1
|
Benarroch E. What Are the Functions of Caveolins and Their Role in Neurologic Disorders? Neurology 2025; 104:e213341. [PMID: 39805058 DOI: 10.1212/wnl.0000000000213341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
|
2
|
Rashed HR, Milone M. The spectrum of rippling muscle disease. Muscle Nerve 2025; 71:9-21. [PMID: 39370631 DOI: 10.1002/mus.28270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Rippling muscle disease (RMD) is a rare disorder of muscle hyperexcitability. It is characterized by rippling wave-like muscle contractions induced by mechanical stretch or voluntary contraction followed by sudden stretch, painful muscle stiffness, percussion-induced rapid muscle contraction (PIRC), and percussion-induced muscle mounding (PIMM). RMD can be hereditary (hRMD) or immune-mediated (iRMD). hRMD is caused by pathogenic variants in caveolin-3 (CAV3) or caveolae-associated protein 1/ polymerase I and transcript release factor (CAVIN1/PTRF). CAV3 pathogenic variants are autosomal dominant or less frequently recessive while CAVIN1/PTRF pathogenic variants are autosomal recessive. CAV3-RMD manifests with a wide spectrum of clinical phenotypes, ranging from asymptomatic creatine kinase elevation to severe muscle weakness. Overlapping phenotypes are common. Muscle caveolin-3 immunoreactivity is often absent or diffusely reduced in CAV3-RMD. CAVIN1/PTRF-RMD is characterized by congenital generalized lipodystrophy (CGL, type 4) and often accompanied by several extra-skeletal muscle manifestations. Muscle cavin-1/PTRF immunoreactivity is absent or reduced while caveolin-3 immunoreactivity is reduced, often in a patchy way, in CAVIN1/PTRF-RMD. iRMD is often accompanied by other autoimmune disorders, including myasthenia gravis. Anti-cavin-4 antibodies are the serological marker while the mosaic expression of caveolin-3 and cavin-4 is the pathological feature of iRMD. Most patients with iRMD respond to immunotherapy. Rippling, PIRC, and PIMM are usually electrically silent. Different pathogenic mechanisms have been postulated to explain the disease mechanisms. In this article, we review the spectrum of hRMD and iRMD, including clinical phenotypes, electrophysiological characteristics, myopathological findings, and pathogenesis.
Collapse
|
3
|
Loser V, Vicino A, Théaudin M. Autoantibodies in neuromuscular disorders: a review of their utility in clinical practice. Front Neurol 2024; 15:1495205. [PMID: 39555481 PMCID: PMC11565704 DOI: 10.3389/fneur.2024.1495205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
A great proportion of neuromuscular diseases are immune-mediated, included myasthenia gravis, Lambert-Eaton myasthenic syndrome, acute- and chronic-onset autoimmune neuropathies (anti-MAG neuropathy, multifocal motor neuropathy, Guillain-Barré syndromes, chronic inflammatory demyelinating polyradiculoneuropathy, CANDA and autoimmune nodopathies), autoimmune neuronopathies, peripheral nerve hyperexcitability syndromes and idiopathic inflammatory myopathies. The detection of autoantibodies against neuromuscular structures has many diagnostic and therapeutic implications and, over time, allowed a better understanding of the physiopathology of those disorders. In this paper, we will review the main autoantibodies described in neuromuscular diseases and focus on their use in clinical practice.
Collapse
Affiliation(s)
- Valentin Loser
- Department of Clinical Neurosciences, Nerve-Muscle Unit, Service of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
4
|
Dubey D. Autoimmune Neuromuscular Disorders Associated With Neural Antibodies. Continuum (Minneap Minn) 2024; 30:1136-1159. [PMID: 39088291 DOI: 10.1212/con.0000000000001461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
OBJECTIVE This article reviews autoimmune neuromuscular disorders and includes an overview of the diagnostic approach, especially the role of antibody testing in a variety of neuropathies and some other neuromuscular disorders. LATEST DEVELOPMENTS In the past few decades, multiple antibody biomarkers associated with immune-mediated neuromuscular disorders have been reported. These biomarkers are not only useful for better understanding of disease pathogenesis and allowing more timely diagnosis but may also aid in the selection of an optimal treatment strategy. ESSENTIAL POINTS Recognition of autoimmune neuromuscular conditions encountered in inpatient or outpatient neurologic practice is very important because many of these disorders are reversible with prompt diagnosis and early treatment. Antibodies are often helpful in making this diagnosis. However, the clinical phenotype and electrodiagnostic testing should be taken into account when ordering antibody tests or panels and interpreting the subsequent results. Similar to other laboratory investigations, understanding the potential utility and limitations of antibody testing in each clinical setting is critical for practicing neurologists.
Collapse
|
5
|
Hostrup M, Cairns SP, Bangsbo J. Muscle Ionic Shifts During Exercise: Implications for Fatigue and Exercise Performance. Compr Physiol 2021; 11:1895-1959. [PMID: 34190344 DOI: 10.1002/cphy.c190024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise causes major shifts in multiple ions (e.g., K+ , Na+ , H+ , lactate- , Ca2+ , and Cl- ) during muscle activity that contributes to development of muscle fatigue. Sarcolemmal processes can be impaired by the trans-sarcolemmal rundown of ion gradients for K+ , Na+ , and Ca2+ during fatiguing exercise, while changes in gradients for Cl- and Cl- conductance may exert either protective or detrimental effects on fatigue. Myocellular H+ accumulation may also contribute to fatigue development by lowering glycolytic rate and has been shown to act synergistically with inorganic phosphate (Pi) to compromise cross-bridge function. In addition, sarcoplasmic reticulum Ca2+ release function is severely affected by fatiguing exercise. Skeletal muscle has a multitude of ion transport systems that counter exercise-related ionic shifts of which the Na+ /K+ -ATPase is of major importance. Metabolic perturbations occurring during exercise can exacerbate trans-sarcolemmal ionic shifts, in particular for K+ and Cl- , respectively via metabolic regulation of the ATP-sensitive K+ channel (KATP ) and the chloride channel isoform 1 (ClC-1). Ion transport systems are highly adaptable to exercise training resulting in an enhanced ability to counter ionic disturbances to delay fatigue and improve exercise performance. In this article, we discuss (i) the ionic shifts occurring during exercise, (ii) the role of ion transport systems in skeletal muscle for ionic regulation, (iii) how ionic disturbances affect sarcolemmal processes and muscle fatigue, (iv) how metabolic perturbations exacerbate ionic shifts during exercise, and (v) how pharmacological manipulation and exercise training regulate ion transport systems to influence exercise performance in humans. © 2021 American Physiological Society. Compr Physiol 11:1895-1959, 2021.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Simeon Peter Cairns
- SPRINZ, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.,Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Botter A, Vieira TM, Geri T, Roatta S. The peripheral origin of tap-induced muscle contraction revealed by multi-electrode surface electromyography in human vastus medialis. Sci Rep 2020; 10:2256. [PMID: 32041996 PMCID: PMC7010771 DOI: 10.1038/s41598-020-59122-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/21/2020] [Indexed: 11/08/2022] Open
Abstract
It is well established that muscle percussion may lead to the excitation of muscle fibres. It is still debated, however, whether the excitation arises directly at the percussion site or reflexively, at the end plates. Here we sampled surface electromyograms (EMGs) from multiple locations along human vastus medialis fibres to address this issue. In five healthy subjects, contractions were elicited by percussing the distal fibre endings at different intensities (5-50 N), and the patellar tendon. EMGs were detected with two 32-electrode arrays, positioned longitudinally and transversally to the percussed fibres, to detect the origin and the propagation of action potentials and their spatial distribution across vastus medialis. During muscle percussion, compound action potentials were first observed at the electrode closest to the tapping site with latency smaller than 5 ms, and spatial extension confined to the percussed strip. Conversely, during tendon tap (and voluntary contractions), action potentials were first detected by electrodes closest to end plates and at a greater latency (mean ± s.d., 28.2 ± 1.7 ms, p < 0.001). No evidence of reflex responses to muscle tap was observed. Multi-electrode surface EMGs allowed for the first time to unequivocally and quantitatively describe the non-reflex nature of the response evoked by a muscle tap.
Collapse
Affiliation(s)
- Alberto Botter
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
- PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Taian M Vieira
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
- PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Tommaso Geri
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Campus of Savona, via Magliotto 2, 17100, Savona, Italy
| | - Silvestro Roatta
- Integrative Physiology Lab, Dept. of Neuroscience, University of Torino, Torino, c.so Raffaello 30, 10125, Torino, Italy.
| |
Collapse
|
7
|
Ibarretxe D, Pellejà J, Ortiz N, Masana L. Caveolin 3 deficiency myopathy associated with dyslipidemia: Treatment challenges and possible pathophysiological association. J Clin Lipidol 2017; 11:1280-1283. [DOI: 10.1016/j.jacl.2017.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/08/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023]
|
8
|
Lo HP, Nixon SJ, Hall TE, Cowling BS, Ferguson C, Morgan GP, Schieber NL, Fernandez-Rojo MA, Bastiani M, Floetenmeyer M, Martel N, Laporte J, Pilch PF, Parton RG. The caveolin-cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle. J Cell Biol 2015; 210:833-49. [PMID: 26323694 PMCID: PMC4555827 DOI: 10.1083/jcb.201501046] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The caveolar membrane microdomain plays an integral role in stabilizing the muscle fiber surface in mice and zebrafish. Dysfunction of caveolae is involved in human muscle disease, although the underlying molecular mechanisms remain unclear. In this paper, we have functionally characterized mouse and zebrafish models of caveolae-associated muscle disease. Using electron tomography, we quantitatively defined the unique three-dimensional membrane architecture of the mature muscle surface. Caveolae occupied around 50% of the sarcolemmal area predominantly assembled into multilobed rosettes. These rosettes were preferentially disassembled in response to increased membrane tension. Caveola-deficient cavin-1−/− muscle fibers showed a striking loss of sarcolemmal organization, aberrant T-tubule structures, and increased sensitivity to membrane tension, which was rescued by muscle-specific Cavin-1 reexpression. In vivo imaging of live zebrafish embryos revealed that loss of muscle-specific Cavin-1 or expression of a dystrophy-associated Caveolin-3 mutant both led to sarcolemmal damage but only in response to vigorous muscle activity. Our findings define a conserved and critical role in mechanoprotection for the unique membrane architecture generated by the caveolin–cavin system.
Collapse
Affiliation(s)
- Harriet P Lo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Susan J Nixon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas E Hall
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Belinda S Cowling
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de la Recherche Scientifique UMR7104, Strasbourg University, Illkirch 67404, France
| | - Charles Ferguson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia Center for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Garry P Morgan
- Center for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicole L Schieber
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Manuel A Fernandez-Rojo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michele Bastiani
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthias Floetenmeyer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia Center for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nick Martel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U964, Centre National de la Recherche Scientifique UMR7104, Strasbourg University, Illkirch 67404, France
| | - Paul F Pilch
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia Center for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
9
|
Jayasinghe ID, Clowsley AH, Munro M, Hou Y, Crossman DJ, Soeller C. Revealing T-Tubules in Striated Muscle with New Optical Super-Resolution Microscopy Techniquess. Eur J Transl Myol 2014; 25:4747. [PMID: 26913143 PMCID: PMC4748971 DOI: 10.4081/ejtm.2015.4747] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/18/2014] [Indexed: 01/03/2023] Open
Abstract
The t-tubular system plays a central role in the synchronisation of calcium signalling and excitation-contraction coupling in most striated muscle cells. Light microscopy has been used for imaging t-tubules for well over 100 years and together with electron microscopy (EM), has revealed the three-dimensional complexities of the t-system topology within cardiomyocytes and skeletal muscle fibres from a range of species. The emerging super-resolution single molecule localisation microscopy (SMLM) techniques are offering a near 10-fold improvement over the resolution of conventional fluorescence light microscopy methods, with the ability to spectrally resolve nanometre scale distributions of multiple molecular targets. In conjunction with the next generation of electron microscopy, SMLM has allowed the visualisation and quantification of intricate t-tubule morphologies within large areas of muscle cells at an unprecedented level of detail. In this paper, we review recent advancements in the t-tubule structural biology with the utility of various microscopy techniques. We outline the technical considerations in adapting SMLM to study t-tubules and its potential to further our understanding of the molecular processes that underlie the sub-micron scale structural alterations observed in a range of muscle pathologies.
Collapse
Affiliation(s)
| | | | - Michelle Munro
- Department of Physiology, The University of Auckland , New Zealand
| | - Yufeng Hou
- Department of Physiology, The University of Auckland , New Zealand
| | - David J Crossman
- Department of Physiology, The University of Auckland , New Zealand
| | - Christian Soeller
- Biomedical Physics, University of Exeter, UK, New Zealand; Biomedical Physics, University of Exeter, UK, New Zealand
| |
Collapse
|
10
|
Abstract
Approximately 95% of statin-treated patients tolerate this form of cholesterol management without any adverse effects. However, given their efficacy in reducing low density lipoproteins and cardiovascular events large numbers of patients are selected for statin therapy. Therefore muscle complications are, in fact, quite common. Limited understanding of the underlying pathophysiology has hampered physicians' ability to identify patients at risk for developing statin myotoxicity. A growing number of published case reports/series have implicated statins in the exacerbation of both acquired and genetic myopathies. A clinical management algorithm is presented which outlines a variety of co-morbidities which can potentiate the adverse effects of statins on muscle. In addition, a rational approach to the selection of those patients most likely to benefit from skeletal muscle biopsy is discussed. Ongoing work will define the extent to which statin-intolerant patients represent carriers of recessive metabolic myopathies or pre-symptomatic acquired myopathies. The expanding importance of pharmacogenomics will undoubtedly be realized in the field of statin myopathy research within the next few years. Such critical information is needed to establish more definitive management and diagnostic strategies.
Collapse
|
11
|
Abstract
Muscle cells have an elaborate plasma membrane and t-tubule system that has been evolutionarily refined to maximize electrical conductivity for synchronous muscle contraction. However, this elaborate plasma membrane network has intrinsic vulnerabilities to stretch-induced membrane injury, and thus requires ongoing maintenance and repair. Herein we discuss the types of membrane injuries encountered by myofibers in healthy muscle and in muscular dystrophy. We review the different mechanisms by which muscle fibers in patients with muscular dystrophy are rendered more susceptible to injury, and we summarize the latest developments in our understanding of how the muscular dystrophy protein dysferlin mediates satellite-cell independent membrane repair.
Collapse
Affiliation(s)
- Sandra T Cooper
- Institute for Neuroscience and Muscle Research, Kids Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, New South Wales, Australia
| | - Stewart I Head
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Milone M, Mcevoy KM, Sorenson EJ, Daube JR. Myotonia associated with caveolin-3 mutation. Muscle Nerve 2012; 45:897-900. [DOI: 10.1002/mus.23270] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
|
14
|
|
15
|
Edwards JN, Cully TR, Shannon TR, Stephenson DG, Launikonis BS. Longitudinal and transversal propagation of excitation along the tubular system of rat fast-twitch muscle fibres studied by high speed confocal microscopy. J Physiol 2011; 590:475-92. [PMID: 22155929 DOI: 10.1113/jphysiol.2011.221796] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mammalian skeletal muscle fibres possess a tubular (t-) system that consists of regularly spaced transverse elements which are also connected in the longitudinal direction. This tubular network provides a pathway for the propagation of action potentials (APs) both radially and longitudinally within the fibre, but little is known about the actual radial and longitudinal AP conduction velocities along the tubular network in mammalian skeletal muscle fibres. The aim of this study was to track AP propagation within the t-system network of fast-twitch rat muscle fibres with high spatio-temporal resolution when the t-system was isolated from the surface membrane. For this we used high speed confocal imaging of AP-induced Ca(2+) release in contraction-suppressed mechanically skinned fast-twitch fibres where the t-system can be electrically excited in the absence of the surface membrane. Supramaximal field pulses normally elicited a synchronous AP-induced release of Ca(2+) along one side of the fibre axis which propagated uniformly across the fibre. In some cases up to 80 or more adjacent transverse tubules failed to be excited by the field pulse, while adjacent areas responded with normal Ca(2+) release. In these cases a continuous front of Ca(2+) release with an angle to the scanning line was observed due to APs propagating longitudinally. From these observations the radial/transversal and longitudinal AP conduction velocities along the tubular network deeper in the fibre under our conditions (19 ± 1°C) ranged between 8 and 11 μm ms(-1) and 5 to 9 μm ms(-1), respectively, using different methods of estimation. The longitudinal propagation of APs appeared to be markedly faster closer to the edge of the fibre, in agreement with the presence of dense longitudinal connections immediately below the surface of the fibre and more sparse connections at deeper planes within the fibre. During long trains of closely spaced field pulses the AP-elicited Ca(2+) releases became non-synchronous along the fibre axis. This is most likely caused by local tubular K(+) accumulation that produces local depolarization and local slowing of AP propagation. Longitudinally propagating APs may reduce such inhomogeneities by exciting areas of delayed AP onset. Clearly, the longitudinal tubular pathways within the fibre for excitation are used as a safety mechanism in situations where a local depolarization obstructs immediate excitation from the sarcolemma. Results obtained from this study also provide an explanation for the pattern of contractures observed in rippling muscle disease.
Collapse
Affiliation(s)
- Joshua N Edwards
- School of Biomedical Sciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | | | | | | | | |
Collapse
|
16
|
Maki T, Matsumoto R, Kohara N, Kondo T, Son I, Mezaki T, Nishino I, Ikeda A, Takahashi R. Rippling is not always electrically silent in rippling muscle disease. Muscle Nerve 2011; 43:601-5. [DOI: 10.1002/mus.21947] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Lo HP, Bertini E, Mirabella M, Domazetovska A, Dale RC, Petrini S, D'Amico A, Valente EM, Barresi R, Roberts M, Tozzi G, Tasca G, Cooper ST, Straub V, North KN. Mosaic caveolin-3 expression in acquired rippling muscle disease without evidence of myasthenia gravis or acetylcholine receptor autoantibodies. Neuromuscul Disord 2011; 21:194-203. [PMID: 21295981 DOI: 10.1016/j.nmd.2010.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/21/2010] [Accepted: 11/29/2010] [Indexed: 01/30/2023]
Abstract
Inherited rippling muscle disease is an autosomal dominant disorder usually associated with caveolin-3 mutations. Rare cases of acquired rippling muscle disease with abnormal caveolin-3 localisation have been reported, without primary caveolin-3 mutations and in association with myasthenia gravis and acetylcholine receptor autoantibodies, or thymoma. We present three new patients with electrically-silent muscle rippling and abnormal caveolin-3 localisation, but without acetylcholine receptor autoantibodies, or clinical or electrophysiological evidence of myasthenia gravis. An autoimmune basis for rippling muscle disease is supported by spontaneous recovery and normalisation of caveolin-3 staining in one patient and alleviation of symptoms in response to plasmapheresis and immunosuppression in another. These patients expand the autoimmune rippling muscle disease phenotype, and suggest that autoantibodies to additional unidentified muscle proteins result in autoimmune rippling muscle disease.
Collapse
Affiliation(s)
- Harriet P Lo
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Westmead, NSW 2145, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ullrich ND, Fischer D, Kornblum C, Walter MC, Niggli E, Zorzato F, Treves S. Alterations of excitation-contraction coupling and excitation coupled Ca(2+) entry in human myotubes carrying CAV3 mutations linked to rippling muscle. Hum Mutat 2011; 32:309-17. [PMID: 21294223 PMCID: PMC3132216 DOI: 10.1002/humu.21431] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 12/06/2010] [Indexed: 11/08/2022]
Abstract
Rippling muscle disease is caused by mutations in the gene encoding caveolin-3 (CAV3), the muscle-specific isoform of the scaffolding protein caveolin, a protein involved in the formation of caveolae. In healthy muscle, caveolin-3 is responsible for the formation of caveolae, which are highly organized sarcolemmal clusters influencing early muscle differentiation, signalling and Ca2+ homeostasis. In the present study we examined Ca2+ homeostasis and excitation–contraction (E-C) coupling in cultured myotubes derived from two patients with Rippling muscle disease with severe reduction in caveolin-3 expression; one patient harboured the heterozygous c.84C>A mutation while the other patient harbored a homozygous splice-site mutation (c.102+ 2T>C) affecting the splice donor site of intron 1 of the CAV3 gene. Our results show that cells from control and rippling muscle disease patients had similar resting [Ca2+]i and 4-chloro-m-cresol-induced Ca2+ release but reduced KCl-induced Ca2+ influx. Detailed analysis of the voltage-dependence of Ca2+ transients revealed a significant shift of Ca2+ release activation to higher depolarization levels in CAV3 mutated cells. High resolution immunofluorescence analysis by Total Internal Fluorescence microscopy supports the hypothesis that loss of caveolin-3 leads to microscopic disarrays in the colocalization of the voltage-sensing dihydropyridine receptor and the ryanodine receptor, thereby reducing the efficiency of excitation–contraction coupling. Hum Mutat 32:309–317, 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Nina D Ullrich
- Department of Physiology, University of Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
19
|
Rajab A, Straub V, McCann LJ, Seelow D, Varon R, Barresi R, Schulze A, Lucke B, Lützkendorf S, Karbasiyan M, Bachmann S, Spuler S, Schuelke M. Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4) due to PTRF-CAVIN mutations. PLoS Genet 2010; 6:e1000874. [PMID: 20300641 PMCID: PMC2837386 DOI: 10.1371/journal.pgen.1000874] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/05/2010] [Indexed: 11/19/2022] Open
Abstract
We investigated eight families with a novel subtype of congenital generalized lipodystrophy (CGL4) of whom five members had died from sudden cardiac death during their teenage years. ECG studies revealed features of long-QT syndrome, bradycardia, as well as supraventricular and ventricular tachycardias. Further symptoms comprised myopathy with muscle rippling, skeletal as well as smooth-muscle hypertrophy, leading to impaired gastrointestinal motility and hypertrophic pyloric stenosis in some children. Additionally, we found impaired bone formation with osteopenia, osteoporosis, and atlanto-axial instability. Homozygosity mapping located the gene within 2 Mbp on chromosome 17. Prioritization of 74 candidate genes with GeneDistiller for high expression in muscle and adipocytes suggested PTRF-CAVIN (Polymerase I and transcript release factor/Cavin) as the most probable candidate leading to the detection of homozygous mutations (c.160delG, c.362dupT). PTRF-CAVIN is essential for caveolae biogenesis. These cholesterol-rich plasmalemmal vesicles are involved in signal-transduction and vesicular trafficking and reside primarily on adipocytes, myocytes, and osteoblasts. Absence of PTRF-CAVIN did not influence abundance of its binding partner caveolin-1 and caveolin-3. In patient fibroblasts, however, caveolin-1 failed to localize toward the cell surface and electron microscopy revealed reduction of caveolae to less than 3%. Transfection of full-length PTRF-CAVIN reestablished the presence of caveolae. The loss of caveolae was confirmed by Atomic Force Microscopy (AFM) in combination with fluorescent imaging. PTRF-CAVIN deficiency thus presents the phenotypic spectrum caused by a quintessential lack of functional caveolae. Patients with generalized lipodystrophy have a marked lack of body fat. Several gene defects have been described that impede fat synthesis and maturation of fat cells. Here we report on mutations in a novel gene, called PTRF-CAVIN, causing congenital generalized lipodystrophy type 4 (CGL4) that is additionally associated with muscle disease. Patients' muscles are large but weak and show an involuntary, rolling contraction pattern called “rippling.” Further symptoms comprise life-threatening cardiac arrhythmias and a disorder of bone formation. We searched for shared segments in the genome of seven patients and found the responsible gene, called PTRF-CAVIN, on chromosome 17. This gene is crucial for caveolae (latin for “small caves”) formation. These small indentations of the cell membrane are found on the surface of muscle, bone, fat, and immune cells and facilitate cell-to-cell communication and the absorption of substances from the extracellular space. Patients lack more than 97% of caveolae and artificial insertion of the correct gene into patient skin cells led to the reappearance of caveolae. As cardiac arrhythmia is a severe and potentially life-threatening condition, patients with CGL4 should be closely monitored by ECG and, if necessary, fitted with an implanted pacemaker and cardioverter defibrillator (ICD) device.
Collapse
Affiliation(s)
- Anna Rajab
- Genetics Unit, Ministry of Health, Directorate General of Health Affairs, Royal Hospital, Muscat, Oman
| | - Volker Straub
- Institute of Human Genetics, International Center for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Liza J. McCann
- Department of Rheumatology, Alder Hey Children's Hospital, Liverpool, United Kingdom
| | - Dominik Seelow
- Department of Neuropediatrics, Charité University Medical School, Berlin, Germany
- NeuroCure Clinical Research Center, Charité University Medical School, Berlin, Germany
| | - Raymonda Varon
- Institute of Human Genetics, Charité University Medical School, Berlin, Germany
| | - Rita Barresi
- Institute of Human Genetics, International Center for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anne Schulze
- Muscle Research Unit, Experimental and Clinical Research Center, Charité University Medical School, Berlin, Germany
| | - Barbara Lucke
- Department of Neuropediatrics, Charité University Medical School, Berlin, Germany
- NeuroCure Clinical Research Center, Charité University Medical School, Berlin, Germany
| | - Susanne Lützkendorf
- Department of Neuropediatrics, Charité University Medical School, Berlin, Germany
- NeuroCure Clinical Research Center, Charité University Medical School, Berlin, Germany
| | - Mohsen Karbasiyan
- Institute of Human Genetics, Charité University Medical School, Berlin, Germany
| | - Sebastian Bachmann
- Department of Anatomy, Charité University Medical School, Berlin, Germany
- Core Facility for Electron Microscopy, Charité University Medical School, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, Charité University Medical School, Berlin, Germany
| | - Markus Schuelke
- Department of Neuropediatrics, Charité University Medical School, Berlin, Germany
- NeuroCure Clinical Research Center, Charité University Medical School, Berlin, Germany
- * E-mail:
| |
Collapse
|
20
|
Sundblom J, Stålberg E, Österdahl M, Rücker F, Montelius M, Kalimo H, Nennesmo I, Islander G, Smits A, Dahl N, Melberg A. Bedside diagnosis of rippling muscle disease in CAV3
p.A46T mutation carriers. Muscle Nerve 2010; 41:751-7. [DOI: 10.1002/mus.21589] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Klinge L, Harris J, Sewry C, Charlton R, Anderson L, Laval S, Chiu YH, Hornsey M, Straub V, Barresi R, Lochmüller H, Bushby K. Dysferlin associates with the developing T-tubule system in rodent and human skeletal muscle. Muscle Nerve 2010; 41:166-73. [PMID: 20082313 DOI: 10.1002/mus.21166] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mutations in the dysferlin gene cause limb-girdle muscular dystrophy type 2B, Miyoshi myopathy, and distal anterior compartment myopathy. Dysferlin mainly localizes to the sarcolemma in mature skeletal muscle where it is implicated in membrane fusion and repair. In different forms of muscular dystrophy, a predominantly cytoplasmic localization of dysferlin can be observed in regenerating myofibers, but the subcellular compartment responsible for this labeling pattern is not yet known. We have previously demonstrated an association of dysferlin with the developing T-tubule system in vitro. To investigate the role of dysferlin in adult skeletal muscle regeneration, we studied dysferlin localization at high resolution in a rat model of regeneration and found that the subcellular labeling of dysferlin colocalizes with the developing T-tubule system. Furthermore, ultrastructural analysis of dysferlin-deficient muscle revealed primary T-tubule anomalies similar to those seen in caveolin-3-deficient muscle. These findings indicate that dysferlin is necessary for correct T-tubule formation, and dysferlin-deficient skeletal muscle is characterized by abnormally configured T-tubules.
Collapse
Affiliation(s)
- Lars Klinge
- Institute of Human Genetics, International Centre for Life, University of Newcastle, Newcastle-upon-Tyne NE1 3BZ, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jacobi C, Ruscheweyh R, Vorgerd M, Weber MA, Storch-Hagenlocher B, Meinck HM. Rippling muscle disease: Variable phenotype in a family with five afflicted members. Muscle Nerve 2010; 41:128-32. [DOI: 10.1002/mus.21446] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Plasma membrane removal in rat skeletal muscle fibers reveals caveolin-3 hot-spots at the necks of transverse tubules. Exp Cell Res 2009; 315:1015-28. [DOI: 10.1016/j.yexcr.2008.11.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/11/2008] [Accepted: 11/30/2008] [Indexed: 02/07/2023]
|
24
|
Cairns SP, Taberner AJ, Loiselle DS. Changes of surface and t-tubular membrane excitability during fatigue with repeated tetani in isolated mouse fast- and slow-twitch muscle. J Appl Physiol (1985) 2009; 106:101-12. [DOI: 10.1152/japplphysiol.90878.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated whether impaired sarcolemmal excitability causes severe fatigue during repeated tetani in isolated mouse skeletal muscle. Slow-twitch soleus or fast-twitch extensor digitorum longus (EDL) muscles underwent intensive stimulation (standard protocol: 125 Hz for 500 ms, every second, parallel plate electrodes, 20 V, 0.1-ms pulses). Interventions with altered stimulation characteristics were tested either on the entire fatigue profile or after 90- to 100-s stimulation. d-tubocurarine did not alter the fatigue profile in soleus thereby eliminating impaired neuromuscular transmission. Lower stimulation frequencies partially restored peak force, especially in soleus. The twitch force-stimulation strength relationship shifted towards higher voltages in both muscle types, with a much larger shift in EDL. Augmenting pulse strength restored tetanic force from 29% (4.4 V) to 79% (20 V), or slowed fatigue in soleus. Increasing pulse duration (0.1 to 1.0 ms) restored tetanic force from 8 to 46% in EDL and from 41 to 90% in soleus; 0.25-ms pulses restored tetanic force to 83% in soleus. Switching from transverse wire to parallel plate stimulation increased tetanic force from 34 to 63%, and fatigue was exacerbated with wires compared with plates in soleus. The combined data suggest that impaired excitability (disrupted action potential generation) within trains is the main contributor (∼50% initial force) to severe fatigue in both muscle types, the surface rather than t-tubular membrane is the main site of impairment during wire stimulation, and extreme fatigue in EDL includes an increased action potential threshold leading to inexcitable fibers. Moreover, mathematical modeling discounts anoxia as the major contributor to fatigue during our stimulation regime in isolated muscles.
Collapse
|
25
|
González-Pérez P, Gallano P, González-Quereda L, Rivas-Infante E, Teijeira S, Navarro C, Bautista-Lorite J. Phenotypic variability in a Spanish family with a Caveolin-3 mutation. J Neurol Sci 2008; 276:95-8. [PMID: 18930476 DOI: 10.1016/j.jns.2008.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/07/2008] [Accepted: 09/11/2008] [Indexed: 11/15/2022]
Abstract
UNLABELLED We report a Spanish family affected from a late onset, hand-involved and autosomal dominant distal myopathy associated to Caveolin-3 mutation. Signs of muscle hyperexcitability and hyperckemia were observed in the youngest relatives but not motor symptoms. PATIENTS AND METHODS Neurological examination was performed in all members of the family. Muscle biopsy sample was taken from the proband and DNA genomics was amplified for the two exons of Cav-3 by the polymerase chain reaction (PCR) in all the affected members and in three asymptomatic relatives. RESULTS Signs of muscle hyperexcitability and hyperckemia were observed in the affected members from early ages. Cav-3 expression was greatly reduced in the sarcolemma of the proband's muscle. Genetic studies revealed a G --> A transition at nucleotide position 80 in exon 1 of the Cav-3 gene (c.80G>A), generating a Arg --> Gln change at codon 27 (p.R27Q) of the amino acid chain in heterozygous state, while no mutation was found in unaffected members. CONCLUSIONS Signs of muscle hyperexcitability and hyperckemia at early ages may predict the development of a late onset autosomal dominant hand-involved myopathy associated to Cav-3 mutation in the family reported herein.
Collapse
Affiliation(s)
- Paloma González-Pérez
- Neuromuscular Unit, Department of Neurology and Clinical Neurophysiology, University Hospital Virgen del Rocio, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Repeated, intense use of muscles leads to a decline in performance known as muscle fatigue. Many muscle properties change during fatigue including the action potential, extracellular and intracellular ions, and many intracellular metabolites. A range of mechanisms have been identified that contribute to the decline of performance. The traditional explanation, accumulation of intracellular lactate and hydrogen ions causing impaired function of the contractile proteins, is probably of limited importance in mammals. Alternative explanations that will be considered are the effects of ionic changes on the action potential, failure of SR Ca2+release by various mechanisms, and the effects of reactive oxygen species. Many different activities lead to fatigue, and an important challenge is to identify the various mechanisms that contribute under different circumstances. Most of the mechanistic studies of fatigue are on isolated animal tissues, and another major challenge is to use the knowledge generated in these studies to identify the mechanisms of fatigue in intact animals and particularly in human diseases.
Collapse
|
27
|
Jurkat-Rott K, Fauler M, Lehmann-Horn F. Ion channels and ion transporters of the transverse tubular system of skeletal muscle. J Muscle Res Cell Motil 2006; 27:275-90. [PMID: 16933023 DOI: 10.1007/s10974-006-9088-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 07/05/2006] [Indexed: 11/27/2022]
Abstract
This review focuses on the electrical properties of the transverse (T) tubular membrane of skeletal muscle, with reference to the contribution of the T-tubular system (TTS) to the surface action potential, the radial spread of excitation and its role in excitation-contraction coupling. Particularly, the most important ion channels and ion transporters that enable proper depolarization and repolarization of the T-tubular membrane are described. Since propagation of excitation along the TTS into the depth of the fibers is a delicate balance between excitatory and inhibitory currents, the composition of channels and transporters is specific to the TTS and different from the surface membrane. The TTS normally enables the radial spread of excitation and the signal transfer to the sarcoplasmic reticulum to release calcium that activates the contractile apparatus. However, due to its structure, even slight shifts of ions may alter its volume, Nernstian potentials, ion permeabilities, and consequently T-tubular membrane potential and excitability.
Collapse
|
28
|
Stephenson DG. Tubular system excitability: an essential component of excitation–contraction coupling in fast-twitch fibres of vertebrate skeletal muscle. J Muscle Res Cell Motil 2006; 27:259-74. [PMID: 16874453 DOI: 10.1007/s10974-006-9073-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 06/19/2006] [Indexed: 10/24/2022]
Abstract
The tubular (t-) system is the main interface between the myoplasm and the extracellular environment and is responsible for the rapid inward spread of excitation from the sarcolemma to the inner parts of the skeletal muscle fibre as well as for signal transfer to the sarcoplasmic reticulum to release Ca2+ that, in turn, activates the contractile apparatus. In this review, I explore the insights provided by the mechanically skinned muscle fibre preparation to the better understanding of the importance of the t-system excitability in determining the force response under physiologically relevant conditions. In the mechanically skinned muscle fibre, the t-system seals off after is physically separated from the sarcolemma and its excitability can be investigated by electrical stimulation under controlled conditions. Parameters that can be assessed include the threshold for action potential generation, specific electrical resistance and time constant of the tubular wall, quantity of charge transferred during an action potential, refractory period, length constant and velocity of excitation propagation. Results obtained with mechanically skinned fibres from fast-twitch muscles show that decreased t-system excitability does not necessarily translate into reduced force output, but for any particular set of physiologically relevant conditions there is a level below which a further decrease in t-system excitability markedly decreases the force output. There are several built-in mechanisms linked to the metabolic/energetic state of the muscle fibre which prevent complete action potential failure in the t-system, thus allowing the muscle to respond to nerve stimulation, even if the response becomes markedly attenuated.
Collapse
Affiliation(s)
- D George Stephenson
- Department of Zoology, La Trobe University, Kingsburry Drive, Bundoora Campus, Melbourne, Victoria, 3086, Australia.
| |
Collapse
|
29
|
Van Beekvelt MCP, Drost G, Rongen G, Stegeman DF, Van Engelen BGM, Zwarts MJ. Na+-K+-ATPase is not involved in the warming-up phenomenon in generalized myotonia. Muscle Nerve 2006; 33:514-23. [PMID: 16382442 DOI: 10.1002/mus.20483] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The initial temporary weakness that occurs in autosomal-recessive generalized myotonia diminishes with repetitive contractions. Physiological understanding of this phenomenon is incomplete. The underlying hypothesis of our study was that the "warming-up" phenomenon relates to the exercise-related activation of Na(+)-K(+)-ATPase. Three patients performed isometric exercise of the brachioradialis muscle on two separate days. Randomly, on one of these days the contraction was preceded by a 30-min infusion of the Na(+)-K(+)-ATPase inhibitor ouabain into the brachial artery of the exercising arm (0.4 mug.min(-1).dl(-1)). Force was measured simultaneously with electrical muscle activity using high-density surface electromyography (HD-sEMG). A transient rapid decline in force occurred after initiation of exercise, accompanied by electrophysiological changes indicating sarcolemmal conduction block. Ouabain infusion did not affect the recovery from transient paresis or the accompanying electromyographic changes, indicating that the warming-up phenomenon in generalized myotonia is not mediated by Na(+)-K(+)-ATPase.
Collapse
Affiliation(s)
- Mireille C P Van Beekvelt
- Department of Clinical Neurophysiology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|