1
|
Samant V, Prabhu A. Exercise, exerkines and exercise mimetic drugs: Molecular mechanisms and therapeutics. Life Sci 2024; 359:123225. [PMID: 39522716 DOI: 10.1016/j.lfs.2024.123225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Chronic diseases linked with sedentary lifestyles and poor dietary habits are increasingly common in modern society. Exercise is widely acknowledged to have a plethora of health benefits, including its role in primary prevention of various chronic conditions like type 2 diabetes mellitus, obesity, cardiovascular disease, and several musculoskeletal as well as degenerative disorders. Regular physical activity induces numerous physiological adaptations that contribute to these positive effects, primarily observed in skeletal muscle but also impacting other tissues. There is a growing interest among researchers in developing pharmaceutical interventions that mimic the beneficial effects of exercise for therapeutic applications. Exercise mimetic medications have the potential to be helpful aids in enhancing functional outcomes for patients with metabolic dysfunction, neuromuscular and musculoskeletal disorders. Some of the potential targets for exercise mimetics include pathways involved in metabolism, mitochondrial function, inflammation, and tissue regeneration. The present review aims to provide an exhaustive overview of the current understanding of exercise physiology, the role of exerkines and biomolecular pathways, and the potential applications of exercise mimetic drugs for the treatment of several diseases.
Collapse
Affiliation(s)
- Vedant Samant
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
2
|
Lopez-Espejo ME, Jimena I, Gil-Belmonte MJ, Rivero JLL, Peña-Amaro J. Influence of Physical Exercise on the Rehabilitation of Volumetric Muscle Loss Injury Reconstructed with Autologous Adipose Tissue. J Funct Morphol Kinesiol 2024; 9:188. [PMID: 39449482 PMCID: PMC11503405 DOI: 10.3390/jfmk9040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND In volumetric muscle loss (VML) injuries, spontaneous muscle regeneration capacity is limited. The implantation of autologous adipose tissue in the affected area is an option to treat these lesions; however, the effectiveness of this therapy alone is insufficient for a complete recovery of the damaged muscle. This study examined the influence of treadmill exercise on the rehabilitation of VML injuries reconstructed with autologous adipose tissue, as a strategy to counteract the limitations of spontaneous regeneration observed in these injuries. METHODS Forty adult male Wistar rats were divided into eight groups of five individuals each: normal control (NC), regenerative control (RC), VML control (VML), VML injury reconstructed with fresh autologous adipose tissue (FAT), exercise-rehabilitated control (RNC), exercise-rehabilitated regenerative control (RRC), exercise-rehabilitated VML injury (RVML), and exercise-rehabilitated VML injury reconstructed with fresh autologous adipose tissue (RFAT). Histological and histochemical staining techniques were used for the analysis of structural features and histomorphometric parameters of the tibialis anterior muscle. Grip strength tests were conducted to assess muscle force. RESULTS Exercise rehabilitation decreased the proportion of disoriented fibers in RFAT vs. FAT group. The percentage of fibrosis was significantly higher in FAT and RFAT groups versus NC and RNC groups but did not vary significantly between FAT and RFAT groups. Overall, muscle grip strength and fiber size increased significantly in the exercise-rehabilitated groups compared to control groups. CONCLUSIONS To conclude, rehabilitation with physical exercise tended to normalize the process of muscle repair in a model of VML injury reconstructed with fresh autologous adipose tissue, but it did not reduce the intense fibrosis associated with these injuries.
Collapse
Affiliation(s)
- Maria E. Lopez-Espejo
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, Maimonides Institute for Biomedical Research IMIBIC, Reina Sofía University Hospital, University of Cordoba, 14004 Cordoba, Spain; (M.E.L.-E.); (I.J.); (M.-J.G.-B.)
| | - Ignacio Jimena
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, Maimonides Institute for Biomedical Research IMIBIC, Reina Sofía University Hospital, University of Cordoba, 14004 Cordoba, Spain; (M.E.L.-E.); (I.J.); (M.-J.G.-B.)
| | - Maria-Jesus Gil-Belmonte
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, Maimonides Institute for Biomedical Research IMIBIC, Reina Sofía University Hospital, University of Cordoba, 14004 Cordoba, Spain; (M.E.L.-E.); (I.J.); (M.-J.G.-B.)
- Department of Pathology, Torrecardenas University Hospital, 04009 Almeria, Spain
| | - Jose-Luis L. Rivero
- Muscular Biopathology Laboratory, Department of Comparative Anatomy and Pathological Anatomy and Toxicology, Faculty of Veterinary Medicine, University of Cordoba, 14014 Cordoba, Spain;
| | - Jose Peña-Amaro
- Department of Morphological Sciences, Section of Histology, Faculty of Medicine and Nursing, Maimonides Institute for Biomedical Research IMIBIC, Reina Sofía University Hospital, University of Cordoba, 14004 Cordoba, Spain; (M.E.L.-E.); (I.J.); (M.-J.G.-B.)
| |
Collapse
|
3
|
da Silva LA, Boeira D, Doeynart R, Longen WC, Marqueze LF, Silveira PC, Thirupathi A, Gu Y, Pinho RA. Effects of aerobic exercise during recovery from eccentric contraction on muscular performance, oxidative stress and inflammation. Curr Res Physiol 2024; 7:100129. [PMID: 39070775 PMCID: PMC11283083 DOI: 10.1016/j.crphys.2024.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024] Open
Abstract
This study investigated the effects of aerobic exercise during recovery from eccentric contraction (EC) on muscular performance, oxidative stress, and inflammation. Nineteen male subjects between 18 and 29 years were divided into unexercised (control, n = 9) and exercised (n = 10) groups. Initially, the subjects performed EC as 3 sets until exhaustion with elbow flexion and extension on the Scott bench at 80% in 1RM, followed by four aerobic exercise sessions. The results obtained indicated (p > 0.05) that aerobic physical exercise during the recovery period does not improve muscle performance (isometric strength and muscular fatigue), oxidative stress parameters (lipid peroxidation, protein oxidation and antioxidant enzyme activity), and inflammatory cytokines (IL-1β, TNF-α, IL-10). In conclusion, the aerobic exercise during the recovery period does not alter the parameters of performance, oxidative stress and inflammation induced by the EC.
Collapse
Affiliation(s)
- Luciano A. da Silva
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo, China
- Laboratory of Exercise Biochemistry and Physiology, Graduate Programme in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
- Laboratory of Exercise Psychophysiology, Advanced Aquatic Exercise Research Group/Extremo Sul Catarinense, Criciúma, Brazil
| | - Daniel Boeira
- Laboratory of Exercise Psychophysiology, Advanced Aquatic Exercise Research Group/Extremo Sul Catarinense, Criciúma, Brazil
| | - Ramiro Doeynart
- Laboratory of Exercise Psychophysiology, Advanced Aquatic Exercise Research Group/Extremo Sul Catarinense, Criciúma, Brazil
| | - Willians C. Longen
- Laboratory of Exercise Biochemistry and Physiology, Graduate Programme in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
- Faculty of Sports Sciences, Ningbo University, Ningbo, China
| | - Luis Felipe Marqueze
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Paulo C.L. Silveira
- Laboratory of Exercise Biochemistry and Physiology, Graduate Programme in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Anand Thirupathi
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo, China
- Faculty of Sports Sciences, Ningbo University, Ningbo, China
| | - Yaodong Gu
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo, China
- Faculty of Sports Sciences, Ningbo University, Ningbo, China
| | - Ricardo A. Pinho
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Faculty of Sports Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, Treebak JT. Impaired skeletal muscle regeneration in diabetes: From cellular and molecular mechanisms to novel treatments. Cell Metab 2024; 36:1204-1236. [PMID: 38490209 DOI: 10.1016/j.cmet.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
5
|
Fu J, Liu J, Zou X, Deng M, Liu G, Sun B, Guo Y, Liu D, Li Y. Transcriptome analysis of mRNA and miRNA in the development of LeiZhou goat muscles. Sci Rep 2024; 14:9858. [PMID: 38684760 PMCID: PMC11058254 DOI: 10.1038/s41598-024-60521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
The progression of muscle development is a pivotal aspect of animal ontogenesis, where miRNA and mRNA exert substantial influence as prominent players. It is important to understand the molecular mechanisms involved in skeletal muscle development to enhance the quality and yield of meat produced by Leizhou goats. We employed RNA sequencing (RNA-SEQ) technology to generate miRNA-mRNA profiles in Leizhou goats, capturing their developmental progression at 0, 3, and 6 months of age. A total of 977 mRNAs and 174 miRNAs were found to be differentially expressed based on our analysis. Metabolic pathways, calcium signaling pathways, and amino acid synthesis and metabolism were found to be significantly enriched among the differentially expressed mRNA in the enrichment analysis. Meanwhile, we found that among these differentially expressed mRNA, some may be related to muscle development, such as MYL10, RYR3, and CSRP3. Additionally,, we identified five muscle-specific miRNAs (miR-127-3p, miR-133a-3p, miR-193b-3p, miR-365-3p, and miR-381) that consistently exhibited high expression levels across all three stages. These miRNAs work with their target genes (FHL3, SESN1, PACSIN3, LMCD1) to regulate muscle development. Taken together, our findings suggest that several miRNAs and mRNAs are involved in regulating muscle development and cell growth in goats. By uncovering the molecular mechanisms involved in muscle growth and development, these findings contribute valuable knowledge that can inform breeding strategies aimed at enhancing meat yield and quality in Leizhou goats.
Collapse
Affiliation(s)
- Junjie Fu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, 510642, China
| | - Xian Zou
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, 510642, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, 510642, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Zhang Y, Wang L, Kang H, Lin CY, Fan Y. Unlocking the Therapeutic Potential of Irisin: Harnessing Its Function in Degenerative Disorders and Tissue Regeneration. Int J Mol Sci 2023; 24:ijms24076551. [PMID: 37047523 PMCID: PMC10095399 DOI: 10.3390/ijms24076551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Physical activity is well-established as an important protective factor against degenerative conditions and a promoter of tissue growth and renewal. The discovery of Fibronectin domain-containing protein 5 (FNDC5) as the precursor of Irisin in 2012 sparked significant interest in its potential as a diagnostic biomarker and a therapeutic agent for various diseases. Clinical studies have examined the correlation between plasma Irisin levels and pathological conditions using a range of assays, but the lack of reliable measurements for endogenous Irisin has led to uncertainty about its prognostic/diagnostic potential as an exercise surrogate. Animal and tissue-engineering models have shown the protective effects of Irisin treatment in reversing functional impairment and potentially permanent damage, but dosage ambiguities remain unresolved. This review provides a comprehensive examination of the clinical and basic studies of Irisin in the context of degenerative conditions and explores its potential as a therapeutic approach in the physiological processes involved in tissue repair/regeneration.
Collapse
Affiliation(s)
- Yuwei Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Correspondence:
| | - Hongyan Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Chia-Ying Lin
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Department of Biomedical, Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Orthopaedic Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| |
Collapse
|
7
|
Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduct Target Ther 2022; 7:383. [PMID: 36446784 PMCID: PMC9709153 DOI: 10.1038/s41392-022-01233-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Physical activity has been known as an essential element to promote human health for centuries. Thus, exercise intervention is encouraged to battle against sedentary lifestyle. Recent rapid advances in molecular biotechnology have demonstrated that both endurance and resistance exercise training, two traditional types of exercise, trigger a series of physiological responses, unraveling the mechanisms of exercise regulating on the human body. Therefore, exercise has been expected as a candidate approach of alleviating a wide range of diseases, such as metabolic diseases, neurodegenerative disorders, tumors, and cardiovascular diseases. In particular, the capacity of exercise to promote tissue regeneration has attracted the attention of many researchers in recent decades. Since most adult human organs have a weak regenerative capacity, it is currently a key challenge in regenerative medicine to improve the efficiency of tissue regeneration. As research progresses, exercise-induced tissue regeneration seems to provide a novel approach for fighting against injury or senescence, establishing strong theoretical basis for more and more "exercise mimetics." These drugs are acting as the pharmaceutical alternatives of those individuals who cannot experience the benefits of exercise. Here, we comprehensively provide a description of the benefits of exercise on tissue regeneration in diverse organs, mainly focusing on musculoskeletal system, cardiovascular system, and nervous system. We also discuss the underlying molecular mechanisms associated with the regenerative effects of exercise and emerging therapeutic exercise mimetics for regeneration, as well as the associated opportunities and challenges. We aim to describe an integrated perspective on the current advances of distinct physiological mechanisms associated with exercise-induced tissue regeneration on various organs and facilitate the development of drugs that mimics the benefits of exercise.
Collapse
|
8
|
de Carvalho CD, Valentim RR, Navegantes LCC, Papoti M. Comparison between low, moderate, and high intensity aerobic training with equalized loads on biomarkers and performance in rats. Sci Rep 2022; 12:18047. [PMID: 36302946 PMCID: PMC9610360 DOI: 10.1038/s41598-022-22958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/21/2022] [Indexed: 01/24/2023] Open
Abstract
This study investigated the physiological and molecular responses of Wistar Hannover rats, submitted to three 5-week chronic training models, with similar training loads. Twenty-four Wistar Hanover rats were randomly divided into four groups: control (n = 6), low-intensity training (Z1; n = 6), moderate-intensity training (Z2; n = 6) and high-intensity training (Z3; n = 6). The three exercise groups performed a 5-week running training three times a week, with the same prescribed workload but the intensity and the volume were different between groups. An increase in maximal speed was observed after four weeks of training for the three groups that trained, with no difference between groups. Higher rest glycogen was also observed in the soleus muscle after training for the exercise groups compared to the control group. We also found that the Z2 group had a higher protein content of total and phosphorylated GSK3-β compared to the control group after five weeks of training. In conclusion, the present study shows that five weeks of treadmill training based on intensity zones 1, 2, and 3 improved performance and increased resting glycogen in the soleus muscle, therefore intensity modulation does not change the training program adaptation since the different program loads are equalized.
Collapse
Affiliation(s)
- Carlos Dellavechia de Carvalho
- Ribeirão Preto Medical School, Department of Orthopedics and Anesthesiology, University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, Monte Alegre, 3900, Brazil.
| | - Rafael Rossi Valentim
- Ribeirão Preto Medical School, Department of Physiology, University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, Monte Alegre, 3900, Brazil
| | - Luiz Carlos Carvalho Navegantes
- Ribeirão Preto Medical School, Department of Physiology, University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, Monte Alegre, 3900, Brazil
| | - Marcelo Papoti
- Ribeirão Preto Medical School, Department of Orthopedics and Anesthesiology, University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, Monte Alegre, 3900, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, Monte Alegre, São Paulo, 3900, Brazil
| |
Collapse
|
9
|
James G, Millecamps M, Stone LS, Hodges PW. Multifidus Muscle Fiber Type Distribution is Changed in Mouse Models of Chronic Intervertebral Disc Degeneration, but is not Attenuated by Whole Body Physical Activity. Spine (Phila Pa 1976) 2021; 46:1612-1620. [PMID: 33973565 DOI: 10.1097/brs.0000000000004105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Case-controlled animal study. OBJECTIVE The aim of this study was to investigate whether multifidus muscle fiber type distribution changes in models of interverbal disc (IVD) degeneration and whether this is resolved by physical activity (PA). SUMMARY OF BACKGROUND DATA The loss of slow type I muscle fibers in the multifidus muscle in people with low back pain is contentious. Data from animal models of IVD degeneration suggest some discrepancies in human studies might be explained by the dependence of slow muscle fiber changes and their underlying mechanisms, on the time since injury and progression of IVD degeneration. It is not yet resolved what changes are apparent once the chronic phase is established. It is also not known whether muscle fiber changes can be resolved by whole body PA. This study aimed to examine slow fiber distribution in the multifidus muscle in models of IVD injury or spontaneous degeneration in animals with or without exposure to PA. METHODS Two models of IVD degeneration were used. The first model used a genetically modified mouse (SPARC-null) that spontaneously develops IVD degeneration. The second model involved a surgically induced IVD lesion to induce degeneration. Mice in each study were allocated to housing with or without a running wheel for PA. At 12 months of age, the multifidus muscle was harvested. Slow muscle fiber distribution and the mRNA expression of genes associated with muscle fiber type transformation were examined. RESULTS The proportion and cross-sectional area of slow muscle fibers were reduced in both models of IVD degeneration compared to controls, without evidence of ongoing fiber transformation. Whole-body PA did not attenuate these alterations. CONCLUSION Results confirmed slow muscle fiber loss in the multifidus in the chronic phase of IVD degeneration induced spontaneously and by injury. Whole-body PA did not attenuate changes to muscle fiber distribution. More specific approaches to muscle activation might be required to achieve more complete reversal of muscle fiber changes, with potential implications for therapy in humans.Level of Evidence: N/A.
Collapse
Affiliation(s)
- Gregory James
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Magali Millecamps
- Alan Edwards Centre for Research on Pain, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Laura S Stone
- Alan Edwards Centre for Research on Pain, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
- Department of Anesthesiology, Faculty of Medicine, University of Minnesota, Minneapolis, MN
| | - Paul W Hodges
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
| |
Collapse
|
10
|
Effect of deep neuromuscular blockade on serum cytokines and postoperative delirium in elderly patients undergoing total hip replacement: A prospective single-blind randomised controlled trial. Eur J Anaesthesiol 2021; 38:S58-S66. [PMID: 33399376 DOI: 10.1097/eja.0000000000001414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Deep neuromuscular blockade (NMB) may reduce muscle injury and related inflammation. The inflammation is one of the pathophysiological processes of peri-operative complications. OBJECTIVE To compare the degree of inflammation and related postoperative complications including postoperative delirium (POD) and peri-operative bleeding according to the degree of NMB during general anaesthesia for total hip replacement. DESIGN A prospective, single-blind, randomised controlled trial. SETTING Tertiary, university hospital, single centre. PATIENTS Eighty-two patients undergoing total hip replacement surgery were included in the final analysis. INTERVENTIONS Moderate (Mod) and deep (Deep) NMB groups. MAIN OUTCOME MEASURES The changes in inflammatory cytokines were measured. The incidence of POD was evaluated by using confusion assessment method (CAM). The differences of postoperative bleeding and peri-operative oxygenation in both groups were also measured. RESULTS The NMB reversal duration was significantly longer in the Mod NMB group than in the Deep NMB group. Changes in interleukin-6 were significantly smaller in the Deep NMB group than in the Mod NMB group (P < 0.001). The incidence of POD was not significantly different between groups (34 versus 17% in Mod and Deep NMB groups, respectively; P = 0.129). The amount of postoperative bleeding until postoperative day 2 was significantly greater in the Mod NMB group than in the Deep NMB group (P = 0.027). CONCLUSION Our findings suggest that inflammation related to peri-operative complications could be associated with the depth of NMB during total hip replacement. However, the incidence of POD might not be associated to the depth of NMB. TRIAL REGISTRATION National Library of Medicine (NLM) at the National Institutes of Health (NIH) of United States. (Identifier: NCT02507609). Online address: http://clinicaltrials.gov.
Collapse
|
11
|
Karlsen A, Soendenbroe C, Malmgaard-Clausen NM, Wagener F, Moeller CE, Senhaji Z, Damberg K, Andersen JL, Schjerling P, Kjaer M, Mackey AL. Preserved capacity for satellite cell proliferation, regeneration, and hypertrophy in the skeletal muscle of healthy elderly men. FASEB J 2020; 34:6418-6436. [PMID: 32167202 DOI: 10.1096/fj.202000196r] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/30/2023]
Abstract
Blunted muscle hypertrophy and impaired regeneration with aging have been partly attributed to satellite cell (SC) dysfunction. However, true muscle regeneration has not yet been studied in elderly individuals. To investigate this, muscle injury was induced by 200 electrically stimulated (ES) eccentric contractions of the vastus lateralis (VL) of one leg in seven young (20-31 years) and 19 elderly men (60-73 years). This was followed by 13 weeks of resistance training (RT) for both legs to investigate the capacity for hypertrophy. Muscle biopsies were collected Pre- and Post-RT, and 9 days after ES, for immunohistochemistry and RT-PCR. Hypertrophy was assessed by MRI, DEXA, and immunohistochemistry. Overall, surprisingly comparable responses were observed between the young and elderly. Nine days after ES, Pax7+ SC number had doubled (P < .05), alongside necrosis and substantial changes in expression of genes related to matrix, myogenesis, and innervation (P < .05). Post-RT, VL cross-sectional area had increased in both legs (~15%, P < .05) and SCs/type II fiber had increased ~2-4 times more with ES+RT vs RT alone (P < .001). Together these novel findings demonstrate "youthful" regeneration and hypertrophy responses in human elderly muscle. Furthermore, boosting SC availability in healthy elderly men does not enhance the subsequent muscle hypertrophy response to RT.
Collapse
Affiliation(s)
- Anders Karlsen
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Casper Soendenbroe
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj M Malmgaard-Clausen
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Wagener
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Casper Emil Moeller
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Zouhir Senhaji
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Kristine Damberg
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Jesper Løvind Andersen
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjaer
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Fernando CA, Pangan AM, Cornelison D, Segal SS. Recovery of blood flow regulation in microvascular resistance networks during regeneration of mouse gluteus maximus muscle. J Physiol 2019; 597:1401-1417. [PMID: 30575953 DOI: 10.1113/jp277247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Skeletal muscle regenerates after injury, however the recovery of its microvascular supply is poorly understood. We injured the gluteus maximus muscle in mice aiming to investigate the recovery of blood flow regulation in microvascular resistance networks. We hypothesized that blood flow regulation recovers in concert with myofibre regeneration. Microvascular perfusion ceased within 1 day post injury and was restored at 5 days coincident with the appearance of new myofibres; however, the resistance network was dilated and unresponsive to vasoactive agents. Spontaneous vasomotor tone, endothelium-dependent dilatation and adrenergic vasoconstriction increased at 10 days in concert with myofibre regeneration. Vasomotor control recovered at 21 days, when regenerated myofibres matured and active force production stabilized. Functional vasodilatation in response to muscle contraction recovered at 35 days. Physiological integrity of microvascular smooth muscle and endothelium recovers in parallel with myofibre regeneration. Additional time is required to restore the efficacy of signalling between myofibres and microvascular networks controlling their oxygen supply. ABSTRACT Myofibre regeneration after skeletal muscle injury is well-studied, although little is known about how microvascular perfusion is restored. The present study aimed to evaluate the recovery of blood flow regulation during skeletal muscle regeneration. In anaesthetized male C57BL/6J mice (aged 4 months), the gluteus maximus muscle (GM) was injured by local injection of barium chloride solution (1.2%, 75 μL). Functional integrity of the resistance network was evaluated at 5, 10, 21 and 35 days post-injury vs. Control by measuring internal diameter of feed arteries, first-, second- and third-order arterioles supplying the GM using intravital microscopy. The resting diameters of all branch orders were significantly greater (P < 0.05) than Control at 5 and 10 days and recovered to Control by 21 days, as did spontaneous vasomotor tone. Vasodilatation to ACh and vasoconstriction to phenylephrine (10-9 to 10-5 m) were absent at 5 days, increased at 10 days and recovered to Control by 21 days; reactivity improved in a distal-to-proximal gradient. Across branch orders, functional vasodilatation to single tetanic contraction (100 Hz, 500 ms) and to rhythmic twitch contractions (4 Hz, 30 s) was impaired at 5 days, improved through 21 days and was not different from Control at 35 days. Peak force development (g) was 60% of Control at 10 days and recovered by 21 days. Diminished vasomotor tone during the initial stages of regeneration promotes tissue perfusion as myofibre recovery begins. Recovery of tone and vasomotor responses to agonists occur in concert with myofibre regeneration. Delayed recovery of functional vasodilatation indicates that additional time is required to restore signalling between contracting myofibres and their vascular supply.
Collapse
Affiliation(s)
| | - Aaron M Pangan
- Department of Biomedical, Biological and Chemical Engineering
| | - Ddw Cornelison
- Division of Biological Sciences.,Christopher S. Bond Life Sciences Center
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
13
|
Le Moal E, Pialoux V, Juban G, Groussard C, Zouhal H, Chazaud B, Mounier R. Redox Control of Skeletal Muscle Regeneration. Antioxid Redox Signal 2017; 27:276-310. [PMID: 28027662 PMCID: PMC5685069 DOI: 10.1089/ars.2016.6782] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 12/12/2022]
Abstract
Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.
Collapse
Affiliation(s)
- Emmeran Le Moal
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France
- Movement, Sport and Health Sciences Laboratory, M2S, EA1274, University of Rennes 2, Bruz, France
| | - Vincent Pialoux
- Laboratoire Interuniversitaire de Biologie de la Motricité, EA7424, Université Claude Bernard Lyon 1, Univ Lyon, Villeurbanne, France
- Institut Universitaire de France, Paris, France
| | - Gaëtan Juban
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France
| | - Carole Groussard
- Movement, Sport and Health Sciences Laboratory, M2S, EA1274, University of Rennes 2, Bruz, France
| | - Hassane Zouhal
- Movement, Sport and Health Sciences Laboratory, M2S, EA1274, University of Rennes 2, Bruz, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France
| | - Rémi Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France
| |
Collapse
|
14
|
Oh CS, Kim SH, Lee J, Rhee KY. Impact of remote ischaemic preconditioning on cerebral oxygenation during total knee arthroplasty. Int J Med Sci 2017; 14:115-122. [PMID: 28260986 PMCID: PMC5332839 DOI: 10.7150/ijms.17227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/21/2016] [Indexed: 01/21/2023] Open
Abstract
Background: Ischaemic reperfusion injury (IRI) after tourniquet release during total knee arthroplasty (TKR) is related to postoperative cerebral complications. Remote ischaemic preconditioning (RIPC) is known to minimise IRI in previous studies. Thus, we evaluated the effect of RIPC on regional cerebral oxygenation after tourniquet release during TKR. Methods: Patients undergoing TKR were randomly allocated to not receive RIPC (control group) and to receive RIPC (RIPC group). Regional cerebral oxygenation and pulmonary oxygenation were assessed up to 24 h postoperatively. The changes in serum cytokine and lactate dehydrogenase (LDH) levels were assessed and arterial blood gas analysis was performed. Total transfusion amounts and postoperative bleeding were also examined. Results: In total, 72 patients were included in the final analysis. Regional cerebral oxygenation (P < 0.001 in the left side, P = 0.003 in the right side) with pulmonary oxygenation (P = 0.001) was significantly higher in the RIPC group. The serum LDH was significantly lower in the RIPC group at 1 h and 24 h postoperatively (P < 0.001). The 24 h postoperative transfusion (P = 0.002) and bleeding amount (P < 0.001) were significantly lower in the RIPC group. Conclusions: RIPC increased cerebral oxygenation after tourniquet release during TKR by improving pulmonary oxygenation. Additionally, RIPC decreased the transfusion and bleeding amount with the serum LDH level.
Collapse
Affiliation(s)
- Chung-Sik Oh
- Department of Anaesthesiology and Pain Medicine, Konkuk University Medical Centre, Konkuk University School of Medicine, Seoul, Korea
| | - Seong-Hyop Kim
- Department of Anaesthesiology and Pain Medicine, Konkuk University Medical Centre, Konkuk University School of Medicine, Seoul, Korea;; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Jaemoon Lee
- Department of Anaesthesiology and Pain Medicine, Konkuk University Medical Centre, Konkuk University School of Medicine, Seoul, Korea
| | - Ka Young Rhee
- Department of Anaesthesiology and Pain Medicine, Konkuk University Medical Centre, Konkuk University School of Medicine, Seoul, Korea;; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|