1
|
Wicker C, Cano A, Decostre V, Froissart R, Maillot F, Perry A, Petit F, Voillot C, Wahbi K, Wenz J, Laforêt P, Labrune P. French recommendations for the management of glycogen storage disease type III. Eur J Med Res 2023; 28:253. [PMID: 37488624 PMCID: PMC10364360 DOI: 10.1186/s40001-023-01212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
The aim of the Protocole National De Diagnostic et de Soins/French National Protocol for Diagnosis and Healthcare (PNDS) is to provide advice for health professionals on the optimum care provision and pathway for patients with glycogen storage disease type III (GSD III).The protocol aims at providing tools that make the diagnosis, defining the severity and different damages of the disease by detailing tests and explorations required for monitoring and diagnosis, better understanding the different aspects of the treatment, defining the modalities and organisation of the monitoring. This is a practical tool, to which health care professionals can refer. PNDS cannot, however, predict all specific cases, comorbidities, therapeutic particularities or hospital care protocols, and does not seek to serve as a substitute for the individual responsibility of the physician in front of his/her patient.
Collapse
Affiliation(s)
- Camille Wicker
- Maladies métaboliques et hépatiques pédiatriques, CHRU Hautepierre, 1 Avenue Molière, 67200, Strasbourg, France
| | - Aline Cano
- Centre de Référence des Maladies Héréditaires du Métabolisme- CHU La Timone Enfants, 264 rue Saint-Pierre, 13385, Marseille cedex 5, France
| | - Valérie Decostre
- Institut de myologie, Groupe Hospitalier Pitié-Salpêtrière, APHP. Université Paris Sorbonne, 47-83 boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Roseline Froissart
- Centre de Biologie et pathologie Est, maladies héréditaires du métabolisme, HFME, 59, Boulevard Pinel, 69677, Bron Cedex, France
| | - François Maillot
- Médecine Interne, Centre Référence Maladies Métaboliques, hôpital Bretonneau, 2 boulevard Tonnelé, 37044, Tours cedex 9, France
| | - Ariane Perry
- Pédiatrie, Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, APHP Université Paris-Saclay, 92141, Clamart Cedex, France
| | - François Petit
- Laboratoire de génétique, Hôpital Antoine Béclère, APHP. Université Paris-Saclay, 92141, Clamart Cedex, France
| | - Catherine Voillot
- Pédiatrie, Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, APHP Université Paris-Saclay, 92141, Clamart Cedex, France
| | - Karim Wahbi
- Service de cardiologie - Hôpital Cochin, APHP. Université Paris Centre, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Joëlle Wenz
- Service d'hépatologie et transplantation hépatique pédiatriques, hôpital Bicêtre, APHP. Université Paris-Saclay, 94276, Le Kremlin Bicêtre Cedex, France
| | - Pascal Laforêt
- Neurologie, Centre de Référence Maladies Neuromusculaires Nord/Est/Ile de France Hôpital Raymond Poincaré, AP-HP, Université Paris Saclay, 104 Boulevard Raymond Poincaré, 92380, Garches, France
| | - Philippe Labrune
- Pédiatrie, Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, APHP Université Paris-Saclay, 92141, Clamart Cedex, France.
| |
Collapse
|
2
|
Paschall A, Khan AA, Enam SF, Boggs T, Hijazi G, Bowling M, Austin S, Case LE, Kishnani P. Physical therapy assessment and whole-body magnetic resonance imaging findings in children with glycogen storage disease type IIIa: A clinical study and review of the literature. Mol Genet Metab 2021; 134:223-234. [PMID: 34649782 PMCID: PMC8667569 DOI: 10.1016/j.ymgme.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Early recognized manifestations of GSD III include hypoglycemia, hepatomegaly, and elevated liver enzymes. Motor symptoms such as fatigue, muscle weakness, functional impairments, and muscle wasting are typically reported in the 3rd to 4th decade of life. OBJECTIVE In this study, we investigated the early musculoskeletal findings in children with GSD IIIa, compared to a cohort of adults with GSD IIIa. METHODS We utilized a comprehensive number of physical therapy outcome measures to cross-sectionally assess strength and gross motor function including the modified Medical Research Council (mMRC) scale, grip and lateral/key pinch, Gross Motor Function Measure (GMFM), Gait, Stairs, Gowers, Chair (GSGC) test, 6 Minute Walk Test (6MWT), and Bruininks-Oseretsky Test of Motor Proficiency Ed. 2 (BOT-2). We also assessed laboratory biomarkers (AST, ALT, CK and urine Glc4) and conducted whole-body magnetic resonance imaging (WBMRI) to evaluate for proton density fat fraction (PDFF) in children with GSD IIIa. Nerve Conduction Studies and Electromyography results were analyzed where available and a thorough literature review was conducted. RESULTS There were a total of 22 individuals with GSD IIIa evaluated in our study, 17 pediatric patients and 5 adult patients. These pediatric patients demonstrated weakness on manual muscle testing, decreased grip and lateral/key pinch strength, and decreased functional ability compared to non-disease peers on the GMFM, 6MWT, BOT-2, and GSGC. Additionally, all laboratory biomarkers analyzed and PDFF obtained from WBMRI were increased in comparison to non-diseased peers. In comparison to the pediatric cohort, adults demonstrated worse overall performance on functional assessments demonstrating the expected progression of disease phenotype with age. CONCLUSION These results demonstrate the presence of early musculoskeletal involvement in children with GSD IIIa, most evident on physical therapy assessments, in addition to the more commonly reported hepatic symptoms. Muscular weakness in both children and adults was most significant in proximal and trunk musculature, and intrinsic musculature of the hands. These findings indicate the importance of early assessment of patients with GSD IIIa for detection of muscular weakness and development of treatment approaches that target both the liver and muscle.
Collapse
Affiliation(s)
- Anna Paschall
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Aleena A Khan
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Syed Faaiz Enam
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tracy Boggs
- Doctor of Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Ghada Hijazi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Michael Bowling
- Multi-Dimensional Image Processing Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Stephanie Austin
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Laura E Case
- Doctor of Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Priya Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
3
|
Berling É, Laforêt P, Wahbi K, Labrune P, Petit F, Ronzitti G, O'Brien A. Narrative review of glycogen storage disorder type III with a focus on neuromuscular, cardiac and therapeutic aspects. J Inherit Metab Dis 2021; 44:521-533. [PMID: 33368379 DOI: 10.1002/jimd.12355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
Glycogen storage disorder type III (GSDIII) is a rare inborn error of metabolism due to loss of glycogen debranching enzyme activity, causing inability to fully mobilize glycogen stores and its consequent accumulation in various tissues, notably liver, cardiac and skeletal muscle. In the pediatric population, it classically presents as hepatomegaly with or without ketotic hypoglycemia and failure to thrive. In the adult population, it should also be considered in the differential diagnosis of left ventricular hypertrophy or hypertrophic cardiomyopathy, myopathy, exercise intolerance, as well as liver cirrhosis or fibrosis with subsequent liver failure. In this review article, we first present an overview of the biochemical and clinical aspects of GSDIII. We then focus on the recent findings regarding cardiac and neuromuscular impairment associated with the disease. We review new insights into the pathophysiology and clinical picture of this disorder, including symptomatology, imaging and electrophysiology. Finally, we discuss current and upcoming treatment strategies such as gene therapy aimed at the replacement of the malfunctioning enzyme to provide a stable and long-term therapeutic option for this debilitating disease.
Collapse
Affiliation(s)
- Édouard Berling
- Généthon, Evry, France
- Université Paris-Saclay, Univ Evry, INSERM, Généthon, Integrare Research Unit UMR_S951, Evry, France
| | - Pascal Laforêt
- APHP, Department of Neurology, Raymond Poincaré Hospital, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Garches, France
- INSERM U 1179, Université Versailles Saint Quentin en Yvelines, Paris-Saclay, France
| | - Karim Wahbi
- APHP, Cochin Hospital, Cardiology Department, FILNEMUS, Paris-Descartes, Sorbonne Paris Cité University, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- INSERM Unit 970, Paris Cardiovascular Research Centre (PARCC), Paris, France
| | - Philippe Labrune
- APHP, Université Paris-Saclay, Hôpital Antoine Béclère, Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Service de Pédiatrie, 92141 Clamart cedex, France
- INSERM U1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - François Petit
- Department of Genetics, APHP, Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France
| | - Giuseppe Ronzitti
- Généthon, Evry, France
- Université Paris-Saclay, Univ Evry, INSERM, Généthon, Integrare Research Unit UMR_S951, Evry, France
| | - Alan O'Brien
- Généthon, Evry, France
- Service de Médecine Génique, Département de Médecine, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| |
Collapse
|
4
|
Qu Q, Qian Q, Shi J, Liu H, Zhang Y, Cui W, Chen P, Lv H. The Novel Compound Heterozygous Mutations in the AGL Gene in a Chinese Family With Adult Late-Onset Glycogen Storage Disease Type IIIa. Front Neurol 2020; 11:554012. [PMID: 33329302 PMCID: PMC7710805 DOI: 10.3389/fneur.2020.554012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/07/2020] [Indexed: 11/24/2022] Open
Abstract
Objective: To investigate the clinical features, skeletal muscle imaging, and muscle pathological characteristics of late-onset GSD IIIa caused by mutation of the AGL gene in adults. Methods: The clinical data, skeletal muscle imaging, pathological data, and gene test results of a family with late-onset GSD IIIa in adulthood were collected in detail in November 2019. Results: The proband is a 40-years-old male, who was admitted into our hospital due to a 2-years history of limb weakness. The proband was diagnosed with the following syndrome: he had a 15-years history of elevated muscle enzymes; the cranial nerve examinations showed no abnormal findings; the muscle tension in both upper and lower limbs was low, and tendon reflexes were absent; the proband's muscle strength was 5 in the proximal muscles and 4 in the distal muscles of the upper limbs, with 3 in the proximal muscles and 4 in the distal muscles of the lower limbs; Magnetic Resonance Imaging (MRI) revealed abnormally high signal intensity changes in the posterior thigh muscle group, and the posterior-medial calf muscle group; and vacuoles were evident in some muscle fibers biopsied from the gastrocnemius muscle. Periodic acid-Schiff staining stained the cytoplasm of muscle fibers a dark red color. The proband's older brother exhibited the same clinical features. DNA analysis identified mutations in the AGL gene in the proband, his older brother, and parents. The proband and his older brother both carried two compound heterozygous mutations, c.866G>A and c.2855_2856insT. Pedigree analysis demonstrated that c.866G>A and c.2855_2856insT mutations had been inherited from the mother and father, respectively. Conclusion: Late-onset GSD IIIa in adults is clinically characterized by muscle weakness, muscle atrophy, and mainly occurred in the posterior thigh muscle group. We also identified two novel compound heterozygous mutations (c.866G> A and c.2855_2856insT) in the AGL gene.
Collapse
Affiliation(s)
- Qianqian Qu
- Department of Neurology, The People's Hospital of Jiaozuo City, Jiaozuo, China
| | - Qi Qian
- Department of Neurology, The People's Hospital of Jiaozuo City, Jiaozuo, China
| | - Jiejing Shi
- Department of Neurology, The People's Hospital of Jiaozuo City, Jiaozuo, China
| | - Haiyan Liu
- Department of Neurology, The People's Hospital of Jiaozuo City, Jiaozuo, China
| | - Yan Zhang
- Department of Neurology, The People's Hospital of Jiaozuo City, Jiaozuo, China
| | - Wenhao Cui
- Graduate School of Xinxiang Medical University, Xinxiang, China
| | - Ping Chen
- Graduate School of Xinxiang Medical University, Xinxiang, China
| | - Haidong Lv
- Department of Neurology, The People's Hospital of Jiaozuo City, Jiaozuo, China
| |
Collapse
|
5
|
Distinct Clinical and Genetic Findings in Iranian Patients With Glycogen Storage Disease Type 3. J Clin Neuromuscul Dis 2018; 19:203-210. [PMID: 29794575 DOI: 10.1097/cnd.0000000000000212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Glycogen storage disease type 3 (GSD-III) is a rare inherited metabolic disorder caused by glycogen debranching enzyme deficiency. Various pathogenic mutations of the AGL gene lead to abnormal accumulation of glycogen in liver, skeletal, and cardiac muscles. Here, we report distinct clinical and genetic data of Iranian patients with GSD-III. METHODS Clinical and laboratory data of 5 patients with GSD-III were recorded. Genetic investigation was performed to identify the causative mutations. RESULTS Three patients had typical liver involvement in childhood and one was diagnosed 2 years after liver transplantation for cirrhosis of unknown etiology. Four patients had vacuolar myopathy with glycogen excess in muscle biopsy. All patients had novel homozygous mutations of the AGL gene namely c.378T>A, c.3295T>C, c.3777G>A, c.2002-2A>G, and c.1183C>T. CONCLUSIONS This is the first comprehensive report of patients with GSD-III in Iran with 2 uncommon clinical presentations and 5 novel mutations in the AGL gene.
Collapse
|
6
|
Decostre V, Laforêt P, Nadaj-Pakleza A, De Antonio M, Leveugle S, Ollivier G, Canal A, Kachetel K, Petit F, Eymard B, Behin A, Wahbi K, Labrune P, Hogrel JY. Cross-sectional retrospective study of muscle function in patients with glycogen storage disease type III. Neuromuscul Disord 2016; 26:584-92. [PMID: 27460348 DOI: 10.1016/j.nmd.2016.06.460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/15/2016] [Accepted: 06/23/2016] [Indexed: 11/16/2022]
Abstract
Glycogen storage disease type III is an inherited metabolic disorder characterized by liver and muscle impairment. This study aimed to identify promising muscle function measures for future studies on natural disease progression and therapeutic trials. The age-effect on the manual muscle testing (MMT), the hand-held dynamometry (HHD), the motor function measure (MFM) and the Purdue pegboard test was evaluated by regression analysis in a cross-sectional retrospective single site study. In patients aged between 13 and 56 years old, the Purdue pegboard test and dynamometry of key pinch and knee extension strength were age-sensitive with annual losses of 1.49, 1.10 and 0.70% of the predicted values (%pred), respectively. The MFM score and handgrip strength were also age-sensitive but only in patients older than 29 and 37 years old with annual losses of 1.42 and 1.84%pred, respectively. Muscle strength assessed by MMT and elbow extension measured by HHD demonstrated an annual loss of less than 0.50%pred and are thus unlikely to be promising outcome measures for future clinical trials. In conclusion, our results identified age-sensitive outcomes from retrospective data and may serve for future longitudinal studies in which an estimation of the minimal number of subjects is provided.
Collapse
Affiliation(s)
- Valérie Decostre
- Institut de Myologie, APHP - GH Pitié-Salpêtrière, Bd de l'Hôpital, Paris 75651 Cedex 13, France.
| | - Pascal Laforêt
- Paris-Est Neuromuscular Center , APHP - GH Pitié-Salpêtrière, Paris, France; INSERM UMRS 974, Paris, France
| | - Aleksandra Nadaj-Pakleza
- Centre de référence des maladies neuromusculaires Nantes/Angers, Service de Neurologie, CHU Angers, Angers, France
| | - Marie De Antonio
- INSERM U1138-team22, Centre de Recherche des Cordeliers, Paris Descartes and UPMC University, Paris, France
| | - Sylvain Leveugle
- INSERM U1138-team22, Centre de Recherche des Cordeliers, Paris Descartes and UPMC University, Paris, France
| | - Gwenn Ollivier
- Institut de Myologie, APHP - GH Pitié-Salpêtrière, Bd de l'Hôpital, Paris 75651 Cedex 13, France
| | - Aurélie Canal
- Institut de Myologie, APHP - GH Pitié-Salpêtrière, Bd de l'Hôpital, Paris 75651 Cedex 13, France
| | - Kahina Kachetel
- Paris-Est Neuromuscular Center , APHP - GH Pitié-Salpêtrière, Paris, France
| | - François Petit
- Laboratoire de Génétique moléculaire, APHP - GH Antoine Béclère, Clamart, France
| | - Bruno Eymard
- Paris-Est Neuromuscular Center , APHP - GH Pitié-Salpêtrière, Paris, France
| | - Anthony Behin
- Paris-Est Neuromuscular Center , APHP - GH Pitié-Salpêtrière, Paris, France
| | - Karim Wahbi
- Institut de Myologie, APHP - GH Pitié-Salpêtrière, Bd de l'Hôpital, Paris 75651 Cedex 13, France; Département de Cardiologie, APHP, Hôpital Cochin, Paris, France
| | - Philippe Labrune
- APHP, Hôpital Antoine Béclère, Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Hôpitaux Universitaires Paris Sud, Clamart, France; Université Paris Sud, Orsay, France
| | - Jean-Yves Hogrel
- Institut de Myologie, APHP - GH Pitié-Salpêtrière, Bd de l'Hôpital, Paris 75651 Cedex 13, France
| |
Collapse
|