZ as a linear function of 1/ ω 1 2 , from which Kex was quantified from the X-axis intercept. One-way ANOVA or two-tailed paired student's t-test was employed with P < 0.05 as statistically significant. RESULTS All animals exhibited repetitive status epilepticus with IV to V seizure stages after KA injection. At day 28, Kex values in the hippocampus and cerebral cortex at the surgical hemisphere with KA injection were significantly higher than that at the time points of control and/or day 2 in the same regions (P < 0.01). Moreover, the values were significantly higher than that in respective contralateral regions at day 28 (P < 0.02). No substantial changes of Kex were seen in bilateral thalamus or contralateral hemisphere among time points (all P > 0.05). CONCLUSIONS Kex increase significantly in the cerebral cortex and hippocampus at the surgical hemisphere, especially at day 28, likely due to substantial alterations at chronic epilepsy stage. Kex MRI is promising to evaluate brain impairment, facilitating the diagnosis and evaluation of neurological disorders.
Collapse
Affiliation(s)
- Huanhuan Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Qiting Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Lin Li
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Chung JJ, Kim H, Ji Y, Lu D, Zhou IY, Sun PZ. Improving standardization and accuracy of in vivo omega plot exchange parameter determination using rotating-frame model-based fitting of quasi-steady-state Z-spectra. Magn Reson Med 2025; 93:151-165. [PMID: 39221563 PMCID: PMC11518644 DOI: 10.1002/mrm.30259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Although Ω-plot-driven quantification of in vivo amide exchange properties has been demonstrated, differences in scan parameters may complicate the fidelity of determination. This work systematically evaluated the use of quasi-steady-state (QUASS) Z-spectra reconstruction to standardize in vivo amide exchange quantification across acquisition conditions and further determined it in vivo. METHODS Simulation and in vivo rodent brain chemical exchange saturation transfer (CEST) data at 4.7 T were fit with and without QUASS reconstruction using both multi-Lorentzian and model-based fitting approaches. pH modulation was accomplished both in simulation and in vivo by inducing global ischemia via cardiac arrest. Amide parameters were determined via Ω-plots and compared across methods. RESULTS Simulation showed that Ω-plots using multi-Lorentzian fitting could underestimate the exchange rate, with error increasing as conditions diverged from the steady state. In comparison, model-based fitting using QUASS estimated the same exchange rate within 2%. These results aligned with in vivo findings where multi-Lorentzian fitting of native Z-spectra resulted in an exchange rate of 64 ± 13 s-1 (38 ± 16 s-1 after cardiac arrest), whereas model-based fitting of QUASS Z-spectra yielded an exchange rate of 126 ± 25 s-1 (49 ± 13 s-1). CONCLUSION The model-based fitting of QUASS CEST Z-spectra enables consistent and accurate quantification of exchange parameters through Ω-plot construction by reducing error due to signal overlap and nonequilibrium CEST effects.
Collapse
Affiliation(s)
- Julius Juhyun Chung
- Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA
| | - Hahnsung Kim
- Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Yang Ji
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Dongshuang Lu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Phillip Zhe Sun
- Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
3
|
Liu Y, Wu Y, Ji Y, Zhao B, Jin Z, Ju S, Chu YH, Liebig PA, Wang H, Li C, Zhang XY. pH Mapping of Gliomas Using Quantitative Chemical Exchange Saturation Transfer MRI: Quasi-Steady-State, Spillover-, and MT-Corrected Omega Plot Analysis. J Magn Reson Imaging 2024; 60:1444-1455. [PMID: 38236785 DOI: 10.1002/jmri.29241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Quantitative in-situ pH mapping of gliomas is important for therapeutic interventions, given its significant association with tumor progression, invasion, and metastasis. Although chemical exchange saturation transfer (CEST) offers a noninvasive way for pH imaging based on the pH-dependent exchange rate (ksw), the reliable quantification of ksw in glioma remains constrained due to technical challenges. PURPOSE To quantify the pH of gliomas by measuring the proton exchange rate through optimized omega plot analysis. STUDY TYPE Prospective. PHANTOMS/ANIMAL MODEL/SUBJECTS Creatine and murine brain lysates phantoms, six rats with glioma xenograft model, and three patients with World Health Organization grade 2-4 gliomas. FIELD STRENGTH/SEQUENCE 11.7 T, 7.0 T, CEST imaging, T2-weighted (T2W) imaging, and T1-mapping. ASSESSMENT Omega plot analysis, quasi-steady-state (QUASS) analysis, multi-pool Lorentzian fitting, amine and amide concentration-independent detection, pH enhanced method with the combination of amide and guanidyl (pHenh), and magnetization transfer ratio (MTR) were utilized for pH metric quantification. The clinical outcomes were determined through radiologic follow-up and histopathological analysis. STATISTICAL TESTS Mann-Whitney U test was performed to compare glioma with normal tissue, and Pearson's correlation analysis was used to assess the relationship between ksw and other parameters. RESULTS In vitro experiments reveal that the determined ksw at 2 ppm increases exponentially with pH (creatine phantoms: ksw = 106 + 0.147 × 10(pH-4.198); lysates: ksw = 185.1 + 0.101 × 10(pH-3.914)). Omega plot analysis exhibits a linear correlation between 1/MTRRex and 1/ω1 2 in the glioma xenografts (R2 > 0.98) and glioma patients (R2 > 0.99). The exchange rate in the rat glioma decreases compared to the contralateral normal tissue (349.46 ± 30.40 s-1 vs. 403.54 ± 51.01 s-1, P = 0.025), while keeping independence from changes in concentration (r = 0.5037, P = 0.095). Similar pattern was observed in human data. DATA CONCLUSION Utilizing QUASS-based, spillover-, and MT-corrected omega plot analysis for the measurement of exchange rates, offers a feasible method for quantifying pH within glioma. LEVEL OF EVIDENCE NA TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yang Ji
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Botao Zhao
- Ping An Technology Co., Ltd., Shenzhen, China
| | - Ziyi Jin
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Shenghong Ju
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ying-Hua Chu
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | | | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Zhu H, Li Y, Ding Y, Liu Y, Shen N, Xie Y, Yan S, Liu D, Zhang X, Li L, Zhu W. Multi-pool chemical exchange saturation transfer MRI in glioma grading, molecular subtyping and evaluating tumor proliferation. J Neurooncol 2024; 169:287-297. [PMID: 38874844 DOI: 10.1007/s11060-024-04729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE To evaluate the performance of multi-pool Chemical exchange saturation transfer (CEST) MRI in prediction of glioma grade, isocitrate dehydrogenase (IDH) mutation, alpha-thalassemia/mental retardation syndrome X-linked (ATRX) loss and Ki-67 labeling index (LI), based on the fifth edition of the World Health Organization classification of central nervous system tumors (WHO CNS5). METHODS 95 patients with adult-type diffuse gliomas were analyzed. The amide, direct water saturation (DS), nuclear Overhauser enhancement (NOE), semi-solid magnetization transfer (MT) and amine signals were derived using Lorentzian fitting, and asymmetry-based amide proton transfer-weighted (APTwasym) signal was calculated. The mean value of tumor region was measured and intergroup differences were estimated using student-t test. The receiver operating curve (ROC) and area under the curve (AUC) analysis were used to evaluate the diagnostic performance of signals and their combinations. Spearman correlation analysis was performed to evaluate tumor proliferation. RESULTS The amide and DS signals were significantly higher in high-grade gliomas compared to low-grade gliomas, as well as in IDH-wildtype gliomas compared to IDH-mutant gliomas (all p < 0.001). The DS, MT and amine signals showed significantly differences between ATRX loss and retention in grade 2/3 IDH-mutant gliomas (all p < 0.05). The combination of signals showed the highest AUC in prediction of grade (0.857), IDH mutation (0.814) and ATRX loss (0.769). Additionally, the amide and DS signals were positively correlated with Ki-67 LI (both p < 0.001). CONCLUSION Multi-pool CEST MRI demonstrated good potential to predict glioma grade, IDH mutation, ATRX loss and Ki-67 LI.
Collapse
Affiliation(s)
- Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Yuejie Ding
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Yufei Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Nanxi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Yan Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Dong Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China
| | - Xiaoxiao Zhang
- Department of Clinical, Philips Healthcare, Wuhan, China
| | - Li Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, PR China.
| |
Collapse
|
5
|
Wu Q, Gong P, Liu S, Li Y, Liang D, Zheng H, Wu Y. B 1 inhomogeneity corrected CEST MRI based on direct saturation removed omega plot model at 5T. Magn Reson Med 2024; 92:532-542. [PMID: 38650080 DOI: 10.1002/mrm.30112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/23/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE CEST can image macromolecules/compounds via detecting chemical exchange between labile protons and bulk water. B1 field inhomogeneity impairs CEST quantification. Conventional B1 inhomogeneity correction methods depend on interpolation algorithms, B1 choices, acquisition number or calibration curves, making reliable correction challenging. This study proposed a novel B1 inhomogeneity correction method based on a direct saturation (DS) removed omega plot model. METHODS Four healthy volunteers underwent B1 field mapping and CEST imaging under four nominal B1 levels of 0.75, 1.0, 1.5, and 2.0 μT at 5T. DS was resolved using a multi-pool Lorentzian model and removed from respective Z spectrum. Residual spectral signals were used to construct the omega plot as a linear function of 1/B 1 2 $$ {B}_1^2 $$ , from which corrected signals at nominal B1 levels were calculated. Routine asymmetry analysis was conducted to quantify amide proton transfer (APT) effect. Its distribution across white matter was compared before and after B1 inhomogeneity correction and also with the conventional interpolation approach. RESULTS B1 inhomogeneity yielded conspicuous artifact on APT images. Such artifact was mitigated by the proposed method. Homogeneous APT maps were shown with SD consistently smaller than that before B1 inhomogeneity correction and the interpolation method. Moreover, B1 inhomogeneity correction from two and four CEST acquisitions yielded similar results, superior over the interpolation method that derived inconsistent APT contrasts among different B1 choices. CONCLUSION The proposed method enables reliable B1 inhomogeneity correction from at least two CEST acquisitions, providing an effective way to improve quantitative CEST MRI.
Collapse
Affiliation(s)
- Qiting Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pengcheng Gong
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Biomedical Engineering, Chongqing University of Technology, Chongqing, China
| | - Shengping Liu
- Department of Biomedical Engineering, Chongqing University of Technology, Chongqing, China
| | - Ye Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
6
|
Lam B, Velasquez M, Ogiyama T, Godines K, Szu FY, Velasquez-Mao AJ, AlGhuraibawi W, Wang J, Messersmith PB, Vandsburger MH. Imaging of adeno-associated viral capsids for purposes of gene editing using CEST NMR/MRI. Magn Reson Med 2024; 92:792-806. [PMID: 38651648 PMCID: PMC11142879 DOI: 10.1002/mrm.30058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE Gene therapy using adeno-associated virus (AAV) vector-mediated gene delivery has undergone substantial growth in recent years with promising results in both preclinical and clinical studies, as well as emerging regulatory approval. However, the inability to quantify the efficacy of gene therapy from cellular delivery of gene-editing technology to specific functional outcomes is an obstacle for efficient development of gene therapy treatments. Building on prior works that used the CEST reporter gene lysine rich protein, we hypothesized that AAV viral capsids may generate endogenous CEST contrast from an abundance of surface lysine residues. METHODS NMR experiments were performed on isolated solutions of AAV serotypes 1-9 on a Bruker 800-MHz vertical scanner. In vitro experiments were performed for testing of CEST-NMR contrast of AAV2 capsids under varying pH, density, biological transduction stage, and across multiple serotypes and mixed biological media. Reverse transcriptase-polymerase chain reaction was used to quantify virus concentration. Subsequent experiments at 7 T optimized CEST saturation schemes for AAV contrast detection and detected AAV2 particles encapsulated in a biocompatible hydrogel administered in the hind limb of mice. RESULTS CEST-NMR experiments revealed CEST contrast up to 52% for AAV2 viral capsids between 0.6 and 0.8 ppm. CEST contrast generated by AAV2 demonstrated high levels of CEST contrast across a variety of chemical environments, concentrations, and saturation schemes. AAV2 CEST contrast displayed significant positive correlations with capsid density (R2 > 0.99, p < 0.001), pH (R2 = 0.97, p = 0.01), and viral titer per cell count (R2 = 0.92, p < 0.001). Transition to a preclinical field strength yielded up to 11.8% CEST contrast following optimization of saturation parameters. In vivo detection revealed statistically significant molecular contrast between viral and empty hydrogels using both mean values (4.67 ± 0.75% AAV2 vs. 3.47 ± 0.87% empty hydrogel, p = 0.02) and quantile analysis. CONCLUSION AAV2 viral capsids exhibit strong capacity as an endogenous CEST contrast agent and can potentially be used for monitoring and evaluation of AAV vector-mediated gene therapy protocols.
Collapse
Affiliation(s)
- Bonnie Lam
- Department of Bioengineering, UC Berkeley, Berkeley, California, USA
| | - Mark Velasquez
- Department of Bioengineering, UC Berkeley, Berkeley, California, USA
| | - Tomoko Ogiyama
- Department of Bioengineering, UC Berkeley, Berkeley, California, USA
| | - Kevin Godines
- Department of Bioengineering, UC Berkeley, Berkeley, California, USA
| | - Fan-Yun Szu
- Department of Bioengineering, UC Berkeley, Berkeley, California, USA
| | - A J Velasquez-Mao
- Department of Bioengineering, UC Berkeley, Berkeley, California, USA
| | | | - Jingshen Wang
- Division of Biostatistics, UC Berkeley, Berkeley, California, USA
| | - Phillip B Messersmith
- Department of Bioengineering, UC Berkeley, Berkeley, California, USA
- Department of Materials Science and Engineering, UC Berkeley, Berkeley, California, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | |
Collapse
|
7
|
Yang W, Zou J, Zhang X, Chen Y, Tang H, Xiao G, Zhang X. An end-to-end LSTM-Attention based framework for quasi-steady-state CEST prediction. Front Neurosci 2024; 17:1281809. [PMID: 38249583 PMCID: PMC10797904 DOI: 10.3389/fnins.2023.1281809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/20/2023] [Indexed: 01/23/2024] Open
Abstract
Chemical exchange saturation transfer (CEST)-magnetic resonance imaging (MRI) often takes prolonged saturation duration (Ts) and relaxation delay (Td) to reach the steady state, and yet the insufficiently long Ts and Td in actual experiments may underestimate the CEST measurement. In this study, we aimed to develop a deep learning-based model for quasi-steady-state (QUASS) prediction from non-steady-state CEST acquired in experiments, therefore overcoming the limitation of the CEST effect which needs prolonged saturation time to reach a steady state. To support network training, a multi-pool Bloch-McConnell equation was designed to derive wide-ranging simulated Z-spectra, so as to solve the problem of time and labor consumption in manual annotation work. Following this, we formulated a hybrid architecture of long short-term memory (LSTM)-Attention to improve the predictive ability. The multilayer perceptron, recurrent neural network, LSTM, gated recurrent unit, BiLSTM, and LSTM-Attention were included in comparative experiments of QUASS CEST prediction, and the best performance was obtained by the proposed LSTM-Attention model. In terms of the linear regression analysis, structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and mean-square error (MSE), the results of LSTM-Attention demonstrate that the coefficient of determination in the linear regression analysis was at least R2 = 0.9748 for six different representative frequency offsets, the mean values of prediction accuracies in terms of SSIM, PSNR and MSE were 0.9991, 49.6714, and 1.68 × 10-4 for all frequency offsets. It was concluded that the LSTM-Attention model enabled high-quality QUASS CEST prediction.
Collapse
Affiliation(s)
- Wei Yang
- Great Bay University, Dongguan, China
- College of Engineering, Shantou University, Shantou, China
| | - Jisheng Zou
- College of Engineering, Shantou University, Shantou, China
| | - Xuan Zhang
- College of Engineering, Shantou University, Shantou, China
| | - Yaowen Chen
- College of Engineering, Shantou University, Shantou, China
| | - Hanjing Tang
- College of Engineering, Shantou University, Shantou, China
| | - Gang Xiao
- School of Mathematics and Statistics, Hanshan Normal University, Chaozhou, China
| | - Xiaolei Zhang
- Department of Radiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
8
|
Wu Q, Qi Y, Gong P, Huang B, Cheng G, Liang D, Zheng H, Sun PZ, Wu Y. Fast and robust pulsed chemical exchange saturation transfer (CEST) MRI using a quasi-steady-state (QUASS) algorithm at 3 T. Magn Reson Imaging 2024; 105:29-36. [PMID: 37898416 DOI: 10.1016/j.mri.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Chemical exchange saturation transfer (CEST) has emerged as a powerful technique to image dilute labile protons. However, its measurement depends on the RF saturation duration (Tsat) and relaxation delay (Trec). Although the recently developed quasi-steady-state (QUASS) solution can reconstruct equilibrium CEST effects under continuous-wave RF saturation, it does not apply to pulsed-CEST MRI on clinical scanners with restricted hardware or specific absorption rate limits. This study proposed a QUASS algorithm for pulsed-CEST MRI and evaluated its performance in muscle CEST measurement. An approximated expression of a steady-state pulsed-CEST signal was incorporated in the off-resonance spin-lock model, from which the QUASS pulsed-CEST effect was derived. Numerical simulation, creatine phantom, and healthy volunteer scans were conducted at 3 T. The CEST effect was quantified with asymmetry analysis in the simulation and phantom experiments. CEST effects of creatine, amide proton transfer, phosphocreatine, and combined magnetization transfer and nuclear Overhauser effects were isolated from a multi-pool Lorentzian model in muscles. Apparent and QUASS CEST measurements were compared under different Tsat/Trec and duty cycles. Paired Student's t-test was employed with P < 0.05 as statistically significant. The simulation, phantom, and human studies showed the strong impact of Tsat/Trec on apparent CEST measurements, which were significantly smaller than the corresponding QUASS CEST measures, especially under short Tsat/Trec times. In comparison, the QUASS algorithm mitigates such impact and enables accurate CEST measurements under short Tsat/Trec times. In conclusion, the QUASS algorithm can accelerate robust pulsed-CEST MRI, promising the efficient detection and evaluation of muscle diseases in clinical settings.
Collapse
Affiliation(s)
- Qiting Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; Medical AI Lab, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Yulong Qi
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Pengcheng Gong
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Bingsheng Huang
- Medical AI Lab, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Guanxun Cheng
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
9
|
Zhao J, Wu G, Wu Q, Gong P, Kuang J, Zheng H, Sun PZ, Li Y, Wu Y. A Pilot Study of Ratiometric Creatine CEST MRI Assessment of Rabbit Skeletal Muscle Energy Metabolism at 3 T. J Magn Reson Imaging 2024; 59:201-208. [PMID: 37246769 DOI: 10.1002/jmri.28832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND pH MRI may provide useful information to evaluate metabolic disruption following ischemia. Radiofrequency amplitude-based creatine chemical exchange saturation transfer (CrCEST) ratiometric MRI is pH-sensitive, which could but has not been explored to examine muscle ischemia. PURPOSE To investigate skeletal muscle energy metabolism alterations with CrCEST ratiometric MRI. STUDY TYPE Prospective. ANIMAL MODEL Seven adult New Zealand rabbits with ipsilateral hindlimb muscle ischemia. FIELD STRENGTH/SEQUENCE 3 T/two MRI scans, including MRA and CEST imaging, were performed under two B1 amplitudes of 0.5 and 1.25 μT after 2 hours of hindlimb muscle ischemia and 1 hour of reperfusion recovery, respectively. ASSESSMENT CEST effects of two energy metabolites of creatine and phosphocreatine (PCrCEST) were resolved with the multipool Lorentzian fitting approach. The pixel-wise CrCEST ratio was quantified by calculating the ratio of the resolved CrCEST peaks under a B1 amplitude of 1.25 μT to those under 0.5 μT in the entire muscle. STATISTICAL TESTS One-way ANOVA and Pearson's correlation. P < 0.05 was considered statistically significant. RESULTS MRA images confirmed the blood flow loss and restoration in the ischemic hindlimb at the ischemia and recovery phases, respectively. Ischemic muscles exhibited a significant decrease of PCr at the ischemia (under both B1 amplitudes) and recovery phases (under B1 amplitude of 0.5 μT) and significantly increased CrCEST from normal tissues at both phases (under both B1 levels). Specifically, CrCEST decreased, and PCrCEST increased with the CrCEST ratio. Significantly strong correlations were observed among the CrCEST ratio, and CrCEST and PCrCEST under both B1 levels (r > 0.80). DATA CONCLUSION The CrCEST ratio altered substantially with muscle pathological states and was closely related to CEST effects of energy metabolites of Cr and PCr, suggesting that the pH-sensitive CrCEST ratiometric MRI is feasible to evaluate muscle injuries at the metabolic level. EVIDENCE LEVEL 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Jialei Zhao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Gang Wu
- Department of Radiology, Tongji Hospital of Tongji College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiting Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Pengcheng Gong
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Junfeng Kuang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ye Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Wu L, Lu D, Sun PZ. Comparison of model-free Lorentzian and spinlock model-based fittings in quantitative CEST imaging of acute stroke. Magn Reson Med 2023; 90:1958-1968. [PMID: 37335834 PMCID: PMC10538953 DOI: 10.1002/mrm.29772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/14/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE CEST MRI detects complex tissue changes following acute stroke. Our study aimed to test if spinlock model-based fitting of the quasi-steady-state (QUASS)-reconstructed equilibrium CEST MRI improves the determination of multi-pool signal changes over the commonly-used model-free Lorentzian fitting in acute stroke. THEORY AND METHODS Multiple three-pool CEST Z-spectra were simulated using Bloch-McConnell equations for a range of T1 , relaxation delay, and saturation times. The multi-pool CEST signals were solved from the simulated Z-spectra to test the accuracy of routine Lorentzian (model-free) and spinlock (model-based) fittings without and with QUASS reconstruction. In addition, multiparametric MRI scans were obtained in rat models of acute stroke, including relaxation, diffusion, and CEST Z-spectrum. Finally, we compared model-free and model-based per-pixel CEST quantification in vivo. RESULTS The spinlock model-based fitting of QUASS CEST MRI provided a nearly T1 -independent determination of multi-pool CEST signals, advantageous over the fittings of apparent CEST MRI (model-free and model-based). In vivo data also demonstrated that the spinlock model-based QUASS fitting captured significantly different changes in semisolid magnetization transfer (-0.9 ± 0.8 vs. 0.3 ± 0.8%), amide (-1.1 ± 0.4 vs. -0.5 ± 0.2%), and guanidyl (1.0 ± 0.4 vs. 0.7 ± 0.3%) signals over the model-free Lorentzian analysis. CONCLUSION Our study demonstrated that spinlock model-based fitting of QUASS CEST MRI improved the determination of the underlying tissue changes following acute stroke, promising further clinical translation of quantitative CEST imaging.
Collapse
Affiliation(s)
- Limin Wu
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Dongshuang Lu
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Phillip Zhe Sun
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Emory National Primate Research Center, Emory University, Atlanta GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA
| |
Collapse
|
11
|
Sun PZ. Numerical simulation-based assessment of pH-sensitive chemical exchange saturation transfer MRI quantification accuracy across field strengths. NMR IN BIOMEDICINE 2023; 36:e5000. [PMID: 37401645 PMCID: PMC11990165 DOI: 10.1002/nbm.5000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/27/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI detects dilute labile protons via their exchange with bulk water, conferring pH sensitivity. Based on published exchange and relaxation properties, a 19-pool simulation was used to model the brain pH-dependent CEST effect and assess the accuracy of quantitative CEST (qCEST) analysis across magnetic field strengths under typical scan conditions. First, the optimal B1 amplitude was determined by maximizing pH-sensitive amide proton transfer (APT) contrast under the equilibrium condition. Apparent and quasi-steady-state (QUASS) CEST effects were then derived under the optimal B1 amplitude as functions of pH, RF saturation duration, relaxation delay, Ernst flip angle, and field strength. Finally, CEST effects, particularly the APT signal, were isolated with spinlock model-based Z-spectral fitting to evaluate the accuracy and consistency of CEST quantification. Our data showed that QUASS reconstruction significantly improved the consistency between simulated and equilibrium Z-spectra. The residual difference between QUASS and equilibrium CEST Z-spectra was, on average, 30 times less than that of the apparent CEST Z-spectra across field strengths, saturation, and repetition times. Also, the spinlock fitting of the QUASS CEST effect significantly reduced the residual errors 9-fold. Furthermore, the isolated APT amplitude from QUASS reconstruction was consistent and higher than the apparent CEST analysis under nonequilibrium conditions. To summarize, this study confirmed that QUASS reconstruction facilitates accurate determination of the CEST system under different scan protocols across field strengths, with the potential to help standardize CEST quantification.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
12
|
Tokunaga C, Wada T, Togao O, Yamashita Y, Kobayashi K, Kato T. Effect of Saturation Pulse Duration and Power on pH-weighted Amide Proton Transfer Imaging: A Phantom Study. Magn Reson Med Sci 2023; 22:487-495. [PMID: 36047248 PMCID: PMC10552662 DOI: 10.2463/mrms.mp.2021-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 07/16/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Amide proton transfer (APT) imaging may detect changes in tissues' pH based on the chemical exchange saturation transfer (CEST) phenomenon, and thus it may be useful for identifying the penumbra in ischemic stroke patients. We investigated the effect of saturation pulse duration and power on the APT effect in phantoms with different pH values. METHODS Five samples were prepared from a 1:10 solution of egg-white albumin in phosphate-buffered saline at pH 6.53-7.65. The APT signal intensity (SI) was defined as asymmetry of the magnetization transfer ratio at 3.5 ppm. We measured the APT SIs in the egg-white albumin samples of different pH values with saturation pulse durations of 0.5, 1.0, 2.0, and 3.0 sec and saturation pulse powers of 0.5, 1.5, and 2.5 μT. The relative change in the APT SI in relation to the saturation duration and power at different pH values was defined as follows: (APT SI each saturation pulse - APT SI shortest or weakest pulse)/APT SIshortest or weakest pulse. The dependence of the APT SI on pH and the relative change in the APT SI were calculated as the slope of the linear regression. RESULTS The lower the pH, the larger the relative change in the APT SI, due to the change in saturation pulse duration and power. The APT SI was highly correlated with the pH at all saturation pulse durations and powers. CONCLUSION The influence of saturation duration and power on the APT effect was greater at lower pH than higher pH. The combination of saturation pulse ≥ 1.0 s and power ≥ 1.5 μT was useful for the sensitive detection of changes in APT effects in the egg-white albumin samples with different pH values.
Collapse
Affiliation(s)
- Chiaki Tokunaga
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Fukuoka, Japan
| | - Tatsuhiro Wada
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Fukuoka, Japan
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Yasuo Yamashita
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Fukuoka, Japan
| | - Kouji Kobayashi
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Fukuoka, Japan
| | - Toyoyuki Kato
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Fukuoka, Japan
| |
Collapse
|
13
|
Kim H, Kim J, Sun PZ. CEST2022 - mapping multi-pool CEST signal changes in an animal model of brain tumor with quasi-steady-state reconstruction-empowered CEST quantification. Magn Reson Imaging 2023:S0730-725X(23)00100-5. [PMID: 37321379 DOI: 10.1016/j.mri.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Chemical exchange saturated transfer (CEST) MRI has biomarker potential to assess tissue microenvironment in brain tumors. Multi-pool Lorentzian or spinlock models provides useful insights into the CEST contrast mechanism. However, T1 contribution to the complex overlapping effects of brain tumors is difficult under the non-equilibrium state. Therefore, this study evaluated T1 contributions on multi-pool parameters with quasi-steady-state (QUASS) algorithm reconstructed equilibrium data. MRI scans were performed in rat brain tumor models, including relaxation, diffusion, and CEST imaging. A pixel-wise seven-pool spinlock-model was employed to fit QUASS reconstructed CEST Z-spectra and evaluated the magnetization transfer (MT), amide, amine, guanidyl, and nuclear-overhauled effect (NOE) signals in tumor and normal tissues. In addition, T1 was estimated from the spinlock-model fitting and compared with measured T1. We observed tumor had a statistically significant increase in the amide signal (p < 0.001) and decreases in the MT and NOE signals (p < 0.001). On the other hand, the differences in amine and guanidyl between the tumor and contralateral normal regions were not statistically significant. The differences between measured and estimated T1 values were 8% in the normal tissue and 4% in the tumor. Furthermore, the isolated MT signal strongly correlated with R1 (r = 0.96, P < 0.001). In summary, we successfully unraveled multi-factorial effects in the CEST signal using spinlock-model fitting and QUASS method and demonstrated the effect of T1 relaxation on MT and NOE.
Collapse
Affiliation(s)
- Hahnsung Kim
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States of America; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States of America.
| | - Jinsuh Kim
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States of America; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Phillip Zhe Sun
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States of America; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States of America.
| |
Collapse
|
14
|
Igarashi T, Kim H, Sun PZ. Detection of tissue pH with quantitative chemical exchange saturation transfer magnetic resonance imaging. NMR IN BIOMEDICINE 2023; 36:e4711. [PMID: 35141979 PMCID: PMC10249910 DOI: 10.1002/nbm.4711] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 05/12/2023]
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has emerged as a novel means for sensitive detection of dilute labile protons and chemical exchange rates. By sensitizing to pH-dependent chemical exchange, CEST MRI has shown promising results in monitoring tissue statuses such as pH changes in disorders like acute stroke, tumor, and acute kidney injury. This article briefly reviews the basic principles for CEST imaging and quantitative measures, from the simplistic asymmetry analysis to multipool Lorentzian decoupling and quasi-steady-state reconstruction. In particular, the advantages and limitations of commonly used quantitative approaches for CEST applications are discussed.
Collapse
Affiliation(s)
- Takahiro Igarashi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Hahnsung Kim
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| |
Collapse
|
15
|
Sun PZ. Generalization of quasi-steady-state reconstruction to CEST MRI with two-tiered RF saturation and gradient-echo readout-Synergistic nuclear Overhauser enhancement contribution to brain tumor amide proton transfer-weighted MRI. Magn Reson Med 2023; 89:2014-2023. [PMID: 36579767 DOI: 10.1002/mrm.29570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE While amide proton transfer-weighted (APTw) MRI has been adopted in tumor imaging, there are concurrent APT, magnetization transfer, and nuclear Overhauser enhancement changes. Also, the APTw image is confounded by relaxation changes, particularly when the relaxation delay and saturation time are not sufficiently long. Our study aimed to extend a quasi-steady-state (QUASS) solution to determine the contribution of the multipool CEST signals to the observed tumor APTw contrast. METHODS Our study derived the QUASS solution for a multislice CEST-MRI sequence with an interleaved RF saturation and gradient-echo readout between signal averaging. Multiparametric MRI scans were obtained in rat brain tumor models, including T1 , T2 , diffusion, and CEST scans. Finally, we performed spinlock model-based multipool fitting to determine multiple concurrent CEST signal changes in the tumor. RESULTS The QUASS APTw MRI showed small but significant differences in normal and tumor tissues and their contrast from the acquired asymmetry calculation. The spinlock model-based fitting showed significant differences in semisolid magnetization transfer, amide, and nuclear Overhauser enhancement effects between the apparent and QUASS CEST MRI. In addition, we determined that the tumor APTw contrast is due to synergistic APT increase (+3.5 ppm) and NOE decrease (-3.5 ppm), with their relative contribution being about one third and two thirds under a moderate B1 of 0.75 μT at 4.7 T. CONCLUSION Our study generalized QUASS analysis to gradient-echo image readout and quantified the underlying tumor CEST signal changes, providing an improved elucidation of the commonly used APTw MRI.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Emory Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Wu Y, Sun PZ. Demonstration of pH imaging in acute stroke with endogenous ratiometric chemical exchange saturation transfer magnetic resonance imaging at 2 ppm. NMR IN BIOMEDICINE 2023; 36:e4850. [PMID: 36259279 DOI: 10.1002/nbm.4850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
pH change is often considered a hallmark of metabolic disruption in diseases such as ischemic stroke and cancer. Chemical exchange saturation transfer (CEST) MRI, particularly amide proton transfer (APT), has emerged as a noninvasive pH imaging approach. However, there are changes in multipool CEST effects besides APT MRI. Our study investigated radiofrequency (RF) amplitude-based ratiometric CEST pH imaging in acute stroke. Briefly, adult male Wistar rats underwent CEST MRI under two RF saturation (B1 ) levels of 0.75 and 1.5 μT following middle cerebral artery occlusion. Magnetization transfer (MT), direct water saturation, CEST at 2 ppm (CEST@2 ppm), amine (2.75 ppm), and APT (3.5 ppm) effects were resolved with the multipool Lorentzian fitting approach. The ratiometric analysis was measured in the ischemic lesion and the contralateral normal area, which was also correlated with pH-specific MT and the relaxation normalized APT (MRAPT) index. MT, amine CEST effect, and their respective ratiometric indices did not show significant changes in ischemic regions (p > 0.05), as expected. Whereas APT decreased in the ischemic lesion for B1 of 1.5 μT (p < 0.01), the correlation between the amide ratio with MRAPT index was moderate (r = 0.52, p = 0.02). By comparison, the ischemic tissue showed a significantly increased CEST@2 ppm for both saturation levels from the contralateral normal area (p ≤ 0.01). Importantly, the CEST@2 ppm ratio decreased in the ischemic lesion (p < 0.01), which highly correlated with the MRAPT index (r = 0.93, p < 0.001). To summarize, our study demonstrated the feasibility of endogenous CEST@2 ppm ratiometric imaging of pH upon acute stroke, promising to detect pH changes in metabolic diseases.
Collapse
Affiliation(s)
- Yin Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Sun PZ. Quasi-steady-state amide proton transfer (QUASS APT) MRI enhances pH-weighted imaging of acute stroke. Magn Reson Med 2022; 88:2633-2644. [PMID: 36178234 PMCID: PMC9529238 DOI: 10.1002/mrm.29408] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023]
Abstract
PURPOSE Chemical exchange saturation transfer (CEST) imaging measurement depends not only on the labile proton concentration and pH-dependent exchange rate but also on experimental conditions, including the relaxation delay and radiofrequency (RF) saturation time. Our study aimed to extend a quasi-steady-state (QUASS) solution to a modified multi-slice CEST MRI sequence and test if it provides enhanced pH imaging after acute stroke. METHODS Our study derived the QUASS solution for a modified multislice CEST MRI sequence with an unevenly segmented RF saturation between image readout and signal averaging. Numerical simulation was performed to test if the generalized QUASS solution corrects the impact of insufficiently long relaxation delay, primary and secondary saturation times, and multi-slice readout. In addition, multiparametric MRI scans were obtained after middle cerebral artery occlusion, including relaxation and CEST Z-spectrum, to evaluate the performance of QUASS CEST MRI in a rodent acute stroke model. We also performed Lorentzian fitting to isolate multi-pool CEST contributions. RESULTS The QUASS analysis enhanced pH-weighted magnetization transfer asymmetry contrast over the routine apparent CEST measurements in both contralateral normal (-3.46% ± 0.62% (apparent) vs. -3.67% ± 0.66% (QUASS), P < 0.05) and ischemic tissue (-5.53% ± 0.68% (apparent) vs. -5.94% ± 0.73% (QUASS), P < 0.05). Lorentzian fitting also showed significant differences between routine and QUASS analysis of ischemia-induced changes in magnetization transfer, amide, amine, guanidyl CEST, and nuclear Overhauser enhancement (-1.6 parts per million) effects. CONCLUSION Our study demonstrated that generalized QUASS analysis enhanced pH MRI contrast and improved quantification of the underlying CEST contrast mechanism, promising for further in vivo applications.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Imaging Center, Emory National Primate Research Center, Emory University, Atlanta GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA
| |
Collapse
|
18
|
Zhang HW, Liu XL, Zhang HB, Li YQ, Wang YL, Feng YN, Deng K, Lei Y, Huang B, Lin F. Differentiation of Meningiomas and Gliomas by Amide Proton Transfer Imaging: A Preliminary Study of Brain Tumour Infiltration. Front Oncol 2022; 12:886968. [PMID: 35646626 PMCID: PMC9132094 DOI: 10.3389/fonc.2022.886968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022] Open
Abstract
Background Gliomas are more malignant and invasive than meningiomas. Objective To distinguish meningiomas from low-grade/high-grade gliomas (LGGs/HGGs) using amide proton transfer imaging (APT) combined with conventional magnetic resonance imaging (MRI) and to explore the application of APT in evaluating brain tumour invasiveness. Materials and Methods The imaging data of 50 brain tumors confirmed by pathology in patients who underwent APT scanning in our centre were retrospectively analysed. Of these tumors, 25 were meningiomas, 10 were LGGs, and 15 were HGGs. The extent of the tumour-induced range was measured on APT images, T2-weighted imaging (T2WI), and MRI enhancement; additionally, and the degree of enhancement was graded. Ratios (RAPT/T2 and RAPT/E) were obtained by dividing the range of changes observed by APT by the range of changes observed via T2WI and MR enhancement, respectively, and APTmean values were measured. The Mann–Whitney U test was used to compare the above measured values with the pathological results obtained for gliomas and meningiomas, the Kruskal-Wallis test was used to compare LGGs, HGGs and meningiomas, and Dunn’s test was used for pairwise comparisons. In addition, receiver operating characteristic (ROC) curves were drawn. Results The Mann–Whitney U test showed that APTmean (p=0.005), RAPT/T2 (p<0.001), and RAPT/E (p<0.001) values were statistically significant in the identification of meningioma and glioma. The Kruskal-Wallis test showed that the parameters APTmean, RAPT/T2, RAPT/E and the degree of enhancement are statistically significant. Dunn’s test revealed that RAPT/T2 (p=0.004) and RAPT/E (p=0.008) could be used for the identification of LGGs and meningiomas. APTmean (p<0.001), RAPT/T2 (p<0.001), and RAPT/E (p<0.001) could be used for the identification of HGGs and meningiomas. APTmean (p<0.001) was statistically significant in the comparison of LGGs and HGGs. ROC curves showed that RAPT/T2 (area under the curve (AUC)=0.947) and RAPT/E (AUC=0.919) could be used to distinguish gliomas from meningiomas. Conclusion APT can be used for the differential diagnosis of meningioma and glioma, but APTmean values can only be used for the differential diagnosis of HGGs and meningiomas or HGGs and LGGs. Gliomas exhibit more obvious changes than meningiomas in APT images of brain tissue; this outcome may be caused by brain infiltration.
Collapse
Affiliation(s)
- Han-Wen Zhang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiao-Lei Liu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Hong-Bo Zhang
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ying-Qi Li
- Department of Radiology, Songgang People's Hospital, Shenzhen, China
| | - Yu-Li Wang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yu-Ning Feng
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Kan Deng
- Research Department, Philips Healthcare, Guangzhou, China
| | - Yi Lei
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Biao Huang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Fan Lin
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
19
|
Zhou J, Zaiss M, Knutsson L, Sun PZ, Ahn SS, Aime S, Bachert P, Blakeley JO, Cai K, Chappell MA, Chen M, Gochberg DF, Goerke S, Heo HY, Jiang S, Jin T, Kim SG, Laterra J, Paech D, Pagel MD, Park JE, Reddy R, Sakata A, Sartoretti-Schefer S, Sherry AD, Smith SA, Stanisz GJ, Sundgren PC, Togao O, Vandsburger M, Wen Z, Wu Y, Zhang Y, Zhu W, Zu Z, van Zijl PCM. Review and consensus recommendations on clinical APT-weighted imaging approaches at 3T: Application to brain tumors. Magn Reson Med 2022; 88:546-574. [PMID: 35452155 PMCID: PMC9321891 DOI: 10.1002/mrm.29241] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/16/2022]
Abstract
Amide proton transfer-weighted (APTw) MR imaging shows promise as a biomarker of brain tumor status. Currently used APTw MRI pulse sequences and protocols vary substantially among different institutes, and there are no agreed-on standards in the imaging community. Therefore, the results acquired from different research centers are difficult to compare, which hampers uniform clinical application and interpretation. This paper reviews current clinical APTw imaging approaches and provides a rationale for optimized APTw brain tumor imaging at 3 T, including specific recommendations for pulse sequences, acquisition protocols, and data processing methods. We expect that these consensus recommendations will become the first broadly accepted guidelines for APTw imaging of brain tumors on 3 T MRI systems from different vendors. This will allow more medical centers to use the same or comparable APTw MRI techniques for the detection, characterization, and monitoring of brain tumors, enabling multi-center trials in larger patient cohorts and, ultimately, routine clinical use.
Collapse
Affiliation(s)
- Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Moritz Zaiss
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Linda Knutsson
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medical Radiation Physics, Lund University, Lund, Sweden.,F.M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Peter Bachert
- Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael A Chappell
- Mental Health and Clinical Neurosciences and Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Physics, Vanderbilt University, Nashville, Tennessee, USA
| | - Steffen Goerke
- Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - John Laterra
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany.,Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Mark D Pagel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Ravinder Reddy
- Center for Advance Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - A Dean Sherry
- Advanced Imaging Research Center and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Greg J Stanisz
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Pia C Sundgren
- Department of Diagnostic Radiology/Clinical Sciences Lund, Lund University, Lund, Sweden.,Lund University Bioimaging Center, Lund University, Lund, Sweden.,Department of Medical Imaging and Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Peter C M van Zijl
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Liu Z, Yang Q, Luo H, Luo D, Qian L, Liu X, Zheng H, Sun PZ, Wu Y. Demonstration of fast and equilibrium human muscle creatine CEST imaging at 3 T. Magn Reson Med 2022; 88:322-331. [PMID: 35324024 DOI: 10.1002/mrm.29223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/23/2022] [Accepted: 02/20/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Creatine chemical exchange saturation transfer (CrCEST) MRI is used increasingly in muscle imaging. However, the CrCEST measurement depends on the RF saturation duration (Ts) and relaxation delay (Td), and it is challenging to compare the results of different scan parameters. Therefore, this study aims to evaluate the quasi-steady-state (QUASS) CrCEST MRI on clinical 3T scanners. METHODS T1 and CEST MRI scans of Ts/Td of 1 s/1 s and 2 s/2 s were obtained from a multi-compartment creatine phantom and 5 healthy volunteers. The CrCEST effect was quantified with asymmetry analysis in the phantom, whereas 5-pool Lorentzian fitting was applied to isolate creatine from phosphocreatine, amide proton transfer, combined magnetization transfer and nuclear Overhauser enhancement effects, and direct water saturation in four major muscle groups of the lower leg. The routine and QUASS CrCEST measurements were compared under two different imaging conditions. Paired Student's t-test was performed with p-values less than 0.05 considered statistically significant. RESULTS The phantom study showed a substantial influence of Ts/Td on the routine CrCEST quantification (p = 0.02), and such impact was mitigated with the QUASS algorithm (p = 0.20). The volunteer experiment showed that the routine CrCEST, amide proton transfer, and combined magnetization transfer and nuclear Overhauser enhancement effects increased significantly with Ts and Td (p < 0.05) and were significantly smaller than the corresponding QUASS indices (p < 0.01). In comparison, the QUASS CrCEST MRI showed little dependence on Ts and Td, indicating its robustness and accuracy. CONCLUSION The QUASS CrCEST MRI is feasible to provide fast and accurate muscle creatine imaging.
Collapse
Affiliation(s)
- Zhou Liu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Qian Yang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Honghong Luo
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Dehong Luo
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
21
|
Huang J, Chen Z, Park SW, Lai JHC, Chan KWY. Molecular Imaging of Brain Tumors and Drug Delivery Using CEST MRI: Promises and Challenges. Pharmaceutics 2022; 14:451. [PMID: 35214183 PMCID: PMC8880023 DOI: 10.3390/pharmaceutics14020451] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022] Open
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) detects molecules in their natural forms in a sensitive and non-invasive manner. This makes it a robust approach to assess brain tumors and related molecular alterations using endogenous molecules, such as proteins/peptides, and drugs approved for clinical use. In this review, we will discuss the promises of CEST MRI in the identification of tumors, tumor grading, detecting molecular alterations related to isocitrate dehydrogenase (IDH) and O-6-methylguanine-DNA methyltransferase (MGMT), assessment of treatment effects, and using multiple contrasts of CEST to develop theranostic approaches for cancer treatments. Promising applications include (i) using the CEST contrast of amide protons of proteins/peptides to detect brain tumors, such as glioblastoma multiforme (GBM) and low-grade gliomas; (ii) using multiple CEST contrasts for tumor stratification, and (iii) evaluation of the efficacy of drug delivery without the need of metallic or radioactive labels. These promising applications have raised enthusiasm, however, the use of CEST MRI is not trivial. CEST contrast depends on the pulse sequences, saturation parameters, methods used to analyze the CEST spectrum (i.e., Z-spectrum), and, importantly, how to interpret changes in CEST contrast and related molecular alterations in the brain. Emerging pulse sequence designs and data analysis approaches, including those assisted with deep learning, have enhanced the capability of CEST MRI in detecting molecules in brain tumors. CEST has become a specific marker for tumor grading and has the potential for prognosis and theranostics in brain tumors. With increasing understanding of the technical aspects and associated molecular alterations detected by CEST MRI, this young field is expected to have wide clinical applications in the near future.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Se-Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Joseph H. C. Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
- Tung Biomedical Science Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Sun PZ. Consistent depiction of the acidic ischemic lesion with APT MRI-Dual RF power evaluation of pH-sensitive image in acute stroke. Magn Reson Med 2022; 87:850-858. [PMID: 34590730 PMCID: PMC8627494 DOI: 10.1002/mrm.29029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/31/2021] [Accepted: 09/09/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Amide proton transfer-weighted (APTw) MRI provides a non-invasive pH-sensitive image, complementing perfusion and diffusion imaging for refined stratification of ischemic tissue. Although the commonly used magnetization transfer (MT) asymmetry (MTRasym ) calculation reasonably corrects the direct RF saturation effect, it is susceptible to the concomitant semisolid macromolecular MT contribution. Therefore, this study aimed to compare the performance of MTRasym and magnetization transfer and relaxation-normalized APT (MRAPT) analyses under 2 representative experimental conditions. METHODS Multiparametric MRI scans were performed in a rodent model of acute stroke, including relaxation, diffusion, and Z spectral images under 2 representative RF levels of 0.75 and 1.5 µT. Both MTRasym and MRAPT values in the ischemic diffusion lesion and the contralateral normal areas were compared using correlation and Bland-Altman tests. In addition, the acidic lesion volumes were compared. RESULTS MRAPT measurements from the diffusion lesion under the 2 conditions were highly correlated (R2 = 0.97) versus MTRasym measures (R2 = 0.58). The pH lesion sizes determined from MRAPT analysis were in good agreement (178 ± 43 mm3 vs. 186 ± 55 mm3 for B1 of 0.75 and 1.5 µT, respectively). CONCLUSIONS The study demonstrated that MRAPT analysis could be generalized to moderately different RF amplitudes, providing a more consistent depiction of acidic lesions than the MTRasym analysis.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA,Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta GA,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA,Corresponding Author: Phillip Zhe Sun, Ph.D., Department of Radiology and Imaging Sciences, Emory University School of Medicine, 954 Gatewood Road NE, Atlanta, GA 30329, Phone: (404) 727-7786; (404) 712-1667,
| |
Collapse
|
23
|
Wu Y, Liu Z, Yang Q, Zou L, Zhang F, Qian L, Liu X, Zheng H, Luo D, Sun PZ. Fast and equilibrium CEST imaging of brain tumor patients at 3T. Neuroimage Clin 2021; 33:102890. [PMID: 34864285 PMCID: PMC8645967 DOI: 10.1016/j.nicl.2021.102890] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 02/01/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI, versatile for detecting endogenous mobile proteins and tissue pH, has proved valuable in tumor imaging. However, CEST MRI scans are often performed under non-equilibrium conditions, which confound tissue characterization. This study proposed a quasi-steady-state (QUASS) CEST MRI algorithm to standardize fast and accurate tumor imaging at 3 T. The CEST signal evolution was modeled by longitudinal relaxation rate during relaxation delay (Td) and spinlock relaxation during RF saturation time (Ts), from which the QUASS CEST effect is derived. Numerical simulation and human MR imaging experiments (7 healthy volunteers and 19 tumor patients) were conducted at 3 T to compare the CEST measurements obtained under two representative experimental conditions. In addition, amide proton transfer (APT), combined magnetization transfer (MT) and nuclear overhauser enhancement (NOE) effects, and direct water saturation were isolated using a 3-pool Lorentzian fitting in white matter and gray matter of healthy volunteers and for patients in the contralateral normal-appearing white matter and tumor regions. Finally, the student's t-test was performed between conventional and QUASS CEST measurements. The routine APT and combined MT & NOE measures significantly varied with Ts and Td (P < .001) and were significantly smaller than the corresponding QUASS indices (P < .001). In contrast, the results from the QUASS reconstruction showed little dependence on the scan protocol (P > .05), indicating the accuracy and robustness of QUASS CEST MRI for tumor imaging. To summarize, the QUASS CEST reconstruction algorithm enables fast and accurate tumor CEST imaging at 3 T, promising to expedite and standardize clinical CEST MRI.
Collapse
Affiliation(s)
- Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China,Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Zhou Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China,Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Qian Yang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Liyan Zou
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Fan Zhang
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China,Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China,Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Dehong Luo
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA,Corresponding author at: Department of Radiology and Imaging Sciences, Emory University School of Medicine, 954 Gatewood Road NE, Atlanta, GA 30329, USA.
| |
Collapse
|
24
|
Kim H, Krishnamurthy LC, Sun PZ. Demonstration of fast multi-slice quasi-steady-state chemical exchange saturation transfer (QUASS CEST) human brain imaging at 3T. Magn Reson Med 2021; 87:810-819. [PMID: 34590726 DOI: 10.1002/mrm.29028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/01/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE To combine multi-slice chemical exchange saturation transfer (CEST) imaging with quasi-steady-state (QUASS) processing and demonstrate the feasibility of fast QUASS CEST MRI at 3T. METHODS Fast multi-slice echo planar imaging (EPI) CEST imaging was developed with concatenated slice acquisition after single radiofrequency irradiation. The multi-slice CEST signal evolution was described by the spin-lock relaxation during saturation duration (Ts ) and longitudinal relaxation during the relaxation delay time (Td ) and post-label delay (PLD), from which the QUASS CEST was generalized to fast multi-slice acquisition. In addition, numerical simulations, phantom, and normal human subjects scans were performed to compare the conventional apparent and QUASS CEST measurements with different Ts , Td, and PLD. RESULTS The numerical simulation showed that the apparent CEST effect strongly depends on Ts , Td , and PLD, while the QUASS CEST algorithm minimizes such dependences. In the L-carnosine gel phantom, the proposed QUASS CEST effects (2.68 ± 0.12% [mean ± SD]) were higher than the apparent CEST effects (1.85 ± 0.26%, p < 5e-4). In the human brain imaging, Bland-Altman analysis bias of the proposed QUASS CEST effects was much smaller than the PLD-corrected apparent CEST effects (0.03% vs. -0.54%), indicating the proposed fast multi-slice CEST imaging is robust and accurate. CONCLUSIONS The QUASS processing enables fast multi-slice CEST imaging with minimal loss in the measurement of the CEST effect.
Collapse
Affiliation(s)
- Hahnsung Kim
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lisa C Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA, Decatur, Georgia, USA.,Department of Physics & Astronomy, Georgia State University, Atlanta, Georgia, USA
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
25
|
Sun PZ. Quasi-steady-state chemical exchange saturation transfer (QUASS CEST) MRI analysis enables T 1 normalized CEST quantification - Insight into T 1 contribution to CEST measurement. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 329:107022. [PMID: 34144360 PMCID: PMC8316384 DOI: 10.1016/j.jmr.2021.107022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/29/2021] [Accepted: 06/07/2021] [Indexed: 05/26/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI depends not only on the labile proton concentration and exchange rate but also on relaxation rates, particularly T1 relaxation time. However, T1 normalization has shown to be not straightforward under non-steady-state conditions and in the presence of radiofrequency spillover effect. Our study aimed to test if the combined use of the new quasi-steady-state (QUASS) analysis and inverse CEST calculation facilitates T1 normalization for improved CEST quantification. The CEST signal was simulated with Bloch-McConnell equations, and the apparent CEST, QUASS CEST, and the inverse CEST effects were calculated. T1-normalized CEST effects were tested for their specificity to the underlying CEST system (i.e., labile proton ratio and exchange rate). CEST experiments were performed from a 9-vial phantom of independently varied concentrations of creatine (20, 40, and 60 mM) and manganese chloride (20, 30, and 40 µM) under a range of RF saturation amplitudes (0.5-4 µT) and durations (1-4 s). The simulation showed that while T1 normalization of the apparent CEST effect was subject to noticeable T1 contamination, the T1-normalized inverse QUASS CEST effect had little T1 dependence. The experimental data were analyzed using a multiple linear regression model, showing that T1-normalized inverse QUASS analysis significantly depended on creatine concentration and saturation power (P < 0.05), not on manganese chloride concentration and saturation duration, advantageous over other CEST indices. The QUASS CEST algorithm reconstructs the steady-state CEST effect, enabling T1-normalized inverse CEST effect calculation for improved quantification of the underlying CEST system.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA, United States.
| |
Collapse
|