1
|
Zhang X, Wei W, Qian L, Yao L, Jin X, Xing L, Qian Z. Real-time monitoring of bioelectrical impedance for minimizing tissue carbonization in microwave ablation of porcine liver. Sci Rep 2024; 14:30404. [PMID: 39638842 PMCID: PMC11621451 DOI: 10.1038/s41598-024-80725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
The charring tissue generated by the high temperature during microwave ablation can affect the therapeutic effect, such as limiting the volume of the coagulation zone and causing rejection. This paper aimed to prevent tissue carbonization while delivering an appropriate thermal dose for effective ablations by employing a treatment protocol with real-time bioelectrical impedance monitoring. Firstly, the current field response under different microwave ablation statuses is analyzed based on finite element simulation. Next, the change of impedance measured by the electrodes is correlated with the physical state of the ablated tissue, and a microwave ablation carbonization control protocol based on real-time electrical impedance monitoring was established. The finite element simulation results show that the dielectric properties of biological tissues changed dynamically during the ablation process. Finally, the relative change rule of the electrical impedance magnitude of the ex vivo porcine liver throughout the entire MWA process and the reduction of the central zone carbonization were obtained by the MWA experiment. Charring tissue was eliminated without water cooling at 40 W and significantly reduced at 50 W and 60 W. The carbonization during MWA can be reduced according to the changes in tissue electrical impedance to optimize microwave thermal ablation efficacy.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Electrical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Wei Wei
- Department of Electrical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Lu Qian
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Liuye Yao
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xiaofei Jin
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| | - Lidong Xing
- Department of Electrical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| | - Zhiyu Qian
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Key Laboratory of Multi-modal Brain-Computer Precision Drive, Industry and Information Technology Ministry, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| |
Collapse
|
2
|
Didier CM, Orrico JF, Cepeda Torres OS, Castro JM, Baksh A, Rajaraman S. Microfabricated polymer-metal biosensors for multifarious data collection from electrogenic cellular models. MICROSYSTEMS & NANOENGINEERING 2023; 9:22. [PMID: 36875634 PMCID: PMC9974480 DOI: 10.1038/s41378-023-00488-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 05/28/2023]
Abstract
Benchtop tissue cultures have become increasingly complex in recent years, as more on-a-chip biological technologies, such as microphysiological systems (MPS), are developed to incorporate cellular constructs that more accurately represent their respective biological systems. Such MPS have begun facilitating major breakthroughs in biological research and are poised to shape the field in the coming decades. These biological systems require integrated sensing modalities to procure complex, multiplexed datasets with unprecedented combinatorial biological detail. In this work, we expanded upon our polymer-metal biosensor approach by demonstrating a facile technology for compound biosensing that was characterized through custom modeling approaches. As reported herein, we developed a compound chip with 3D microelectrodes, 3D microfluidics, interdigitated electrodes (IDEs) and a microheater. The chip was subsequently tested using the electrical/electrochemical characterization of 3D microelectrodes with 1 kHz impedance and phase recordings and IDE-based high-frequency (~1 MHz frequencies) impedimetric analysis of differential localized temperature recordings, both of which were modeled through equivalent electrical circuits for process parameter extraction. Additionally, a simplified antibody-conjugation strategy was employed for a similar IDE-based analysis of the implications of a key analyte (l-glutamine) binding to the equivalent electrical circuit. Finally, acute microfluidic perfusion modeling was performed to demonstrate the ease of microfluidics integration into such a polymer-metal biosensor platform for potential complimentary localized chemical stimulation. Overall, our work demonstrates the design, development, and characterization of an accessibly designed polymer-metal compound biosensor for electrogenic cellular constructs to facilitate comprehensive MPS data collection.
Collapse
Affiliation(s)
- Charles M. Didier
- NanoScience Technology Center, University of Central Florida, 4353 Scorpius Street, Research I, Suite 231, FL 32816 Orlando, USA
- Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd, FL 32827 Orlando, USA
| | - Julia F. Orrico
- NanoScience Technology Center, University of Central Florida, 4353 Scorpius Street, Research I, Suite 231, FL 32816 Orlando, USA
| | - Omar S. Cepeda Torres
- NanoScience Technology Center, University of Central Florida, 4353 Scorpius Street, Research I, Suite 231, FL 32816 Orlando, USA
- Department of Biomedical Engineering, Polytechnic University of Puerto Rico, 377, 00918, Ponce de Leon, San Juan, Puerto Rico
| | - Jorge Manrique Castro
- NanoScience Technology Center, University of Central Florida, 4353 Scorpius Street, Research I, Suite 231, FL 32816 Orlando, USA
- Department of Electrical and Computer Engineering, University of Central Florida, 4238 Scorpius Street, FL 32816 Orlando, USA
| | - Aliyah Baksh
- NanoScience Technology Center, University of Central Florida, 4353 Scorpius Street, Research I, Suite 231, FL 32816 Orlando, USA
| | - Swaminathan Rajaraman
- NanoScience Technology Center, University of Central Florida, 4353 Scorpius Street, Research I, Suite 231, FL 32816 Orlando, USA
- Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd, FL 32827 Orlando, USA
- Department of Electrical and Computer Engineering, University of Central Florida, 4238 Scorpius Street, FL 32816 Orlando, USA
- Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Drive, Engineering I, Suite 207, FL 32816 Orlando, USA
| |
Collapse
|
3
|
Abasi S, Aggas JR, Garayar-Leyva GG, Walther BK, Guiseppi-Elie A. Bioelectrical Impedance Spectroscopy for Monitoring Mammalian Cells and Tissues under Different Frequency Domains: A Review. ACS MEASUREMENT SCIENCE AU 2022; 2:495-516. [PMID: 36785772 PMCID: PMC9886004 DOI: 10.1021/acsmeasuresciau.2c00033] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 05/13/2023]
Abstract
Bioelectrical impedance analysis and bioelectrical impedance spectroscopy (BIA/BIS) of tissues reveal important information on molecular composition and physical structure that is useful in diagnostics and prognostics. The heterogeneity in structural elements of cells, tissues, organs, and the whole human body, the variability in molecular composition arising from the dynamics of biochemical reactions, and the contributions of inherently electroresponsive components, such as ions, proteins, and polarized membranes, have rendered bioimpedance challenging to interpret but also a powerful evaluation and monitoring technique in biomedicine. BIA/BIS has thus become the basis for a wide range of diagnostic and monitoring systems such as plethysmography and tomography. The use of BIA/BIS arises from (i) being a noninvasive and safe measurement modality, (ii) its ease of miniaturization, and (iii) multiple technological formats for its biomedical implementation. Considering the dependency of the absolute and relative values of impedance on frequency, and the uniqueness of the origins of the α-, β-, δ-, and γ-dispersions, this targeted review discusses biological events and underlying principles that are employed to analyze the impedance data based on the frequency range. The emergence of BIA/BIS in wearable devices and its relevance to the Internet of Medical Things (IoMT) are introduced and discussed.
Collapse
Affiliation(s)
- Sara Abasi
- Center
for Bioelectronics, Biosensors and Biochips (C3B®), Department
of Biomedical Engineering, Texas A&M
University, 400 Bizzell Street, College Station, Texas 77843, United States
- Cell
Culture Media Services, Cytiva, 100 Results Way, Marlborough, Massachusetts 01752, United States
| | - John R. Aggas
- Center
for Bioelectronics, Biosensors and Biochips (C3B®), Department
of Biomedical Engineering, Texas A&M
University, 400 Bizzell Street, College Station, Texas 77843, United States
- Test
Development, Roche Diagnostics, 9115 Hague Road, Indianapolis, Indiana 46256, United
States
| | - Guillermo G. Garayar-Leyva
- Center
for Bioelectronics, Biosensors and Biochips (C3B®), Department
of Biomedical Engineering, Texas A&M
University, 400 Bizzell Street, College Station, Texas 77843, United States
- Department
of Electrical and Computer Engineering, Texas A&M University, 400 Bizzell Street, College Station, Texas 77843, United States
| | - Brandon K. Walther
- Center
for Bioelectronics, Biosensors and Biochips (C3B®), Department
of Biomedical Engineering, Texas A&M
University, 400 Bizzell Street, College Station, Texas 77843, United States
- Department
of Cardiovascular Sciences, Houston Methodist
Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Anthony Guiseppi-Elie
- Center
for Bioelectronics, Biosensors and Biochips (C3B®), Department
of Biomedical Engineering, Texas A&M
University, 400 Bizzell Street, College Station, Texas 77843, United States
- Department
of Electrical and Computer Engineering, Texas A&M University, 400 Bizzell Street, College Station, Texas 77843, United States
- Department
of Cardiovascular Sciences, Houston Methodist
Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
- ABTECH Scientific,
Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, Virginia 23219, United
States
- . Tel.: +1(804)347.9363.
Fax: +1(804)347.9363
| |
Collapse
|