1
|
Ni L, Yao Z, Zhao Y, Zhang T, Wang J, Li S, Chen Z. Electrical stimulation therapy for peripheral nerve injury. Front Neurol 2023; 14:1081458. [PMID: 36908597 PMCID: PMC9998520 DOI: 10.3389/fneur.2023.1081458] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Peripheral nerve injury is common and frequently occurs in extremity trauma patients. The motor and sensory impairment caused by the injury will affect patients' daily life and social work. Surgical therapeutic approaches don't assure functional recovery, which may lead to neuronal atrophy and hinder accelerated regeneration. Rehabilitation is a necessary stage for patients to recover better. A meaningful role in non-pharmacological intervention is played by rehabilitation, through individualized electrical stimulation therapy. Clinical studies have shown that electrical stimulation enhances axon growth during nerve repair and accelerates sensorimotor recovery. According to different effects and parameters, electrical stimulation can be divided into neuromuscular, transcutaneous, and functional electrical stimulation. The therapeutic mechanism of electrical stimulation may be to reduce muscle atrophy and promote muscle reinnervation by increasing the expression of structural protective proteins and neurotrophic factors. Meanwhile, it can modulate sensory feedback and reduce neuralgia by inhibiting the descending pathway. However, there are not many summary clinical application parameters of electrical stimulation, and the long-term effectiveness and safety also need to be further explored. This article aims to explore application methodologies for effective electrical stimulation in the rehabilitation of peripheral nerve injury, with simultaneous consideration for fundamental principles of electrical stimulation and the latest technology. The highlight of this paper is to identify the most appropriate stimulation parameters (frequency, intensity, duration) to achieve efficacious electrical stimulation in the rehabilitation of peripheral nerve injury.
Collapse
Affiliation(s)
- Lingmei Ni
- Infection Prevention and Control Department, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhao Yao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yifan Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianfang Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Siyue Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zuobing Chen
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Peña-Toledo MA, Luque E, LaTorre M, Jimena I, Leiva-Cepas F, Ruz-Caracuel I, Agüera E, Peña-Amaro J, Tunez I. The ultrastructure of muscle fibers and satellite cells in experimental autoimmune encephalomyelitis after treatment with transcranial magnetic stimulation. Ultrastruct Pathol 2022; 46:401-412. [PMID: 35994513 DOI: 10.1080/01913123.2022.2112330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
In this study, we investigated the effect of transcranial magnetic stimulation (TMS) on the ultrastructure of muscle fibers and satellite cells in rats with experimental autoimmune encephalomyelitis (EAE). EAE-induced animals were treated with TMS (60 Hz at 0.7 mT) for 2 hours in the morning, once a day, 5 days a week, for 3 weeks, starting on day 15 post-immunization. The rats were sacrificed on day 36 post-immunization, and the soleus muscles were evaluated by light microscopy and transmission electron microscopy. Findings were compared with a non-treated EAE group. Electron microscopy analysis showed the presence of degenerated mitochondria, autophagic vacuoles, and altered myofibrils in non-treated EAE group. This correlates with the presence of acid phosphatase activity in muscle fibers and core-targetoid lesions with desmin immunohistochemistry. Most myonuclei in the EAE group showed apoptotic features. In contrast, EAE induced-TMS treated animals had less ultrastructural changes in the mitochondria and the myofibrils, together with less frequent apoptotic nuclear features. Peripheral desmin+ protrusions, as a marker of active satellite cells, were significantly increased in TMS-treated group. This correlates ultrastructurally with the presence of active features in satellite cells in the TMS group. In conclusion, the attenuation of ultrastructural alterations in muscle fibers and activation response of satellite cells caused by EAE indicated that skeletal muscle had a regenerative response to TMS.
Collapse
Affiliation(s)
- María Angeles Peña-Toledo
- Dementia and Multiple Sclerosis Unit, Neurology Service, Reina Sofia University Hospital, Cordoba, Spain.,Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain
| | - Evelio Luque
- Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain.,Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Manuel LaTorre
- Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Ignacio Jimena
- Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain.,Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Fernando Leiva-Cepas
- Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain.,Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain.,Department of Pathology, Reina Sofía University Hospital, Córdoba, Spain
| | - Ignacio Ruz-Caracuel
- Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain.,Department of Pathology, Ramon y Cajal University Hospital, IRYCIS, Madrid, Spain
| | - Eduardo Agüera
- Dementia and Multiple Sclerosis Unit, Neurology Service, Reina Sofia University Hospital, Cordoba, Spain.,Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain
| | - J Peña-Amaro
- Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain.,Department of Morphological Sciences, Histology Section, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain
| | - Isaac Tunez
- Maimonides Institute for Biomedical Research IMIBIC, Cordoba, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain.,Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM), Ministery for Economy, Industry and Competitiveness, Madrid, Spain
| |
Collapse
|
3
|
Soendenbroe C, Flindt Heisterberg MF, Schjerling P, Kjaer M, Andersen JL, Mackey AL. Human skeletal muscle acetylcholine receptor gene expression in elderly males performing heavy resistance exercise. Am J Physiol Cell Physiol 2022; 323:C159-C169. [PMID: 35649253 DOI: 10.1152/ajpcell.00365.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle fiber denervation is a major contributor to the decline in muscle mass and function during aging. Heavy resistance exercise is an effective tool for increasing muscle mass and strength, but whether it can rescue denervated muscle fibers remains unclear. Therefore, the purpose of this study was to investigate the potential of heavy resistance exercise to modify indices of denervation in healthy elderly individuals. 38 healthy elderly men (72±5 years) underwent 16 weeks of heavy resistance exercise while 20 healthy elderly men (72±6 years) served as non-exercising sedentary controls. Muscle biopsies were obtained pre and post training, and midway at eight weeks. Biopsies were analysed by immunofluorescence for the prevalence of myofibers expressing embryonic myosin (MyHCe), neonatal myosin (MyHCn), nestin, and neural cell adhesion molecule (NCAM), and by RT-qPCR for gene expression levels of acetylcholine receptor (AChR) subunits, MyHCn, MyHCe, p16 and Ki67. In addition to increases in strength and type II fiber hypertrophy, heavy resistance exercise training led to a decrease in AChR α1 and ε subunit mRNA (at eight weeks). Changes in gene expression levels of the α1 and ε AChR subunits with eight weeks of heavy resistance exercise supports the role of this type of exercise in targeting stability of the neuromuscular junction. The number of fibers positive for NCAM, nestin, and MyHCn was not affected, suggesting that a longer timeframe is needed for adaptations to manifest at the protein level.
Collapse
Affiliation(s)
- Casper Soendenbroe
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen NV, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Mette F Flindt Heisterberg
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen NV, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen NV, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen NV, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Jesper L Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen NV, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen NV, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW This review encompasses the main novelties regarding nonimmune mechanisms implicated in the pathogenesis of idiopathic inflammatory myopathies (IIM). RECENT FINDINGS In recent years, growing data support a role for endoplasmic-reticulum (ER) stress as a propagator of muscular damage, together with the release of interferon type I and reactive oxygen species in hypoxemic muscle fibers. Other studies evaluating the relationship between autophagy and Toll-like receptors (TLRs) in IIM subtypes have shown increased TLR3 and TLR4 expression in fibers of IIM patients and colocalization with LC3, an autophagy marker, submitting autophagy as a likely player in IIM pathogenesis. Most novel evidences concern the potential role of denervation of the neuromuscular junction in IIM, possibly connected to hyperexpression of MHC-I, and trafficking of extracellular vesicles, which may represent a connection between nonimmune and immune-mediated mechanisms of muscle inflammation and damage. SUMMARY Nonimmune mechanisms contribute to the pathogenesis of IIM, likely cooperating with immune-mediated inflammation. Consistent data were released for ER stress, autophagy, mitochondrial dysfunction and hypoxia; in addition to, neuromuscular denervation and extracellular vesicles have been proposed as thoughtful links between muscle inflammation, damage and atrophy. Further understanding of nonimmune abnormalities and potential reversible pathways is needed to improve the management of IIM.
Collapse
|
5
|
Hitachi K, Nakatani M, Kiyofuji Y, Inagaki H, Kurahashi H, Tsuchida K. An Analysis of Differentially Expressed Coding and Long Non-Coding RNAs in Multiple Models of Skeletal Muscle Atrophy. Int J Mol Sci 2021; 22:ijms22052558. [PMID: 33806354 PMCID: PMC7961583 DOI: 10.3390/ijms22052558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
The loss of skeletal muscle mass (muscle atrophy or wasting) caused by aging, diseases, and injury decreases quality of life, survival rates, and healthy life expectancy in humans. Although long non-coding RNAs (lncRNAs) have been implicated in skeletal muscle formation and differentiation, their precise roles in muscle atrophy remain unclear. In this study, we used RNA-sequencing (RNA-Seq) to examine changes in the expression of lncRNAs in four muscle atrophy conditions (denervation, casting, fasting, and cancer cachexia) in mice. We successfully identified 33 annotated lncRNAs and 18 novel lncRNAs with common expression changes in all four muscle atrophy conditions. Furthermore, an analysis of lncRNA–mRNA correlations revealed that several lncRNAs affected small molecule biosynthetic processes during muscle atrophy. These results provide novel insights into the lncRNA-mediated regulatory mechanism underlying muscle atrophy and may be useful for the identification of promising therapeutic targets.
Collapse
Affiliation(s)
- Keisuke Hitachi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.); (Y.K.)
| | - Masashi Nakatani
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.); (Y.K.)
- Faculty of Rehabilitation and Care, Seijoh University, Tokai 476-0014, Japan
| | - Yuri Kiyofuji
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.); (Y.K.)
| | - Hidehito Inagaki
- Genome and Transcriptome Analysis Center, Fujita Health University, Toyoake 470-1192, Japan; (H.I.); (H.K.)
- Division of Molecular Genetics, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan
| | - Hiroki Kurahashi
- Genome and Transcriptome Analysis Center, Fujita Health University, Toyoake 470-1192, Japan; (H.I.); (H.K.)
- Division of Molecular Genetics, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.); (Y.K.)
- Correspondence: ; Tel.: +81-(562)-93-9384
| |
Collapse
|
6
|
Xing HY, Liu N, Zhou MW. Satellite cell proliferation and myofiber cross-section area increase after electrical stimulation following sciatic nerve crush injury in rats. Chin Med J (Engl) 2020; 133:1952-1960. [PMID: 32826459 PMCID: PMC7462209 DOI: 10.1097/cm9.0000000000000822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Electrical stimulation has been recommended as an effective therapy to prevent muscle atrophy after nerve injury. However, the effect of electrical stimulation on the proliferation of satellite cells in denervated muscles has not yet been fully elucidated. This study was aimed to evaluate the changes in satellite cell proliferation after electrical stimulation in nerve injury and to determine whether these changes are related to the restoration of myofiber cross-section area (CSA). METHODS Sciatic nerve crush injury was performed in 48 male Sprague-Dawley rats. In half (24/48) of the rats, the gastrocnemius was electrically stimulated transcutaneously on a daily basis after injury, while the other half were not stimulated. Another group of 24 male Sprague-Dawley rats were used as sham operation controls without injury or stimulation. The rats were euthanized 2, 4, and 6 weeks later. After 5-bromo-2'-deoxyuridine (BrdU) labeling, the gastrocnemia were harvested for the detection of paired box protein 7 (Pax7), BrdU, myofiber CSA, and myonuclei number per fiber. All data were analyzed using two-way analysis of variance and Bonferroni post-hoc test. RESULTS The percentages of Pax7-positive nuclei (10.81 ± 0.56%) and BrdU-positive nuclei (34.29 ± 3.87%) in stimulated muscles were significantly higher compared to those in non-stimulated muscles (2.58 ± 0.33% and 1.30 ± 0.09%, respectively, Bonferroni t = 15.91 and 18.14, P < 0.05). The numbers of myonuclei per fiber (2.19 ± 0.24) and myofiber CSA (1906.86 ± 116.51 μm) were also increased in the stimulated muscles (Bonferroni t = 3.57 and 2.73, P < 0.05), and both were positively correlated with the Pax7-positive satellite cell content (R = 0.52 and 0.60, P < 0.01). There was no significant difference in the ratio of myofiber CSA/myonuclei number per fiber among the three groups. CONCLUSIONS Our results indicate that satellite cell proliferation is promoted by electrical stimulation after nerve injury, which may be correlated with an increase in myonuclei number and myofiber CSA.
Collapse
Affiliation(s)
- Hua-Yi Xing
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | | | | |
Collapse
|
7
|
Hitachi K, Nakatani M, Funasaki S, Hijikata I, Maekawa M, Honda M, Tsuchida K. Expression Levels of Long Non-Coding RNAs Change in Models of Altered Muscle Activity and Muscle Mass. Int J Mol Sci 2020; 21:ijms21051628. [PMID: 32120896 PMCID: PMC7084395 DOI: 10.3390/ijms21051628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is a highly plastic organ that is necessary for homeostasis and health of the human body. The size of skeletal muscle changes in response to intrinsic and extrinsic stimuli. Although protein-coding RNAs including myostatin, NF-κβ, and insulin-like growth factor-1 (IGF-1), have pivotal roles in determining the skeletal muscle mass, the role of long non-coding RNAs (lncRNAs) in the regulation of skeletal muscle mass remains to be elucidated. Here, we performed expression profiling of nine skeletal muscle differentiation-related lncRNAs (DRR, DUM1, linc-MD1, linc-YY1, LncMyod, Neat1, Myoparr, Malat1, and SRA) and three genomic imprinting-related lncRNAs (Gtl2, H19, and IG-DMR) in mouse skeletal muscle. The expression levels of these lncRNAs were examined by quantitative RT-PCR in six skeletal muscle atrophy models (denervation, casting, tail suspension, dexamethasone-administration, cancer cachexia, and fasting) and two skeletal muscle hypertrophy models (mechanical overload and deficiency of the myostatin gene). Cluster analyses of these lncRNA expression levels were successfully used to categorize the muscle atrophy models into two sub-groups. In addition, the expression of Gtl2, IG-DMR, and DUM1 was altered along with changes in the skeletal muscle size. The overview of the expression levels of lncRNAs in multiple muscle atrophy and hypertrophy models provides a novel insight into the role of lncRNAs in determining the skeletal muscle mass.
Collapse
Affiliation(s)
- Keisuke Hitachi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Masashi Nakatani
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Shiori Funasaki
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Ikumi Hijikata
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Mizuki Maekawa
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
| | - Masahiko Honda
- Department of Biochemistry, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Japan;
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita 564-8565, Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (M.N.)
- Correspondence: ; Tel.: +81-562-93-9384
| |
Collapse
|
8
|
Karlsen A, Bechshøft RL, Malmgaard‐Clausen NM, Andersen JL, Schjerling P, Kjaer M, Mackey AL. Lack of muscle fibre hypertrophy, myonuclear addition, and satellite cell pool expansion with resistance training in 83-94-year-old men and women. Acta Physiol (Oxf) 2019; 227:e13271. [PMID: 30828982 DOI: 10.1111/apha.13271] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/26/2022]
Abstract
AIMS To examine satellite cell and myonuclear content in very old (≥83 years) individuals, and the response to heavy resistance training. METHODS A group of very old men and women (Old, 83-94 years, n = 29) was randomized to 12 weeks of heavy resistance training or untrained controls. A group of young men who did not resistance train (Young, 19-27 years, n = 9) were included for comparison. RESULTS Compared to young men, prior to training the old men had smaller type II fibres (-38%, P < 0.001), lower satellite cell content (-52%, P < 0.001), smaller myonuclear domain (-30%, P < 0.001), and a trend for lower myonuclear content (-13%, P = 0.09). Old women were significantly different from old men for these parameters, except for satellite cell content. Resistance training had no effect on these parameters in these old men and women. Fibre-size specific analysis showed strong correlations between fibre size and myonuclei per fibre and between fibre size and myonuclear domain for both fibre types (r = 0.94-0.99, P < 0.0001). In contrast, muscle fibre perimeter per myonucleus seemed to be constant across the range in fibre size, particularly in type I fibres (r = -0.31, P = 0.17). CONCLUSIONS The present data demonstrate that type II fibre size, satellite cell content and myonuclear domain is significantly smaller in very old men compared to young men, while myonuclear content is less affected. These parameters were not improved with heavy resistance training at the most advanced stage of ageing.
Collapse
Affiliation(s)
- Anders Karlsen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Rasmus L. Bechshøft
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
| | - Nikolaj M. Malmgaard‐Clausen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
| | - Jesper L. Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Abigail L. Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
9
|
Patel A, Vendrell-Gonzalez S, Haas G, Marcinczyk M, Ziemkiewicz N, Talovic M, Fisher JS, Garg K. Regulation of Myogenic Activity by Substrate and Electrical Stimulation In Vitro. Biores Open Access 2019; 8:129-138. [PMID: 31367477 PMCID: PMC6664826 DOI: 10.1089/biores.2019.0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle has a remarkable regenerative capacity in response to mild injury. However, when muscle is severely injured, muscle regeneration is impaired due to the loss of muscle-resident stem cells, known as satellite cells. Fibrotic tissue, primarily comprising collagen I (COL), is deposited with this critical loss of muscle. In recent studies, supplementation of laminin (LM)-111 has been shown to improve skeletal muscle regeneration in several models of disease and injury. Additionally, electrical stimulation (E-stim) has been investigated as a possible rehabilitation therapy to improve muscle's functional recovery. This study investigated the role of E-stim and substrate in regulating myogenic response. C2C12 myoblasts were allowed to differentiate into myotubes on COL- and LM-coated polydimethylsiloxane molds. The myotubes were subjected to E-stim and compared with nonstimulated controls. While E-stim resulted in increased myogenic activity, irrespective of substrate, LM supported increased proliferation and uniform distribution of C2C12 myoblasts. In addition, C2C12 myoblasts cultured on LM showed higher Sirtuin 1, mammalian target of rapamycin, desmin, nitric oxide, and vascular endothelial growth factor expression. Taken together, these results suggest that an LM substrate is more conducive to myoblast growth and differentiation in response to E-stim in vitro.
Collapse
Affiliation(s)
- Anjali Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Sara Vendrell-Gonzalez
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Gabriel Haas
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Natalia Ziemkiewicz
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Jonathan S Fisher
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
10
|
Soendenbroe C, Heisterberg MF, Schjerling P, Karlsen A, Kjaer M, Andersen JL, Mackey AL. Molecular indicators of denervation in aging human skeletal muscle. Muscle Nerve 2019; 60:453-463. [DOI: 10.1002/mus.26638] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Casper Soendenbroe
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery MBispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical SciencesUniversity of Copenhagen Copenhagen Denmark
| | - Mette F. Heisterberg
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery MBispebjerg Hospital Copenhagen Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery MBispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical SciencesUniversity of Copenhagen Copenhagen Denmark
| | - Anders Karlsen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery MBispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical SciencesUniversity of Copenhagen Copenhagen Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of Copenhagen Copenhagen Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery MBispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical SciencesUniversity of Copenhagen Copenhagen Denmark
| | - Jesper L. Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery MBispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical SciencesUniversity of Copenhagen Copenhagen Denmark
| | - Abigail L. Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery MBispebjerg Hospital Copenhagen Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of Copenhagen Copenhagen Denmark
| |
Collapse
|
11
|
Leite APS, Pinto CG, Tibúrcio FC, Sartori AA, de Castro Rodrigues A, Barraviera B, Ferreira RS, Filadelpho AL, Matheus SMM. Heterologous fibrin sealant potentiates axonal regeneration after peripheral nerve injury with reduction in the number of suture points. Injury 2019; 50:834-847. [PMID: 30922661 DOI: 10.1016/j.injury.2019.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/10/2019] [Accepted: 03/16/2019] [Indexed: 02/02/2023]
Abstract
The use of suture associated with heterologous fibrin sealant has been highlighted for reconstruction after peripheral nerve injury, having the advantage of being safe for clinical use. In this study we compared the use of this sealant associated with reduced number of stitches with conventional suture after ischiatic nerve injury. 36 Wistar rats were divided into 4 groups: Control (C), Denervated (D), ischiatic nerve neurotmesis (6 mm gap); Suture (S), epineural anastomosis after 7 days from neurotmesis, Suture + Fibrin Sealant (SFS), anastomosis with only one suture point associated with Fibrin Sealant. Catwalk, electromyography, ischiatic and tibial nerve, soleus muscle morphological and morphometric analyses were performed. The amplitude and latency values of the Suture and Suture + Fibrin Sealant groups were similar and indicative of nerve regeneration.The ischiatic nerve morphometric analysis in the Suture + Fibrin Sealant showed superior values related to axons and nerve fibers area and diameter when compared to Suture group. In the Suture and Suture + Fibrin Sealant groups, there was an increase in muscle weight and in fast fibers frequency, it was a decrease in the percentage of collagen compared to group Denervated and in the neuromuscular junctions, the synaptic boutons were reestablished.The results suggest a protective effect at the lesion site caused by the fibrin sealant use. The stitches reduction minimizes the trauma caused by the needle and it accelerates the surgical practice. So the heterologous fibrin sealant use in nerve reconstruction should be considered.
Collapse
Affiliation(s)
- Ana Paula Silveira Leite
- Graduate Program on the General Bases of Surgery, Botucatu Medical School, Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil; Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil.
| | - Carina Guidi Pinto
- Graduate Program on the General Bases of Surgery, Botucatu Medical School, Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil; Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil
| | - Felipe Cantore Tibúrcio
- Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil
| | - Arthur Alves Sartori
- Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil
| | | | - Benedito Barraviera
- The Center for the Study of Venoms and Venomous Animals, UNESP, Botucatu, SP, Brazil
| | - Rui Seabra Ferreira
- The Center for the Study of Venoms and Venomous Animals, UNESP, Botucatu, SP, Brazil
| | - André Luis Filadelpho
- Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil
| | - Selma Maria Michelin Matheus
- Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil
| |
Collapse
|
12
|
Tamaki H, Yotani K, Ogita F, Hayao K, Kirimto H, Onishi H, Kasuga N, Yamamoto N. Low-Frequency Electrical Stimulation of Denervated Skeletal Muscle Retards Muscle and Trabecular Bone Loss in Aged Rats. Int J Med Sci 2019; 16:822-830. [PMID: 31337955 PMCID: PMC6643115 DOI: 10.7150/ijms.32590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/02/2019] [Indexed: 01/25/2023] Open
Abstract
Electrical stimulation (ES)-induced muscle contraction has multiple effects; however, mechano-responsiveness of bone tissue declines with age. Here, we investigated whether daily low-frequency ES-induced muscle contraction treatment reduces muscle and bone loss and ameliorates bone fragility in early-stage disuse musculoskeletal atrophy in aged rats. Twenty-seven-month-old male rats were assigned to age-matched groups comprising the control (CON), sciatic nerve denervation (DN), or DN with direct low-frequency ES (DN+ES) groups. The structural and mechanical properties of the trabecular and cortical bone of the tibiae, and the morphological and functional properties of the tibialis anterior (TA) muscles were assessed one week after DN. ES-induced muscle contraction force mitigated denervation-induced muscle and trabecular bone loss and deterioration of the mechanical properties of the tibia mid-diaphysis, such as the stiffness, but not the maximal load, in aged rats. The TA muscle in the DN+ES group showed significant improvement in the myofiber cross-sectional area and muscle force relative to the DN group. These results suggest that low-frequency ES-induced muscle contraction treatment retards trabecular bone and muscle loss in aged rats in early-stage disuse musculoskeletal atrophy, and has beneficial effects on the functional properties of denervated skeletal muscle.
Collapse
Affiliation(s)
- Hiroyuki Tamaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan.,Department of Sports and Life Science, National Institute of Fitness and Sports in Kanoya, Japan
| | - Kengo Yotani
- Department of Sports and Life Science, National Institute of Fitness and Sports in Kanoya, Japan
| | - Futoshi Ogita
- Department of Sports and Life Science, National Institute of Fitness and Sports in Kanoya, Japan
| | - Keishi Hayao
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| | - Hikari Kirimto
- Department of Sensorimotor Neuroscience, Hiroshima University, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| | | | - Noriaki Yamamoto
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan.,Niigata Rehabilitation Hospital, Japan
| |
Collapse
|
13
|
Park JK, Kim YS, Kang SU, Lee YS, Won HR, Kim CH. Nonthermal atmospheric plasma enhances myoblast differentiation by eliciting STAT3 phosphorylation. FASEB J 2018; 33:4097-4106. [PMID: 30548079 DOI: 10.1096/fj.201800695rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The use of nonthermal atmospheric plasma (NTP) in the biomedical field has recently expanded into cell death induction in cancer, infection prevention, inflammation treatment, and wound-healing enhancement. NTP has been demonstrated to enhance skin and muscle regeneration, but its effects on tissue regeneration, following deep tissue or muscle damage, remains underinvestigated. In this study, we determined the effects of NTP on muscle differentiation and the mechanisms of NTP's contribution to differentiation and regeneration. NTP treatment enhanced cell differentiation in primary normal human skeletal muscle myoblast cells and increased the relative expression of mRNA levels of MyoD which is one of the earliest markers of myogenic commitment, and myogenin, which are important transcription factors required for myogenic differentiation. Furthermore, NTP treatment induced increases in the levels of myosin heavy chain, a differentiated muscle-specific protein, and in myotube formation of myoblasts. We observed that signal transducer and activator of transcription 3 (STAT3) activation induced by NTP treatment affects the myogenic differentiation. In addition, STAT3 phosphorylation was also enhanced by NTP treatment in injured animal muscle. These findings indicate that NTP could enhance musculoskeletal differentiation by acting as an external stimulus for myoblast differentiation, suggesting its treatment potential in promoting regeneration of damaged muscle.-Park, J. K., Kim, Y. S., Kang, S. U., Lee, Y. S., Won, H.-R., Kim, C.-H. Nonthermal atmospheric plasma enhances myoblast differentiation by eliciting STAT3 phosphorylation.
Collapse
Affiliation(s)
- Ju Kyeong Park
- Laboratory Animal Resources Division, Toxicological Evaluation Research Department, National Institute of Food and Drug Safety Evaluation, Cheongju, South Korea
| | - Yeon Soo Kim
- Department of Otorhinolaryngology, Myunggok Medical Research Institute, Konyang University Hospital, Konyang University College of Medicine, Daejeon, South Korea
| | - Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Yun Sang Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Ho-Ryun Won
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University Hospital, Daejeon, South Korea; and
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| |
Collapse
|
14
|
Wang T, Ito A, Aoyama T, Nakahara R, Nakahata A, Ji X, Zhang J, Kawai H, Kuroki H. Functional evaluation outcomes correlate with histomorphometric changes in the rat sciatic nerve crush injury model: A comparison between sciatic functional index and kinematic analysis. PLoS One 2018; 13:e0208985. [PMID: 30540822 PMCID: PMC6291147 DOI: 10.1371/journal.pone.0208985] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/28/2018] [Indexed: 11/18/2022] Open
Abstract
Elucidating whether there is a correlation between biomechanical functions and histomorphometric data in the rat sciatic nerve crush injury model would contribute to an accurate evaluation of the regeneration state without sacrificing animals. The gold standard for functional evaluation is the sciatic functional index (SFI) despite there being intrinsic shortcomings. Kinematic analysis is considered a reliable and sensitive approach for functional evaluation, most commonly assessed as ankle angle at various phases of a gait cycle. Studies utilizing the toe angle for functional evaluation are scarce, and changes in the toe angle following surgery remain unknown. The present study assessed correlations of ankle angle, toe angle and SFI with histomorphometric data, aiming to determine which parameters most accurately reflect changes in histomorphometric data over time. Six Lewis rats were designated as the control group. 30 animals received surgery, six of them were randomly selected on the first, second, third, fourth, and sixth week after surgery for measurements of ankle and toe angles in the “toe-off” phase, and for evaluation of SFI. Histomorphometric analysis were also performed, to determine the number of myelinated nerve fibers, diameters of myelinated nerve fibers, axon diameters, and myelin sheath thicknesses. Furthermore, we investigated changes in ankle angle, toe angle, SFI, and histomorphometric data over time, as well as correlations between ankle angle, toe angle, and SFI with histomorphometric data. The results revealed that changes in SFI, ankle angle, and toe angle highly correlate with histomorphometric data in the rat sciatic nerve crush injury model. Toe angle reflected changes in histomorphometric data with time more precisely than ankle angle or SFI did, and ankle angle was a better prognostic parameter than SFI.
Collapse
Affiliation(s)
- Tianshu Wang
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| | - Tomoki Aoyama
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Nakahara
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiro Nakahata
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xiang Ji
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jue Zhang
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Kawai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Abstract
In recent years, electrical myostimulation (EMS) is becoming more and more popular to increase muscle function and muscle weight. Especially it is applied in healthy individual after injury to rebuild muscle mass and in severely atrophic patients who are not able or willing to perform conventional exercise training programs. Studies in experimental models as well as in human subjects confirmed that EMS can increase muscle mass by around 1% and improve muscle function by around 10-15% after 5-6 weeks of treatment. Despite a severe increase in circulating creatine kinase during the first session, EMS can be regarded as a safe therapeutic intervention. At the molecular level, EMS improves the anabolic/catabolic balance and stimulates the regenerative capacity of satellite cells. EMS intensity should be as high as individually tolerated, and a minimum of three sessions per week [large pulses (between 300-450 μs), high frequency (50-100 Hz in young and around 30 Hz in older individuals)] for at least 5-6 weeks should be performed. EMS improved functional performances more effectively than voluntary training and counteracted fast type muscle fibre atrophy, typically associated with sarcopenia. The effect of superimposing EMS on conventional exercise training to achieve more muscle mass and better function is still discussed controversially. Nevertheless, EMS should not be regarded as a replacement of exercise training per se, since the beneficial effect of exercise training is not just relying on building muscle mass but it also exerts positive effects on endothelial, myocardial, and cognitive function.
Collapse
Affiliation(s)
- Volker Adams
- Department of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Dresden, Germany
| |
Collapse
|
16
|
Asfour HA, Allouh MZ, Said RS. Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery. Exp Biol Med (Maywood) 2018; 243:118-128. [PMID: 29307280 DOI: 10.1177/1535370217749494] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prenatal and postnatal myogenesis share many cellular and molecular aspects. Myogenic regulatory factors are basic Helix-Loop-Helix transcription factors that indispensably regulate both processes. These factors (Myf5, MyoD, Myogenin, and MRF4) function as an orchestrating cascade, with some overlapped actions. Prenatally, myogenic regulatory factors are restrictedly expressed in somite-derived myogenic progenitor cells and their derived myoblasts. Postnatally, myogenic regulatory factors are important in regulating the myogenesis process via satellite cells. Many positive and negative regulatory mechanisms exist either between myogenic regulatory factors themselves or between myogenic regulatory factors and other proteins. Upstream factors and signals are also involved in the control of myogenic regulatory factors expression within different prenatal and postnatal myogenic cells. Here, the authors have conducted a thorough and an up-to-date review of the myogenic regulatory factors since their discovery 30 years ago. This review discusses the myogenic regulatory factors structure, mechanism of action, and roles and regulations during prenatal and postnatal myogenesis. Impact statement Myogenic regulatory factors (MRFs) are key players in the process of myogenesis. Despite a considerable amount of literature regarding these factors, their exact mechanisms of actions are still incompletely understood with several overlapped functions. Herein, we revised what has hitherto been reported in the literature regarding MRF structures, molecular pathways that regulate their activities, and their roles during pre- and post-natal myogenesis. The work submitted in this review article is considered of great importance for researchers in the field of skeletal muscle formation and regeneration, as it provides a comprehensive summary of all the biological aspects of MRFs and advances a better understanding of the cellular and molecular mechanisms regulating myogenesis. Indeed, attaining a better understanding of MRFs could be utilized in developing novel therapeutic protocols for multiple myopathies.
Collapse
Affiliation(s)
- Hasan A Asfour
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| | - Mohammed Z Allouh
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| | - Raed S Said
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| |
Collapse
|
17
|
McKenna CF, Fry CS. Altered satellite cell dynamics accompany skeletal muscle atrophy during chronic illness, disuse, and aging. Curr Opin Clin Nutr Metab Care 2017; 20:447-452. [PMID: 28795971 PMCID: PMC5810415 DOI: 10.1097/mco.0000000000000409] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW This review explores recent research investigating the contribution of satellite cells (skeletal muscle stem cells) during muscle fiber atrophy as seen in periods of disuse, illness, and aging. RECENT FINDINGS Studies indicate reduced satellite cell activity and density in a variety of acute and chronic conditions characterized by robust muscle wasting. The direct contribution of satellite cells to unloading/denervation and chronic illness-induced atrophy remains controversial. Inflammation that accompanies acute trauma and illness likely impedes proper satellite cell differentiation and myogenesis, promoting the rapid onset of muscle wasting in these conditions. Transgenic mouse studies provide surprising evidence that age-related declines in satellite cell function and abundance are not causally related to the onset of sarcopenia in sedentary animals. SUMMARY Recent clinical and preclinical studies indicate reduced abundance and dysregulated satellite cell activity that accompany muscle atrophy during periods of disuse, illness, and aging, providing evidence for their therapeutic potential.
Collapse
Affiliation(s)
- Colleen F. McKenna
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX
| | - Christopher S. Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
18
|
Novel Therapeutic Effects of Non-thermal atmospheric pressure plasma for Muscle Regeneration and Differentiation. Sci Rep 2016; 6:28829. [PMID: 27349181 PMCID: PMC4923893 DOI: 10.1038/srep28829] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/06/2016] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle can repair muscle tissue damage, but significant loss of muscle tissue or its long-lasting chronic degeneration makes injured skeletal muscle tissue difficult to restore. It has been demonstrated that non-thermal atmospheric pressure plasma (NTP) can be used in many biological areas including regenerative medicine. Therefore, we determined whether NTP, as a non-contact biological external stimulator that generates biological catalyzers, can induce regeneration of injured muscle without biomaterials. Treatment with NTP in the defected muscle of a Sprague Dawley (SD) rat increased the number of proliferating muscle cells 7 days after plasma treatment (dapt) and rapidly induced formation of muscle tissue and muscle cell differentiation at 14 dapt. In addition, in vitro experiments also showed that NTP could induce muscle cell proliferation and differentiation of human muscle cells. Taken together, our results demonstrated that NTP promotes restoration of muscle defects through control of cell proliferation and differentiation without biological or structural supporters, suggesting that NTP has the potential for use in muscle tissue engineering and regenerative therapies.
Collapse
|
19
|
Effects of Zusanli and Ashi Acupoint Electroacupuncture on Repair of Skeletal Muscle and Neuromuscular Junction in a Rabbit Gastrocnemius Contusion Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7074563. [PMID: 27190536 PMCID: PMC4846758 DOI: 10.1155/2016/7074563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/07/2016] [Accepted: 03/16/2016] [Indexed: 01/06/2023]
Abstract
Objective. To explore the effects of electroacupuncture (EA) at ST36 (EA-ST36) and at Ashi acupoints (EA-Ashi) on skeletal muscle repair. Methods. Seventy-five rabbits were randomly divided into five groups: normal, contusion, EA-Ashi, EA-ST36, and EA at Ashi acupoints and ST36 (EA-AS). EA (0.4 mA, 2 Hz, 15 min) was applied after an acute gastrocnemius contusion. The morphology of myofibers and neuromuscular junctions (NMJs) and expressions of growth differentiation factor-8 (GDF-8), acetylcholinesterase (AChE), Neuregulin 1 (NGR1), and muscle-specific kinase (MuSK) were assessed 7, 14, and 28 days after contusion. Results. Compared with that in contusion group, there was an increase in the following respective parameters in treatment groups: the number and diameter of myofibers, the mean staining area, and continuities of NMJs. A comparison of EA-Ashi and EA-ST36 groups indicated that average myofiber diameter, mean staining area of NMJs, and expressions of AChE and NRG1 were higher in EA-Ashi group, whereas expression of GDF-8 decreased on day 7. However, increases in myofiber numbers, expressions of MuSK and AChE, as well as decreases in GDF-8 expression, and the discontinuities were observed in EA-ST36 group on the 28th day. Conclusion. Both EA-ST36 and EA-Ashi promoted myofiber regeneration and restoration of NMJs. EA-Ashi was more effective at earlier stages, whereas EA-ST36 played a more important role at later stages.
Collapse
|