1
|
Ridlon M, Spiegelhoff A, Kennedy CL, Lavery T, Wang K, Tlapa J, Jordan T, Tanaka LF, Stietz KK. Developmental polychlorinated biphenyl (PCB) exposure impacts on voiding physiology persist into adulthood and influence sensitivity to bladder stimuli in mice. Curr Res Toxicol 2025; 8:100227. [PMID: 40144452 PMCID: PMC11937689 DOI: 10.1016/j.crtox.2025.100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Polychlorinated biphenyls (PCBs) are toxicants present in the environment, foodstuff, animal and human tissues. PCBs are linked to numerous adverse health effects; however, impacts of developmental PCB exposure on lower urinary tract function are a comparatively newer area of interest. We have previously found developmental exposure (in utero and lactational) to a human-relevant PCB mixture in mice leads to sex- and dose- dependent changes to urinary voiding physiology at 6 weeks of age. This study expands upon previous findings to investigate if developmental PCB-induced urinary voiding phenotypes persist or shift as mice age to 12 weeks of age. Urinary voiding physiology testing through void spot assays, uroflowmetry, and cystometry demonstrated several sex- and dose- dependent effects of PCB exposure at 12 weeks of age. Further, patterns of dysfunction were either maintained, newly acquired, or reversed compared to those from younger adult mice in a previous study. Here, developmental PCB exposure decreased number of small urine spots in adult male and female mice in a dose dependent manner, and female mice had more frequent voiding events assessed by anesthetized cystometry. Mice also had PCB dose-dependent changes to urinary voiding physiology when challenged with intravesical capsaicin infusion to target transient receptor potential cation channel subfamily V member 1 (TRPV1)-mediated pathways. PCBs either blocked or exacerbated capsaicin induced responses depending on the endpoint examined, suggesting this pathway may play a role in PCB-dependent changes in voiding. PCBs also had subtle impacts on prostate wet weight, with high PCB doses reducing tissue mass compared to low PCB doses, while none differed from vehicle. This study demonstrates developmental exposure to PCBs continues to impact lower urinary tract function in adulthood to at least 12 weeks of age both during homeostatic conditions and upon challenge of capsaicin. Better understanding of how early life stressors like PCBs contribute to aging-associated voiding dysfunction are imperative as these findings may help mitigate risk or improve treatment strategies for patients suffering from lower urinary tract symptoms.
Collapse
Affiliation(s)
- Monica Ridlon
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI, USA
| | - Audrey Spiegelhoff
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI, USA
| | - Conner L Kennedy
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI, USA
| | - Thomas Lavery
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI, USA
| | - Kathy Wang
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI, USA
| | - Julia Tlapa
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI, USA
| | - Tamryn Jordan
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI, USA
| | - Lindsey Felth Tanaka
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI, USA
| | - Kimberly Keil Stietz
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI, USA
| |
Collapse
|
2
|
Huang B, Zhang J, Tian H, Ren S, Chen K, Feng J, Fan S, Tuo Y, Wang X, Yu L, Ma C, Peng Q, Chen X, He R, Li G. Metformin modulates the TXNIP-NLRP3-GSDMD pathway to improve diabetic bladder dysfunction. Sci Rep 2024; 14:23868. [PMID: 39396086 PMCID: PMC11470931 DOI: 10.1038/s41598-024-72129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/04/2024] [Indexed: 10/14/2024] Open
Abstract
To validate the therapeutic efficacy of metformin on diabetic bladder dysfunction (DBD) and further elucidate whether the TXNIP-NLRP3-GSDMD axis serves as a target for metformin in ameliorating DBD. C57BL/6J mice were induced with diet-induced obesity by being fed a high-fat diet (HFD) for 16 weeks. After establishing the model, the mice were treated with metformin for 4 weeks, and their glucose metabolism-related parameters were assessed. Urine spot assays and urodynamic measurements were conducted to reflect the bladder function and urinary behavior in mice, while histological examination was performed to observe morphological changes. Western blot analysis was employed to measure the expression levels of pyroptotic factors such as TXNIP, NLRP3, GSDMD, and tight junction proteins. Metformin treatment significantly improved glucose tolerance and insulin sensitivity in mice. Moreover, it showed promise in decreasing urinary spot occurrence, reducing urination frequency, alleviating non-voiding contractions, and stabilizing peak urinary pressure. Following metformin therapy, mice displayed restored epithelial fold structure, increased thickness of the muscular layer, substantial decrease in muscle fiber content, notably reduced levels of TXNIP and GSDMD proteins in the metformin-treated group compared to the DBD group, and restored expression of tight junction proteins Zo-1, Claudin-1, and Occludin. Metformin ameliorates urothelial cells damage in DBD mice by inhibiting TXNIP generation and reducing NLRP3 and GSDMD production.
Collapse
Affiliation(s)
- Bincheng Huang
- Urology Department of General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Jin Zhang
- Urology Department of General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Haifu Tian
- Urology Department of General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shuai Ren
- Urology Department of General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Keming Chen
- Urology Department of General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Jiajin Feng
- Urology Department of General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shuzhe Fan
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Yunshang Tuo
- Urology Department of General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xuehao Wang
- Urology Department of General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Leyi Yu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Cunling Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Qingjie Peng
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xiaojiang Chen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Rui He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.
| | - Guangyong Li
- Urology Department of General Hospital, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
3
|
Silveira THRE, Pereira DA, Pereira DA, Calmasini FB, Burnett AL, Costa FF, Silva FH. Impact of intravascular hemolysis on functional and molecular alterations in the urinary bladder: implications for an overactive bladder in sickle cell disease. Front Physiol 2024; 15:1369120. [PMID: 39100273 PMCID: PMC11294091 DOI: 10.3389/fphys.2024.1369120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/20/2024] [Indexed: 08/06/2024] Open
Abstract
Patients with sickle cell disease (SCD) display an overactive bladder (OAB). Intravascular hemolysis in SCD is associated with various severe SCD complications. However, no experimental studies have evaluated the effect of intravascular hemolysis on bladder function. This study aimed to assess the effects of intravascular hemolysis on the micturition process and the contractile mechanisms of the detrusor smooth muscle (DSM) in a mouse model with phenylhydrazine (PHZ)-induced hemolysis; furthermore, it aimed to investigate the role of intravascular hemolysis in the dysfunction of nitric oxide (NO) signaling and in increasing oxidative stress in the bladder. Mice underwent a void spot assay, and DSM contractions were evaluated in organ baths. The PHZ group exhibited increased urinary frequency and increased void volumes. DSM contractile responses to carbachol, KCl, α-β-methylene-ATP, and EFS were increased in the PHZ group. Protein expression of phosphorylated endothelial NO synthase (eNOS) (Ser-1177), phosphorylated neuronal NO synthase (nNOS) (Ser-1417), and phosphorylated vasodilator-stimulated phosphoprotein (VASP) (Ser-239) decreased in the bladder of the PHZ group. Protein expression of oxidative stress markers, NOX-2, 3-NT, and 4-HNE, increased in the bladder of the PHZ group. Our study shows that intravascular hemolysis promotes voiding dysfunction correlated with alterations in the NO signaling pathway in the bladder, as evidenced by reduced levels of p-eNOS (Ser-1177), nNOS (Ser-1417), and p-VASP (Ser-239). The study also showed that intravascular hemolysis increases oxidative stress in the bladder. Our study indicates that intravascular hemolysis promotes an OAB phenotype similar to those observed in patients and mice with SCD.
Collapse
Affiliation(s)
| | - Dalila Andrade Pereira
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, Brazil
| | - Danillo Andrade Pereira
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, Brazil
| | - Fabiano Beraldi Calmasini
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Arthur L. Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | | | - Fábio Henrique Silva
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, Brazil
| |
Collapse
|
4
|
Green CL, Trautman ME, Chaiyakul K, Jain R, Alam YH, Babygirija R, Pak HH, Sonsalla MM, Calubag MF, Yeh CY, Bleicher A, Novak G, Liu TT, Newman S, Ricke WA, Matkowskyj KA, Ong IM, Jang C, Simcox J, Lamming DW. Dietary restriction of isoleucine increases healthspan and lifespan of genetically heterogeneous mice. Cell Metab 2023; 35:1976-1995.e6. [PMID: 37939658 PMCID: PMC10655617 DOI: 10.1016/j.cmet.2023.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Low-protein diets promote health and longevity in diverse species. Restriction of the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine recapitulates many of these benefits in young C57BL/6J mice. Restriction of dietary isoleucine (IleR) is sufficient to promote metabolic health and is required for many benefits of a low-protein diet in C57BL/6J males. Here, we test the hypothesis that IleR will promote healthy aging in genetically heterogeneous adult UM-HET3 mice. We find that IleR improves metabolic health in young and old HET3 mice, promoting leanness and glycemic control in both sexes, and reprograms hepatic metabolism in a sex-specific manner. IleR reduces frailty and extends the lifespan of male and female mice, but to a greater degree in males. Our results demonstrate that IleR increases healthspan and longevity in genetically diverse mice and suggests that IleR, or pharmaceuticals that mimic this effect, may have potential as a geroprotective intervention.
Collapse
Affiliation(s)
- Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Michaela E Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Krittisak Chaiyakul
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yasmine H Alam
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Anneliese Bleicher
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Grace Novak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Teresa T Liu
- George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI 93705, USA
| | - Sarah Newman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Will A Ricke
- George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI 93705, USA
| | - Kristina A Matkowskyj
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
5
|
Lavery TC, Spiegelhoff A, Wang K, Kennedy CL, Ridlon M, Keil Stietz KP. Polychlorinated biphenyl (PCB) exposure in adult female mice can influence bladder contractility. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:367-384. [PMID: 37941647 PMCID: PMC10628623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/21/2023] [Indexed: 11/10/2023]
Abstract
Lower urinary tract symptoms (LUTS) greatly reduce quality of life. While LUTS etiology is not completely understood, it is plausible that environmental contaminants could play a role. Polychlorinated biphenyls (PCBs), are a group of persistent environmental toxicants frequently documented in animal and human tissues. PCBs are capable of influencing voiding function in mouse offspring exposed developmentally, however whether PCB exposure during adulthood can also influence voiding dynamics is unknown. Therefore, the purpose of this study was to determine whether PCB exposure in adult female mice can impact voiding function. As part of a larger study to generate developmentally exposed offspring, adult female C57Bl/6J mice were dosed orally with the MARBLES PCB mixture (0.1, 1, or 6 mg/kg/day) or vehicle control beginning two weeks before mating and throughout gestation and lactation (9 weeks). Adult dosed female dams then underwent void spot assay, uroflowmetry, and anesthetized cystometry to assess voiding function. Bladder contractility was assessed in ex vivo bladder bath assays, and bladders were collected for morphology and histology assessments. While voiding behavior endpoints were minimally impacted, alterations to bladder contractility dynamics were more pronounced. Adult female mice dosed with 1 mg/kg/d PCB showed an increase in urine spots 2-3 cm2 in size, increased bladder contractility in response to electrical field stimulation, and decreased bladder wall thickness compared to vehicle control. PCBs also altered contractile response to cholinergic agonist in a dose-dependent manner. Overall, these results indicate that exposure to PCBs in adult female mice is sufficient to produce changes in bladder physiology. These results also highlight the critical role of timing of exposure in influencing voiding function.
Collapse
Affiliation(s)
- Thomas Cm Lavery
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| | - Audrey Spiegelhoff
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| | - Kathy Wang
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| | - Conner L Kennedy
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| | - Monica Ridlon
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| | - Kimberly P Keil Stietz
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| |
Collapse
|
6
|
Luo C, Liu J, Yang J, Xie X, Yu W, Chen H. Minimizing the variables of voiding spot assay for comparison between laboratories. PeerJ 2023; 11:e15420. [PMID: 37250709 PMCID: PMC10215753 DOI: 10.7717/peerj.15420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
The voiding spot assay (VSA) is increasingly being adopted as a standard method for assessing mouse urinary function. However, VSA outcomes are highly sensitive to housing environment and procedural parameters. Many variables exist among laboratories, including analytical software, type of daily housing cage, transportation, and the time of the day. Some of these variables, such as the time of VSA and analytical software, have been shown to result in inconsistency and incomparability of data. In this study, we evaluated whether the results of VSA can be compared across laboratories by minimizing these variables. We found that analytical tools between Fiji and MATLAB are in good agreement in the quantification of VSA parameters, especially primary voiding spot (PVS) parameters. Unexpectedly, we found that mice housed in different daily home cages did not alter voiding patterns in a standard VSA cage. Nonetheless, we still recommend acclimation when performing VSA in unfamiliar cages. Notably, mice are highly sensitive to transportation and the time in the morning versus afternoon, which can induce significant changes in voiding patterns. Therefore, a standardized period among laboratories and allowing 2-3 days of rest for mice acclimation after transportation are necessary for VSA. Finally, we performed VSA using identical procedural parameters in two laboratories from two geographical locations to compare the results of VSA and concluded that it is possible to generate limited comparable VSA data, such as PVS volume.
Collapse
Affiliation(s)
- Chuang Luo
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Juan Liu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jiali Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Ruetten H, Sandhu SK, Fox O, Zhu J, Sandhu JK, Vezina CM. The impact of short term, long term and intermittent E. coli infection on male C57BL/6J mouse prostate histology and urinary physiology. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:59-68. [PMID: 36923725 PMCID: PMC10009312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/25/2023] [Indexed: 03/18/2023]
Abstract
Prostatic inflammation and prostatic fibrosis are associated with lower urinary tract dysfunction in men. Prostatic inflammation arising from a transurethral uropathogenic E. coli infection is sufficient to increase prostatic collagen content in male mice. It is not known whether and how the sequence, duration and chronology of prostatic infection influence urinary function, prostatic inflammation and collagen content. We placed a transurethral catheter into adult male C57BL/6J mice to deliver uropathogenic E. coli UTI189 two-weeks prior to study endpoint (to evaluate the short-term impact of infection), 10-weeks prior to study endpoint (to evaluate the long-term impact of infection), or two-, six-, and ten-weeks prior to endpoint (to evaluate the impact of repeated intermittent infection). Mice were catheterized the same number of times across all experimental groups and instilled with sterile saline when not instilled with E. coli to control for the variable of catheterization. We measured bacterial load in free catch urine, body weight and weight of bladder and dorsal prostate; prostatic density of leukocytes, collagen and procollagen 1A1 producing cells, and urinary function. Transurethral E. coli instillation caused more severe and persistent bacteriuria in mice with a history of one or more transurethral instillations of sterile saline or E. coli. Repeated intermittent infections resulted in a greater relative bladder wet weight than single infections. However, voiding function, as measured by the void spot assay, and the density of collagen and ProCOL1A1+ cells in dorsal prostate tissue sections did not significantly differ among infection groups. The density of CD45+ leukocytes was greater in the dorsal prostate of mice infected two weeks prior to study endpoint but not in other infection groups compared to uninfected controls.
Collapse
Affiliation(s)
- Hannah Ruetten
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| | - Simran K Sandhu
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| | - Olivia Fox
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| | - Jonathan Zhu
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| | - Jaskiran K Sandhu
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| | - Chad M Vezina
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| |
Collapse
|
8
|
Ramasamy R, Hardy CC, Crocker SJ, Smith PP. Cuprizone-mediated demyelination reversibly degrades voiding behavior in mice while sparing brainstem reflex. J Neurosci Res 2022; 100:1707-1720. [PMID: 35596557 DOI: 10.1002/jnr.25065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 11/12/2022]
Abstract
Multiple sclerosis (MS) is a chronic, progressively debilitating demyelinating disease of the central nervous system (CNS). Nearly 80% of MS patients experience lower urinary tract dysfunction early in their diagnosis. This significantly affects the quality of life, and in latter stages of disease is a leading cause of hospitalization. Previously, animal models have shown that inflammatory demyelination in the CNS causes profound bladder dysfunction, but the confounding influence of systemic inflammation limits the potential interpretation of the contribution of CNS demyelination to bladder dysfunction. Since the micturition circuit has myelinated neuronal connections in the cortex, brainstem, and spinal cord, we examined alterations in bladder function in the cuprizone model characterized by demyelinating lesions in the cortex and corpus callosum that are independent of T-cell-mediated autoimmunity. Herein, we report that a 4-week dietary cuprizone treatment in C57Bl/6J mice induced alterations in voiding behavior with increased micturition frequency and reduced volume voided, similar to human MS bladder dysfunction. Subsequently, recovery from cuprizone treatment restored normal bladder function. Demyelination and remyelination were confirmed by Luxol Fast Blue staining of the corpus callosum. Additionally, we also determined that an 8-week cuprizone treatment, resulting in chronic demyelination lacking spontaneous remyelination potential, is associated with an exacerbated voiding phenotype. Interestingly, while cuprizone-induced CNS demyelination severely affected conscious (cortical) urinary behavior, the brainstem and spinal cord reflex remained unchanged, as confirmed by urethane-anesthetized cystometry. This is the first study to show that cortical demyelination independent of inflammation can negatively impact urinary function.
Collapse
Affiliation(s)
- Ramalakshmi Ramasamy
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Cara C Hardy
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Phillip P Smith
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
9
|
Kennedy CL, Spiegelhoff A, Lavery T, Wang K, Manuel RSJ, Wang Z, Wildermuth H, Keil Stietz KP. Developmental polychlorinated biphenyl (PCB) exposure alters voiding physiology in young adult male and female mice. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:82-97. [PMID: 35528463 PMCID: PMC9077147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The impact of developmental exposure to environmental chemicals on lower urinary tract function is not well understood, despite the fact that these chemicals could contribute to etiologically complex lower urinary tract symptoms (LUTS). Polychlorinated biphenyls (PCBs) are environmental toxicants known to be detrimental to the central nervous system, but their impact on voiding function in mouse models is not known. Therefore, we test whether developmental exposure to PCBs is capable of altering voiding physiology in young adult mice. C57Bl/6J female mice received a daily oral dose of the MARBLES PCB mixture for two weeks prior to mating and through gestation and lactation. The mixture mimics the profile of PCBs found in a contemporary population of pregnant women. Voiding function was then tested in young adult offspring using void spot assay, uroflowmetry and anesthetized cystometry. PCB effects were sex and dose dependent. Overall, PCBs led to increases in small size urine spots in both sexes with males producing more drop-like voids and greater peak pressure during a voiding cycle while females displayed decreases in void duration and intervoid interval. Together, these results indicate that developmental exposure to PCBs are capable of altering voiding physiology in young adult mice. Further work to identify the underlying mechanisms driving these changes may help develop more effective preventative or therapeutic strategies for LUTS.
Collapse
Affiliation(s)
- Conner L Kennedy
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-MadisonMadison, WI 53706, USA
| | - Audrey Spiegelhoff
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-MadisonMadison, WI 53706, USA
| | - Thomas Lavery
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-MadisonMadison, WI 53706, USA
| | - Kathy Wang
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-MadisonMadison, WI 53706, USA
| | - Robbie SJ Manuel
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-MadisonMadison, WI 53706, USA
| | - Zunyi Wang
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-MadisonMadison, WI 53706, USA
| | - Hannah Wildermuth
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-MadisonMadison, WI 53706, USA
| | - Kimberly P Keil Stietz
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-MadisonMadison, WI 53706, USA
| |
Collapse
|
10
|
Xie AX, Iguchi N, Clarkson TC, Malykhina AP. Pharmacogenetic inhibition of lumbosacral sensory neurons alleviates visceral hypersensitivity in a mouse model of chronic pelvic pain. PLoS One 2022; 17:e0262769. [PMID: 35077502 PMCID: PMC8789164 DOI: 10.1371/journal.pone.0262769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
The study investigated the cellular and molecular mechanisms in the peripheral nervous system (PNS) underlying the symptoms of urologic chronic pelvic pain syndrome (UCPPS) in mice. This work also aimed to test the feasibility of reversing peripheral sensitization in vivo in alleviating UCPPS symptoms. Intravesical instillation of vascular endothelial growth factor A (VEGFA) was used to induce UCPPS-like symptoms in mice. Spontaneous voiding spot assays and manual Von Frey tests were used to evaluate the severity of lower urinary tract symptoms (LUTS) and visceral hypersensitivity in VEGFA-instilled mice. Bladder smooth muscle strip contractility recordings (BSMSC) were used to identify the potential changes in myogenic and neurogenic detrusor muscle contractility at the tissue-level. Quantitative real-time PCR (qPCR) and fluorescent immunohistochemistry were performed to compare the expression levels of VEGF receptors and nociceptors in lumbosacral dorsal root ganglia (DRG) between VEGFA-instilled mice and saline-instilled controls. To manipulate primary afferent activity, Gi-coupled Designer Receptors Exclusively Activated by Designer Drugs (Gi-DREADD) were expressed in lumbosacral DRG neurons of TRPV1-Cre-ZGreen mice via targeted adeno-associated viral vector (AAVs) injections. A small molecule agonist of Gi-DREADD, clozapine-N-oxide (CNO), was injected into the peritoneum (i. p.) in awake animals to silence TRPV1 expressing sensory neurons in vivo during physiological and behavioral recordings of bladder function. Intravesical instillation of VEGFA in the urinary bladders increased visceral mechanical sensitivity and enhanced RTX-sensitive detrusor contractility. Sex differences were identified in the baseline detrusor contractility responses and VEGF-induced visceral hypersensitivity. VEGFA instillations in the urinary bladder led to significant increases in the mRNA and protein expression of transient receptor potential cation channel subfamily A member 1 (TRPA1) in lumbosacral DRG, whereas the expression levels of transient receptor potential cation channel subfamily V member 1 (TRPV1) and VEGF receptors (VEGFR1 and VEGFR2) remained unchanged when compared to saline-instilled animals. Importantly, the VEGFA-induced visceral hypersensitivity was reversed by Gi-DREADD-mediated neuronal silencing in lumbosacral sensory neurons. Activation of bladder VEGF signaling causes sensory neural plasticity and visceral hypersensitivity in mice, confirming its role of an UCPPS biomarker as identified by the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) research studies. Pharmacogenetic inhibition of lumbosacral sensory neurons in vivo completely reversed VEGFA-induced pelvic hypersensitivity in mice, suggesting the strong therapeutic potential for decreasing primary afferent activity in the treatment of pain severity in UCPPS patients.
Collapse
Affiliation(s)
- Alison Xiaoqiao Xie
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Nao Iguchi
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Taylor C. Clarkson
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Anna P. Malykhina
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| |
Collapse
|
11
|
Popovics P, Jain A, Skalitzky KO, Schroeder E, Ruetten H, Cadena M, Uchtmann KS, Vezina CM, Ricke WA. Osteopontin Deficiency Ameliorates Prostatic Fibrosis and Inflammation. Int J Mol Sci 2021; 22:ijms222212461. [PMID: 34830342 PMCID: PMC8617904 DOI: 10.3390/ijms222212461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Fibrogenic and inflammatory processes in the prostate are linked to the development of lower urinary tract symptoms (LUTS) in men. Our previous studies identified that osteopontin (OPN), a pro-fibrotic cytokine, is abundant in the prostate of men with LUTS, and its secretion is stimulated by inflammatory cytokines potentially to drive fibrosis. This study investigates whether the lack of OPN ameliorates inflammation and fibrosis in the mouse prostate. We instilled uropathogenic E. coli (UTI89) or saline (control) transurethrally to C57BL/6J (WT) or Spp1tm1Blh/J (OPN-KO) mice and collected the prostates one or 8 weeks later. We found that OPN mRNA and protein expression were significantly induced by E. coli-instillation in the dorsal prostate (DP) after one week in WT mice. Deficiency in OPN expression led to decreased inflammation and fibrosis and the prevention of urinary dysfunction after 8 weeks. RNAseq analysis identified that E. coli-instilled WT mice expressed increased levels of inflammatory and fibrotic marker RNAs compared to OPN-KO mice including Col3a1, Dpt, Lum and Mmp3 which were confirmed by RNAscope. Our results indicate that OPN is induced by inflammation and prolongs the inflammatory state; genetic blockade of OPN accelerates recovery after inflammation, including a resolution of prostate fibrosis.
Collapse
Affiliation(s)
- Petra Popovics
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Asha Jain
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kegan O. Skalitzky
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elise Schroeder
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah Ruetten
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark Cadena
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kristen S. Uchtmann
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Chad M. Vezina
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William A. Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
12
|
Metformin abrogates the voiding dysfunction induced by prolonged methylglyoxal intake. Eur J Pharmacol 2021; 910:174502. [PMID: 34516950 DOI: 10.1016/j.ejphar.2021.174502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/14/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022]
Abstract
Methylglyoxal (MGO) is a reactive carbonyl species found at high levels in blood of diabetic patients. The anti-hyperglycemic drug metformin can scavenger MGO and reduce the formation of advanced glycation end products (AGEs). Here, we aimed to investigate if MGO-induced bladder dysfunction can be reversed by metformin. Male C57/BL6 mice received 0.5% MGO in drinking water for 12 weeks, and metformin (300 mg/kg, daily gavage) was given in the last two weeks. The bladder functions were evaluated by performing voiding behavior assays, cystometry and in vitro bladder contractions. MGO intake markedly elevated the levels of MGO and fluorescent AGEs in serum and reduced the mRNA expression and activity of glyoxalase (Glo1) in bladder tissues. Glucose levels were unaffected among groups. MGO intake also increased the urothelium thickness and collagen content of the bladder. Void spot assays in conscious mice revealed an increased void volume in MGO group. The cystometric assays in anesthetized mice revealed increases of basal pressure, non-voiding contractions frequency, bladder capacity, inter-micturition pressure and residual volume, which were accompanied by reduced voiding efficiency in MGO group. In vitro bladder contractions to carbachol, α,β-methylene ATP and electrical-field stimulation were significantly greater in MGO group. Metformin normalized the changes of MGO and AGEs levels, Glo1 expression and activity, urothelium thickness and collagen content. The MGO-induced voiding dysfunction were all restored by metformin treatment. Our findings strongly suggest that the amelioration of MGO-induced voiding dysfunction by metformin relies on its ability to scavenger MGO, preventing its accumulation in blood.
Collapse
|
13
|
Dalghi MG, Ruiz WG, Clayton DR, Montalbetti N, Daugherty SL, Beckel JM, Carattino MD, Apodaca G. Functional roles for PIEZO1 and PIEZO2 in urothelial mechanotransduction and lower urinary tract interoception. JCI Insight 2021; 6:e152984. [PMID: 34464353 PMCID: PMC8525643 DOI: 10.1172/jci.insight.152984] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
The mechanisms that link visceral mechanosensation to the perception of internal organ status (i.e., interoception) remain elusive. In response to bladder filling, the urothelium releases ATP, which is hypothesized to stimulate voiding function by communicating the degree of bladder fullness to subjacent tissues, including afferent nerve fibers. To determine if PIEZO channels function as mechanosensors in these events, we generated conditional urothelial Piezo1-, Piezo2-, and dual Piezo1/2-knockout (KO) mice. While functional PIEZO1 channels were expressed in all urothelial cell layers, Piezo1-KO mice had a limited phenotype. Piezo2 expression was limited to a small subset of superficial umbrella cells, yet male Piezo2-KO mice exhibited incontinence (i.e., leakage) when their voiding behavior was monitored during their active dark phase. Dual Piezo1/2-KO mice had the most affected phenotype, characterized by decreased urothelial responses to mechanical stimulation, diminished ATP release, bladder hypoactivity in anesthetized Piezo1/2-KO females but not males, and urinary incontinence in both male and female Piezo1/2-KO mice during their dark phase but not inactive light one. Our studies reveal that the urothelium functions in a sex- and circadian rhythm–dependent manner to link urothelial PIEZO1/2 channel–driven mechanotransduction to normal voiding function and behavior, and in the absence of these signals, bladder dysfunction ensues.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marcelo D Carattino
- Department of Medicine.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gerard Apodaca
- Department of Medicine.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Dalghi MG. A "NEW" way to look at an "old" test: Transforming the void spot assay (VSA) into a diagnostic tool. Physiol Rep 2021; 9:e14985. [PMID: 34337907 PMCID: PMC8326885 DOI: 10.14814/phy2.14985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Marianela G. Dalghi
- Renal‐Electrolyte DivisionDepartment of MedicineUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
15
|
Ruetten HM, Henry GH, Liu TT, Spratt HM, Ricke WA, Strand DW, Vezina CM. A NEW approach for characterizing mouse urinary pathophysiologies. Physiol Rep 2021; 9:e14964. [PMID: 34337899 PMCID: PMC8326900 DOI: 10.14814/phy2.14964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
The void spot assay (VSA) is a cost-effective method for evaluating and quantifying mouse urinary voiding phenotypes. The VSA has been used to differentiate voiding behaviors between experimental groups, but not as a diagnostic assay. To build toward this goal, we used the VSA to define voiding patterns of male mice with diabetic diuresis (BTBR.Cg-Lepob /WiscJ mice), irritative urinary dysfunction (E. coli UTI89 urinary tract infection), and obstructive urinary dysfunction (testosterone and estradiol slow-release implants) compared to their respective controls. Many studies compare individual VSA endpoints (urine spot size, quantity, or distribution) between experimental groups. Here, we consider all endpoints collectively to establish VSA phenomes of mice with three different etiologies of voiding dysfunction. We created an approach called normalized endpoint work through (NEW) to normalize VSA outputs to control mice, and then applied principal components analysis and hierarchical clustering to 12 equally weighted, normalized, scaled, and zero-centered VSA outcomes collected from each mouse (the VSA phenome). This approach accurately classifies mice based on voiding dysfunction etiology. We used principal components analysis and hierarchical clustering to show that some aged mice (>24 m old) develop an obstructive or a diabetic diuresis VSA phenotype while others develop a unique phenotype that does not cluster with that of diabetic, infected, or obstructed mice. These findings support use of the VSA to identify specific urinary phenotypes in mice and the continued use of aged mice as they develop urinary dysfunction representative of the various etiologies of LUTS in men.
Collapse
Affiliation(s)
- Hannah M. Ruetten
- Department of Comparative BiosciencesUniversity of Wisconsin‐MadisonMadisonWIUSA
- University of Wisconsin‐Madison/UMASS Boston/UT Southwestern George M. O’Brien Center for Benign Urologic ResearchMadisonWIUSA
| | - Gervaise H. Henry
- University of Wisconsin‐Madison/UMASS Boston/UT Southwestern George M. O’Brien Center for Benign Urologic ResearchMadisonWIUSA
- Department of UrologyUT Southwestern Medical CenterDallasTXUSA
| | - Teresa T. Liu
- University of Wisconsin‐Madison/UMASS Boston/UT Southwestern George M. O’Brien Center for Benign Urologic ResearchMadisonWIUSA
- Department of UrologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Heidi M. Spratt
- Department of Preventive Medicine and Population HealthUniversity of Texas Medical BranchGalvestonTXUSA
| | - William A. Ricke
- University of Wisconsin‐Madison/UMASS Boston/UT Southwestern George M. O’Brien Center for Benign Urologic ResearchMadisonWIUSA
- Department of UrologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Douglas W. Strand
- University of Wisconsin‐Madison/UMASS Boston/UT Southwestern George M. O’Brien Center for Benign Urologic ResearchMadisonWIUSA
- Department of UrologyUT Southwestern Medical CenterDallasTXUSA
| | - Chad M. Vezina
- Department of Comparative BiosciencesUniversity of Wisconsin‐MadisonMadisonWIUSA
- University of Wisconsin‐Madison/UMASS Boston/UT Southwestern George M. O’Brien Center for Benign Urologic ResearchMadisonWIUSA
| |
Collapse
|
16
|
Abler LL, O’Driscoll CA, Colopy SA, Stietz KPK, Wang P, Wang Z, Hartmann F, Crader-Smith SM, Oellete JN, Mehta V, Oakes SR, Grimes MD, Mitchell GS, Baan M, Gallagher SJ, Davis DB, Kimple ME, Bjorling DE, Watters JJ, Vezina CM. The influence of intermittent hypoxia, obesity, and diabetes on male genitourinary anatomy and voiding physiology. Am J Physiol Renal Physiol 2021; 321:F82-F92. [PMID: 34121451 PMCID: PMC8807064 DOI: 10.1152/ajprenal.00112.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We used male BTBR mice carrying the Lepob mutation, which are subject to severe and progressive obesity and diabetes beginning at 6 wk of age, to examine the influence of one specific manifestation of sleep apnea, intermittent hypoxia (IH), on male urinary voiding physiology and genitourinary anatomy. A custom device was used to deliver continuous normoxia (control) or IH to wild-type and Lepob/ob (mutant) mice for 2 wk. IH was delivered during the 12-h inactive (light) period in the form of 90 s of 6% O2 followed by 90 s of room air. Continuous room air was delivered during the 12-h active (dark) period. We then evaluated genitourinary anatomy and physiology. As expected for the type 2 diabetes phenotype, mutant mice consumed more food and water, weighed more, and voided more frequently and in larger urine volumes. They also had larger bladder volumes but smaller prostates, seminal vesicles, and urethras than wild-type mice. IH decreased food consumption and increased bladder relative weight independent of genotype and increased urine glucose concentration in mutant mice. When evaluated based on genotype (normoxia + IH), the incidence of pathogenic bacteriuria was greater in mutant mice than in wild-type mice, and among mice exposed to IH, bacteriuria incidence was greater in mutant mice than in wild-type mice. We conclude that IH exposure and type 2 diabetes can act independently and together to modify male mouse urinary function. NEW & NOTEWORTHY Metabolic syndrome and obstructive sleep apnea are common in aging men, and both have been linked to urinary voiding dysfunction. Here, we show that metabolic syndrome and intermittent hypoxia (a manifestation of sleep apnea) have individual and combined influences on voiding function and urogenital anatomy in male mice.
Collapse
Affiliation(s)
- Lisa L. Abler
- 1Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin,2University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic Research, Madison, Wisconsin
| | - Chelsea A. O’Driscoll
- 1Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin,2University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic Research, Madison, Wisconsin
| | - Sara A. Colopy
- 3Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kimberly P. Keil Stietz
- 1Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Peiqing Wang
- 3Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Zunyi Wang
- 3Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Faye Hartmann
- 4Microbiology Laboratory, UW Veterinary Care, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stephanie M. Crader-Smith
- 1Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jonathan N. Oellete
- 1Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Vatsal Mehta
- 1Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Steven R. Oakes
- 1Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Matthew D. Grimes
- 5Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gordon S. Mitchell
- 6Department of Physical Therapy and McKnight Brain Institute, grid.15276.37University of Florida, Gainesville, Florida
| | - Mieke Baan
- 7Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin,8William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Shannon J. Gallagher
- 7Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin,8William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Dawn B. Davis
- 7Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin,8William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Michelle E. Kimple
- 7Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin,8William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Dale E. Bjorling
- 2University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic Research, Madison, Wisconsin,3Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jyoti J. Watters
- 1Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Chad M. Vezina
- 1Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin,2University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic Research, Madison, Wisconsin
| |
Collapse
|
17
|
Deal KK, Chandrashekar AS, Beaman MM, Branch MC, Buehler DP, Conway SJ, Southard-Smith EM. Altered sacral neural crest development in Pax3 spina bifida mutants underlies deficits of bladder innervation and function. Dev Biol 2021; 476:173-188. [PMID: 33839113 DOI: 10.1016/j.ydbio.2021.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 11/30/2022]
Abstract
Mouse models of Spina bifida (SB) have been instrumental for identifying genes, developmental processes, and environmental factors that influence neurulation and neural tube closure. Beyond the prominent neural tube defects, other aspects of the nervous system can be affected in SB with significant changes in essential bodily functions such as urination. SB patients frequently experience bladder dysfunction and SB fetuses exhibit reduced density of bladder nerves and smooth muscle although the developmental origins of these deficits have not been determined. The Pax3 Splotch-delayed (Pax3Sp-d) mouse model of SB is one of a very few mouse SB models that survives to late stages of gestation. Through analysis of Pax3Sp-d mutants we sought to define how altered bladder innervation in SB might arise by tracing sacral neural crest (NC) development, pelvic ganglia neuronal differentiation, and assessing bladder nerve fiber density. In Pax3Sp-d/Sp-d fetal mice we observed delayed migration of Sox10+ NC-derived progenitors (NCPs), deficient pelvic ganglia neurogenesis, and reduced density of bladder wall innervation. We further combined NC-specific deletion of Pax3 with the constitutive Pax3Sp-d allele in an effort to generate viable Pax3 mutants to examine later stages of bladder innervation and postnatal bladder function. Neural crest specific deletion of a Pax3 flox allele, using a Sox10-cre driver, in combination with a constitutive Pax3Sp-d mutation produced postnatal viable offspring that exhibited altered bladder function as well as reduced bladder wall innervation and altered connectivity between accessory ganglia at the bladder neck. Combined, the results show that Pax3 plays critical roles within sacral NC that are essential for initiation of neurogenesis and differentiation of autonomic neurons within pelvic ganglia.
Collapse
Affiliation(s)
- Karen K Deal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | - Meagan C Branch
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dennis P Buehler
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
18
|
Wegner KA, Ruetten H, Girardi NM, O’Driscoll CA, Sandhu JK, Turco AE, Abler LL, Wang P, Wang Z, Bjorling DE, Malinowski R, Peterson RE, Strand DW, Marker PC, Vezina CM. Genetic background but not prostatic epithelial beta-catenin influences susceptibility of male mice to testosterone and estradiol-induced urinary dysfunction. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:121-131. [PMID: 33816700 PMCID: PMC8012832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Urinary voiding dysfunction in aging men can cause bothersome symptoms and irreparable tissue damage. Underlying mechanisms are not fully known. We previously demonstrated that subcutaneous, slow-release testosterone and estradiol implants (T+E2) drive a pattern of urinary voiding dysfunction in male mice that resembles that of aging men. The initial goal of this study was to test the hypothesis that prostatic epithelial beta-catenin (Ctnnb1) is required for T+E2-mediated voiding dysfunction. Targeted Ctnnb1 deletion did not significantly change voiding function in control or T+E2 treated mice but led to the surprising discovery that the C57BL/6J × FVB/NJ × 129S1 mixed genetic background onto which Ctnnb1 loss of function alleles were maintained is profoundly susceptible to voiding dysfunction. The mixed background mice develop a more rapid T+E2-mediated increase in spontaneous urine spotting, are more impaired in ability to initiate bladder contraction, and develop larger and heavier bladders than T+E2 treated C57BL/6J pure bred mice. To better understand mechanisms, we separately evaluated contributions of T and E2 and found that E2 mediates voiding dysfunction. Our findings that genetic factors serve as modifiers of responsiveness to T and E2 demonstrate the need to control for genetic background in studies of male voiding dysfunction. We also show that genetic factors could control severity of voiding dysfunction. We demonstrate the importance of E2 as a key mediator of voiding impairment, and show that the concentration of E2 in subcutaneous implants determines the severity of voiding dysfunction in mice, demonstrating that the mouse model is tunable, a factor which is important for future pharmacological intervention studies.
Collapse
Affiliation(s)
- Kyle A Wegner
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| | - Hannah Ruetten
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| | - Nicholas M Girardi
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| | - Chelsea A O’Driscoll
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| | - Jaskiran K Sandhu
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| | - Anne E Turco
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| | - Lisa L Abler
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| | - Peiqing Wang
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| | - Zunyi Wang
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| | - Dale E Bjorling
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| | - Rita Malinowski
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Pharmacy, University of Wisconsin-MadisonMadison, WI, USA
| | | | - Douglas W Strand
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- Department of Urology, University of Texas Southwestern Medical CenterDallas, Texas, USA
| | - Paul C Marker
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Pharmacy, University of Wisconsin-MadisonMadison, WI, USA
| | - Chad M Vezina
- University of Wisconsin-Madison/UMASS Boston/UT-Southwestern George M. O’Brien Center for Benign Urologic ResearchMadison, Wisconsin 53706, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-MadisonMadison, Wisconsin 53706, USA
| |
Collapse
|
19
|
Ruetten H, Sandhu J, Mueller B, Wang P, Zhang HL, Wegner KA, Cadena M, Sandhu S, L Abler L, Zhu J, O'Driscoll CA, Chelgren B, Wang Z, Shen T, Barasch J, Bjorling DE, Vezina CM. A uropathogenic E. coli UTI89 model of prostatic inflammation and collagen accumulation for use in studying aberrant collagen production in the prostate. Am J Physiol Renal Physiol 2021; 320:F31-F46. [PMID: 33135480 PMCID: PMC7847049 DOI: 10.1152/ajprenal.00431.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/09/2020] [Accepted: 10/24/2020] [Indexed: 11/22/2022] Open
Abstract
Bacterial infection is one known etiology of prostatic inflammation. Prostatic inflammation is associated with prostatic collagen accumulation and both are linked to progressive lower urinary tract symptoms in men. We characterized a model of prostatic inflammation using transurethral instillations of Escherichia coli UTI89 in C57BL/6J male mice with the goal of determining the optimal instillation conditions, understanding the impact of instillation conditions on urinary physiology, and identifying ideal prostatic lobes and collagen 1a1 prostatic cell types for further analysis. The smallest instillation volume tested (50 µL) distributed exclusively to the bladder, 100- and 200-µL volumes distributed to the bladder and prostate, and a 500-µL volume distributed to the bladder, prostate, and ureter. A threshold optical density of 0.4 E. coli UTI89 in the instillation fluid was necessary for significant (P < 0.05) prostate colonization. E. coli UTI89 infection resulted in a low frequency, high volume spontaneous voiding pattern. This phenotype was due to exposure to E. coli UTI89, not catheterization alone, and was minimally altered by a 50-µL increase in instillation volume and doubling of E. coli concentration. Prostate inflammation was isolated to the dorsal prostate and was accompanied by increased collagen density. This was partnered with increased density of protein tyrosine phosphatase receptor type C+, procollagen type I-α1+ copositive cells and decreased density of α2-smooth muscle actin+, procollagen type I-α1+ copositive cells. Overall, we determined that this model is effective in altering urinary phenotype and producing prostatic inflammation and collagen accumulation in mice.
Collapse
Affiliation(s)
- Hannah Ruetten
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Jaskiran Sandhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Brett Mueller
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Peiqing Wang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Helen L Zhang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Kyle A Wegner
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mark Cadena
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Simran Sandhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Lisa L Abler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Jonathan Zhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Chelsea A O'Driscoll
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Britta Chelgren
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Zunyi Wang
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Tian Shen
- Columbia University, Department of Medicine, New York, New York
| | | | - Dale E Bjorling
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
20
|
Polychlorinated Biphenyls (PCBs): Risk Factors for Autism Spectrum Disorder? TOXICS 2020; 8:toxics8030070. [PMID: 32957475 PMCID: PMC7560399 DOI: 10.3390/toxics8030070] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) includes a group of multifactorial neurodevelopmental disorders defined clinically by core deficits in social reciprocity and communication, restrictive interests and repetitive behaviors. ASD affects one in 54 children in the United States, one in 89 children in Europe, and one in 277 children in Asia, with an estimated worldwide prevalence of 1-2%. While there is increasing consensus that ASD results from complex gene x environment interactions, the identity of specific environmental risk factors and the mechanisms by which environmental and genetic factors interact to determine individual risk remain critical gaps in our understanding of ASD etiology. Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants that have been linked to altered neurodevelopment in humans. Preclinical studies demonstrate that PCBs modulate signaling pathways implicated in ASD and phenocopy the effects of ASD risk genes on critical morphometric determinants of neuronal connectivity, such as dendritic arborization. Here, we review human and experimental evidence identifying PCBs as potential risk factors for ASD and discuss the potential for PCBs to influence not only core symptoms of ASD, but also comorbidities commonly associated with ASD, via effects on the central and peripheral nervous systems, and/or peripheral target tissues, using bladder dysfunction as an example. We also discuss critical data gaps in the literature implicating PCBs as ASD risk factors. Unlike genetic factors, which are currently irreversible, environmental factors are modifiable risks. Therefore, data confirming PCBs as risk factors for ASD may suggest rational approaches for the primary prevention of ASD in genetically susceptible individuals.
Collapse
|
21
|
Kane AE, Keller KM, Heinze-Milne S, Grandy SA, Howlett SE. A Murine Frailty Index Based on Clinical and Laboratory Measurements: Links Between Frailty and Pro-inflammatory Cytokines Differ in a Sex-Specific Manner. J Gerontol A Biol Sci Med Sci 2019; 74:275-282. [PMID: 29788087 DOI: 10.1093/gerona/gly117] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 12/12/2022] Open
Abstract
A frailty index (FI) based on clinical deficit accumulation (FI-Clinical) quantifies frailty in aging mice. We aimed to develop a laboratory test-based murine FI tool (FI-Lab) and to investigate the effects of age and sex on FI-Lab scores, FI-Clinical scores, and the combination (FI-Combined), as well as to explore links between frailty and inflammation. Studies used older (17 and 23 months) C57BL/6 mice of both sexes. We developed an FI-Lab (blood pressure, blood chemistry, echocardiography) based on deviation from reference values in younger adults (12 months), which showed similar characteristics to a human FI-Lab tool. Interestingly, while FI-Clinical scores were higher in females, the opposite was true for FI-Lab scores and there was no sex difference in FI-Combined scores. All three FI tools revealed a positive correlation between pro-inflammatory cytokine levels and frailty in aging mice that differed between the sexes. Elevated levels of the pro-inflammatory cytokines interleukin (IL)-6, IL-9, and interferon-γ were associated with higher FI scores in aging females, while levels of IL-12p40 rose as FI scores increased in older males. Thus, an FI tool based on common laboratory tests can quantify frailty in mice; the positive correlation between inflammation and frailty scores in naturally aging mice differs between the sexes.
Collapse
Affiliation(s)
- Alice E Kane
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Kaitlyn M Keller
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Stefan Heinze-Milne
- School of Health and Human Performance, Dalhousie University, Halifax, NS, Canada
| | - Scott A Grandy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.,School of Health and Human Performance, Dalhousie University, Halifax, NS, Canada
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.,Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
22
|
Liu Q, Wu Z, Liu Y, Chen L, Zhao H, Guo H, Zhu K, Wang W, Chen S, Zhou N, Li Y, Shi B. Cannabinoid receptor 2 activation decreases severity of cyclophosphamide-induced cystitis via regulating autophagy. Neurourol Urodyn 2019; 39:158-169. [PMID: 31729056 DOI: 10.1002/nau.24205] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/11/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Cannabinoids have been shown to exert analgesic and anti-inflammatory effects, and the effects of cannabinoids are mediated primarily by cannabinoid receptors 1 and 2 (CB1 and CB2). The objective of this study was to determine efficacy and mechanism of CB2 activation on cyclophosphamide (CYP)-induced cystitis in vivo. METHODS Cystitis was induced by intraperitoneal (IP) injection of CYP in female C57BL/6J mice. Mice were pretreated with CB2 agonist JWH-133 (1 mg/kg, intraperitoneally), CB2 antagonist AM-630 (1 mg/kg, intraperitoneally) or autophagy inhibitor 3-methyladenine (3-MA) (50 mM, intraperitoneally) before IP injection of CYP. Peripheral nociception and spontaneous voiding were investigated in these mice. Bladders were collected, weighed, and processed for real-time polymerase chain reaction, immunoblotting analysis, histological and immunohistochemical analysis. RESULTS Twenty-four hours after IP injection of CYP, the bladder of CYP-treated mice showed histological evidence of inflammation. The expression of CB2 in bladder was significantly increased in CYP-treated mice. Mechanical sensitivity was significantly increased in CYP-treated mice and CB2 agonist JWH-133 attenuated this effect (P < .05). The number of urine spots was significantly increased after CYP treatment and it was decreased in JWH-133 treated mice (P < .05). Activating CB2 with JWH-133 significantly alleviated bladder tissue inflammatory responses and oxidative stress induced by CYP. Activation of CB2 by JWH-133 increased the expression of LC3-II/LC3-I ratio, and decreased the expression of SQSTM1/p62 in the bladder of cystitis mice, whereas AM-630 induced inverse effects. Further study indicated that JWH-133 could promote autophagy and blocking autophagy by 3-MA dismissed the effort of CB2 in alleviating bladder tissue inflammatory responses and oxidative stress injury. Furthermore, treatment with 3-MA decreased the expression of p-AMPK and induced the phosphorylation of mTOR in the presence of JWH-133 stimulation in cystitis model. CONCLUSIONS Activation of CB2 decreased severity of CYP-induced cystitis and ameliorated bladder inflammation. CB2 activation is protective in cystitis through the activation of autophagy and AMPK-mTOR pathway may be involved in the initiation of autophagy.
Collapse
Affiliation(s)
- Qinggang Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Zonglong Wu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Yaxiao Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Lipeng Chen
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Hongda Zhao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Hongda Guo
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Kejia Zhu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenfu Wang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Shouzhen Chen
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Nan Zhou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Benkang Shi
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
23
|
Ruetten H, Wegner KA, Zhang HL, Wang P, Sandhu J, Sandhu S, Morkrid J, Mueller B, Wang Z, Macoska J, Peterson RE, Bjorling DE, Ricke WA, Marker PC, Vezina CM. Insight and Resources From a Study of the "Impact of Sex, Androgens, and Prostate Size on C57BL/6J Mouse Urinary Physiology. Toxicol Pathol 2019; 47:1038-1042. [PMID: 31662055 DOI: 10.1177/0192623319877867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The purpose of this symposium report is to summarize information from a session 3 oral presentation at the Society of Toxicologic Pathology Annual Symposium in Raleigh, North Carolina. Mice are genetically tractable and are likely to play an important role in elucidating environmental, genetic, and aging-related mechanisms of urinary dysfunction in men. We and others have made significant strides in developing quantitative methods for assessing mouse urinary function and our collaborators recently showed that aging male mice, like men, develop urinary dysfunction. Yet, it remains unclear how mouse prostate anatomy and histology relate to urinary function. The purpose of this report is to share foundational resources for evaluating mouse prostate histology and urinary physiology from our recent publication "Impact of Sex, Androgens, and Prostate Size on C57BL/6J Mouse Urinary Physiology: Functional Assessment." We will begin with a review of prostatic embryology in men and mice, then move to comparative histology resources, and conclude with quantitative measures of rodent urinary physiology.
Collapse
Affiliation(s)
- Hannah Ruetten
- Department of Comparative Biosciences, University of Wisconsin-Madison, WI, USA.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, and Boston, MA, USA
| | - Kyle A Wegner
- Department of Comparative Biosciences, University of Wisconsin-Madison, WI, USA.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, and Boston, MA, USA.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, WI, USA
| | - Helen L Zhang
- Department of Comparative Biosciences, University of Wisconsin-Madison, WI, USA.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, and Boston, MA, USA
| | - Peiqing Wang
- Department of Comparative Biosciences, University of Wisconsin-Madison, WI, USA.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, and Boston, MA, USA.,Department of Surgical Sciences, University of Wisconsin-Madison, WI, USA
| | - Jaskiran Sandhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, WI, USA.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, and Boston, MA, USA
| | - Simran Sandhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, WI, USA.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, and Boston, MA, USA
| | - Jacquelyn Morkrid
- Department of Comparative Biosciences, University of Wisconsin-Madison, WI, USA
| | - Brett Mueller
- Department of Comparative Biosciences, University of Wisconsin-Madison, WI, USA.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, and Boston, MA, USA
| | - Zunyi Wang
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, and Boston, MA, USA.,Department of Surgical Sciences, University of Wisconsin-Madison, WI, USA
| | - Jill Macoska
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, and Boston, MA, USA.,Center for Personalized Cancer Therapy, University of Massachusetts Boston, MA, USA
| | - Richard E Peterson
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, WI, USA
| | - Dale E Bjorling
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, and Boston, MA, USA.,Department of Surgical Sciences, University of Wisconsin-Madison, WI, USA
| | - William A Ricke
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, and Boston, MA, USA.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, WI, USA.,Department of Urology, University of Wisconsin-Madison, WI, USA
| | - Paul C Marker
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, and Boston, MA, USA.,Division of Pharmaceutical Sciences, University of Wisconsin-Madison, WI, USA
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, WI, USA.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, and Boston, MA, USA.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
24
|
Karakus S, Anele UA, Silva FH, Musicki B, Burnett AL. Urinary dysfunction in transgenic sickle cell mice: model of idiopathic overactive bladder syndrome. Am J Physiol Renal Physiol 2019; 317:F540-F546. [PMID: 31215803 DOI: 10.1152/ajprenal.00140.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Voiding abnormalities are common among the sickle cell disease (SCD) population, among which overactive bladder (OAB) syndrome is observed at rates as high as 39%. Although detrusor overactivity is the most common cause of OAB, its molecular pathophysiology is not well elucidated. The nitric oxide (NO) signaling pathway has been implicated in the regulation of lower genitourinary tract function. In the present study, we evaluated the role of the NO signaling pathway in voiding function of transgenic SCD mice compared with combined endothelial and neuronal NO synthase gene-deficient mice, both serving as models of NO deficiency. Mice underwent void spot assay and cystometry, and bladder and urethral specimens were studied using in vitro tissue myography. Both mouse models exhibited increased void volumes; increased nonvoiding and voiding contraction frequencies; decreased bladder compliance; increased detrusor smooth muscle contraction responses to electrical field stimulation, KCl, and carbachol; and increased urethral smooth muscle relaxation responses to sodium nitroprusside compared with WT mice. In conclusion, our comprehensive behavioral and functional study of the SCD mouse lower genitourinary tract, in correlation with that of the NO-deficient mouse, reveals NO effector actions in voiding function and suggests that NO signaling derangements are associated with an OAB phenotype. These findings may allow further study of molecular targets for the characterization and evaluation of OAB.
Collapse
Affiliation(s)
- Serkan Karakus
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Uzoma A Anele
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Urology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Fábio H Silva
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Hematology and Hemotherapy Center, University of Campinas, Campinas, São Paulo, Brazil
| | - Biljana Musicki
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Arthur L Burnett
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
Ruetten H, Wegner KA, Zhang HL, Wang P, Sandhu J, Sandhu S, Mueller B, Wang Z, Macoska J, Peterson RE, Bjorling DE, Ricke WA, Marker PC, Vezina CM. Impact of sex, androgens, and prostate size on C57BL/6J mouse urinary physiology: functional assessment. Am J Physiol Renal Physiol 2019; 317:F996-F1009. [PMID: 31390231 DOI: 10.1152/ajprenal.00270.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Laboratory mice are used to identify causes of urinary dysfunction including prostate-related mechanisms of lower urinary tract symptoms. Effective use of mice for this purpose requires a clear understanding of molecular, cellular, anatomic, and endocrine contributions to voiding function. Whether the prostate influences baseline voiding function has not been specifically evaluated, in part because most methods that alter prostate mass also change circulating testosterone concentrations. We performed void spot assay and cystometry to establish a multiparameter "baseline" of voiding function in intact male and female 9-wk-old (adult) C57BL/6J mice. We then compared voiding function in intact male mice to that of castrated male mice, male (and female) mice treated with the steroid 5α-reductase inhibitor finasteride, or male mice harboring alleles (Pbsn4cre/+; R26RDta/+) that significantly reduce prostate lobe mass by depleting prostatic luminal epithelial cells. We evaluated aging-related changes in male urinary voiding. We also treated intact male, castrate male, and female mice with exogenous testosterone to determine the influence of androgen on voiding function. The three methods used to reduce prostate mass (castration, finasteride, and Pbsn4cre/+; R26RDta/+) changed voiding function from baseline but in a nonuniform manner. Castration feminized some aspects of male urinary physiology (making them more like intact female mice) while exogenous testosterone masculinized some aspects of female urinary physiology (making them more like intact male mice). Our results provide evidence that circulating testosterone is responsible in part for baseline sex differences in C57BL/6J mouse voiding function while prostate lobe mass in young, healthy adult mice has a lesser influence.
Collapse
Affiliation(s)
- Hannah Ruetten
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Kyle A Wegner
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Helen L Zhang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Peiqing Wang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Boston, Massachusetts
| | - Jaskiran Sandhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Simran Sandhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Brett Mueller
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Zunyi Wang
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Boston, Massachusetts
| | - Jill Macoska
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Boston, Massachusetts
| | - Richard E Peterson
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Dale E Bjorling
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - William A Ricke
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Paul C Marker
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Boston, Massachusetts
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
26
|
Liu TT, Thomas S, Mclean DT, Roldan-Alzate A, Hernando D, Ricke EA, Ricke WA. Prostate enlargement and altered urinary function are part of the aging process. Aging (Albany NY) 2019; 11:2653-2669. [PMID: 31085797 PMCID: PMC6535061 DOI: 10.18632/aging.101938] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
Prostate disease incidence, both benign and malignant, directly correlates with age. Men under 40 years of age are rarely diagnosed with benign or malignant prostate disease, while 90% of men over the age of 80 have histological evidence of benign disease (benign prostatic hyperplasia; BPH). Although rodent models have been invaluable in the study of disease progression and treatment efficacy, the effect of age is often not considered. In examining aged (24-month-old) mice, we observed changes within the lower urinary tract that is typically associated with lower urinary tract dysfunction (LUTD) similar to models of BPH. In this study, we identify LUTD using functional testing as well as various imaging technologies. We also characterize the histological differences within the lower urinary tract between young (2-month-old) and aged mice including proliferation, stromal remodeling, and collagen deposition. Additionally, we examined serum steroid hormone levels, as steroid changes drive LUTD in mice and are known to change with age. We conclude that, with age, changes in prostate function, consistent with LUTD, are a consequence. Therapeutic targeting of endocrine and prostatic factors including smooth muscle function, prostate growth and fibrosis are likely to reestablish normal urinary function.
Collapse
Affiliation(s)
- Teresa T. Liu
- Department of Urology, University of Wisconsin – Madison, Madison, WI 53705, USA
- K12 Kure, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Samuel Thomas
- Molecular and Environmental Toxicology, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Dalton T. Mclean
- Department of Urology, University of Wisconsin – Madison, Madison, WI 53705, USA
- Cancer Biology, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Alejandro Roldan-Alzate
- K12 Kure, University of Wisconsin – Madison, Madison, WI 53706, USA
- Department of Mechanical Engineering, University of Wisconsin – Madison, Madison, WI 53706, USA
- Department of Radiology, University of Wisconsin – Madison, Madison, WI 53705, USA
| | - Diego Hernando
- Department of Radiology, University of Wisconsin – Madison, Madison, WI 53705, USA
- Department of Medical Physics, University of Wisconsin – Madison, Madison, WI 53705, USA
| | - Emily A. Ricke
- Department of Urology, University of Wisconsin – Madison, Madison, WI 53705, USA
| | - William A. Ricke
- Department of Urology, University of Wisconsin – Madison, Madison, WI 53705, USA
- George M. O’Brien Center of Research Excellence, University of Wisconsin – Madison, Madison, WI 53705, USA
| |
Collapse
|
27
|
Fashemi BE, Mysorekar IU. Reflections on the void: the art of micturition analysis. Am J Physiol Renal Physiol 2018; 315:F1446-F1448. [PMID: 30303715 DOI: 10.1152/ajprenal.00469.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Bisiayo E Fashemi
- Department of Obstetrics and Gynecology, Washington University School of Medicine , St. Louis, Missouri.,Center for Reproductive Health Sciences, Washington University School of Medicine , St. Louis, Missouri
| | - Indira U Mysorekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine , St. Louis, Missouri.,Center for Reproductive Health Sciences, Washington University School of Medicine , St. Louis, Missouri.,Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, Missouri
| |
Collapse
|
28
|
Hill WG, Zeidel ML, Bjorling DE, Vezina CM. Void spot assay: recommendations on the use of a simple micturition assay for mice. Am J Physiol Renal Physiol 2018; 315:F1422-F1429. [PMID: 30156116 DOI: 10.1152/ajprenal.00350.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Investigators have for decades used mouse voiding patterns as end points for studying behavioral biology. It is only recently that mouse voiding patterns were adopted for study of lower urinary tract physiology. The spontaneous void spot assay (VSA), a popular micturition assessment tool, involves placing a mouse in an enclosure lined by filter paper and quantifying the resulting urine spot pattern. The VSA has advantages of being inexpensive and noninvasive, but some investigators challenge its ability to distinguish lower urinary tract function from behavioral voiding. A consensus group of investigators who regularly use the VSA was established by the National Institutes of Health in 2015 to address the strengths and weaknesses of the assay, determine whether it can be standardized across laboratories, and determine whether it can be used as a surrogate for evaluating urinary function. Here we leverage experience from the consensus group to review the history of the VSA and its uses, summarize experiments to optimize assay design for urinary physiology assessment, and make best practice recommendations for performing the assay and analyzing its results.
Collapse
Affiliation(s)
- Warren G Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Mark L Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Dale E Bjorling
- Department of Surgical Sciences, University of Wisconsin-Madison , Madison, Wisconsin.,University of Wisconsin-Madison/University of Massachusetts-Boston, George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin and Boston, Massachusetts
| | - Chad M Vezina
- University of Wisconsin-Madison/University of Massachusetts-Boston, George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin and Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
29
|
Wegner KA, Abler LL, Oakes SR, Mehta GS, Ritter KE, Hill WG, Zwaans BM, Lamb LE, Wang Z, Bjorling DE, Ricke WA, Macoska J, Marker PC, Southard-Smith EM, Eliceiri KW, Vezina CM. Void spot assay procedural optimization and software for rapid and objective quantification of rodent voiding function, including overlapping urine spots. Am J Physiol Renal Physiol 2018; 315:F1067-F1080. [PMID: 29972322 DOI: 10.1152/ajprenal.00245.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mouse urinary behavior is quantifiable and is used to pinpoint mechanisms of voiding dysfunction and evaluate potential human therapies. Approaches to evaluate mouse urinary function vary widely among laboratories, however, complicating cross-study comparisons. Here, we describe development and multi-institutional validation of a new tool for objective, consistent, and rapid analysis of mouse void spot assay (VSA) data. Void Whizzard is a freely available software plugin for FIJI (a distribution of ImageJ) that facilitates VSA image batch processing and data extraction. We describe its features, demonstrate them by evaluating how specific VSA method parameters influence voiding behavior, and establish Void Whizzard as an expedited method for VSA analysis. This study includes control and obese diabetic mice as models of urinary dysfunction to increase rigor and ensure relevance across distinct voiding patterns. In particular, we show that Void Whizzard is an effective tool for quantifying nonconcentric overlapping void spots, which commonly confound analyses. We also show that mouse genetics are consistently more influential than assay design parameters when it comes to VSA outcomes. None of the following procedural modifications to reduce overlapping spots masked these genetic-related differences: reduction of VSA testing duration, water access during the assay period, placement of a wire mesh cage bottom on top of or elevated over the filter paper, treatment of mesh with a hydrophobic spray, and size of wire mesh opening. The Void Whizzard software and rigorous validation of VSA methodological parameters described here advance the goal of standardizing mouse urinary phenotyping for comprehensive urinary phenome analyses.
Collapse
Affiliation(s)
- Kyle A Wegner
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison , Madison, Wisconsin
| | - Lisa L Abler
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - Steven R Oakes
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - Guneet S Mehta
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - K Elaine Ritter
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University , Nashville, Tennessee
| | - Warren G Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Bernadette M Zwaans
- Department of Urology, Beaumont Health System, Royal Oak, Michigan.,Department of Surgical Sciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - Laura E Lamb
- Department of Urology, Beaumont Health System, Royal Oak, Michigan.,Oakland University William Beaumont School of Medicine, Auburn Hills, Michigan
| | - Zunyi Wang
- Oakland University William Beaumont School of Medicine, Auburn Hills, Michigan
| | - Dale E Bjorling
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Surgical Sciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - William A Ricke
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Urology, University of Wisconsin-Madison , Madison, Wisconsin
| | - Jill Macoska
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Biology, University of Massachusetts Boston , Boston, Massachusetts
| | - Paul C Marker
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Division of Pharmaceutical Sciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University , Nashville, Tennessee
| | - Kevin W Eliceiri
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - Chad M Vezina
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
30
|
Sidler M, Aitken KJ, Forward S, Vitkin A, Bagli DJ. Non-invasive voiding assessment in conscious mice. Bladder (San Franc) 2018; 5:e33. [PMID: 32775475 PMCID: PMC7401987 DOI: 10.14440/bladder.2018.582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/15/2017] [Accepted: 01/22/2017] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To review available options of assessing murine bladder function and to evaluate a non-invasive technique suitable for long-term recording. METHODS We reviewed previously described methods to record rodent bladder function. We used modified metabolic cages to capture novel recording tracings of mouse micturition. We evaluated our method in a pilot study with female mice undergoing partial bladder outlet obstruction or sham operation, respectively; half of the partial obstruction and sham group received treatment with an S6K-inhibitor, targeting the mTOR pathway, which is known to be implicated in bladder response to obstruction. RESULTS Our non-invasive method using continuous urine weight recording reliably detected changes in murine bladder function resulting from partial bladder outlet obstruction or treatment with S6K-inhibitor. We found obstruction as well as treatment with S6K-inhibitor to correlate with a hyperactive voiding pattern. CONCLUSIONS While invasive methods to assess murine bladder function largely disturb bladder histology and intrinsically render post-cystometry gene expression analysis of questionable value, continuous urine weight recording is a reliable, inexpensive, and critically non-invasive method to assess murine bladder function, suitable for a long-term application.
Collapse
Affiliation(s)
- Martin Sidler
- The Hospital for Sick Children, Research Institute, Developmental and Stem Cell Biology, Toronto, Canada.,The Hospital for Sick Children, Pediatric Urology, Toronto, Canada.,Institute of Medical Science, University of Toronto, Canada.,Neonatal and Paediatric Surgery, Great Ormond Street Hospital, London, UK
| | - Karen J Aitken
- The Hospital for Sick Children, Research Institute, Developmental and Stem Cell Biology, Toronto, Canada
| | - Sarah Forward
- Department of Medical Biophysics, University of Toronto, Canada
| | - Alex Vitkin
- Department of Medical Biophysics, University of Toronto, Canada
| | - Darius J Bagli
- The Hospital for Sick Children, Research Institute, Developmental and Stem Cell Biology, Toronto, Canada.,The Hospital for Sick Children, Pediatric Urology, Toronto, Canada.,Institute of Medical Science, University of Toronto, Canada
| |
Collapse
|
31
|
Wang W, Bo Q, Du J, Yu X, Zhu K, Cui J, Zhao H, Wang Y, Shi B, Zhu Y. Endogenous H 2S sensitizes PAR4-induced bladder pain. Am J Physiol Renal Physiol 2018; 314:F1077-F1086. [PMID: 29357418 DOI: 10.1152/ajprenal.00526.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bladder pain is a prominent symptom of interstitial cystitis/painful bladder syndrome. Hydrogen sulfide (H2S) generated by cystathionine β-synthase (CBS) or cystathionine γ-lyase (CSE) facilitates bladder hypersensitivity. We assessed involvement of the H2S pathway in protease-activated receptor 4 (PAR4)-induced bladder pain. A bladder pain model was induced by intravesical instillation of PAR4-activating peptide in mice. The role of H2S in this model was evaluated by intraperitoneal preadministration of d,l-propargylglycine (PAG), aminooxyacetic acid (AOAA), or S-adenosylmethionine or the preintravesical administration of NaHS. SV-HUC-1 cells were treated in similar manners. Assessments of CBS, CSE, and macrophage migration inhibitory factor (MIF) expression, bladder voiding function, bladder inflammation, H2S production, and referred bladder pain were performed. The CSE and CBS pathways existed in both mouse bladders and SV-HUC-1 cells. H2S signaling was upregulated in PAR4-induced bladder pain models, and H2S-generating enzyme activity was upregulated in human bladders, mouse bladders, and SV-HUC-1 cells. Pretreatment with AOAA or NaHS inhibited or promoted PAR4-induced mechanical hyperalgesia, respectively; however, PAG only partially inhibited PAR4-induced bladder pain. Treatment with PAG or AOAA decreased H2S production in both mouse bladders and SV-HUC-1 cells. Pretreatment with AOAA increased MIF protein levels in bladder tissues and cells, whereas pretreatment with NaHS lowered MIF protein levels. Bladder pain triggered by the H2S pathway was not accompanied by inflammation or altered micturition behavior. Thus endogenous H2S generated by CBS or CSE caused referred hyperalgesia mediated through MIF in mice with PAR4-induced bladder pain, without causing bladder injury or altering micturition behavior.
Collapse
Affiliation(s)
- Wenfu Wang
- Department of Urology, Qilu Hospital of Shandong University , Jinan , China
| | - Qiyu Bo
- Department of First Operation Room, Qilu Hospital of Shandong University , Jinan , China
| | - Jian Du
- Department of Urology, Qilu Hospital of Shandong University , Jinan , China
| | - Xin Yu
- Department of Physiology, Shandong University School of Physiology , Jinan , China
| | - Kejia Zhu
- Department of Urology, Qilu Hospital of Shandong University , Jinan , China
| | - Jianfeng Cui
- Department of Urology, Qilu Hospital of Shandong University , Jinan , China
| | - Hongda Zhao
- Department of Urology, Qilu Hospital of Shandong University , Jinan , China
| | - Yong Wang
- Department of Urology, Qilu Hospital of Shandong University , Jinan , China
| | - Benkang Shi
- Department of Urology, Qilu Hospital of Shandong University , Jinan , China
| | - Yaofeng Zhu
- Department of Urology, Qilu Hospital of Shandong University , Jinan , China
| |
Collapse
|
32
|
Ritter KE, Wang Z, Vezina CM, Bjorling DE, Southard-Smith EM. Serotonin Receptor 5-HT3A Affects Development of Bladder Innervation and Urinary Bladder Function. Front Neurosci 2017; 11:690. [PMID: 29311772 PMCID: PMC5732969 DOI: 10.3389/fnins.2017.00690] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/23/2017] [Indexed: 02/06/2023] Open
Abstract
The autonomic and sensory nervous systems are required for proper function of all visceral organs, including the lower urinary tract (LUT). Despite the wide prevalence of bladder dysfunction, effective treatment options remain limited. Pelvic innervation regenerative strategies are promising, but surprisingly little is known about the molecular factors driving the development of bladder innervation. Given prior evidence that serotonin receptor 5-HT3A is expressed early in LUT development and is an important mediator of adult bladder function, we sought to determine if 5-HT3A is required for the development of autonomic innervation of the bladder. We found that 5-HT3A is expressed early in fetal mouse pelvic ganglia and is maintained through adulthood. Htr3a knockout male mice, but not females, exhibit increased urinary voiding frequency compared to wild type littermates. Analysis of LUT function via anesthetized cystometry revealed decreased voiding efficiency in male Htr3a mutants. Htr3a-/- mutant animals exhibit a transient disturbance of autonomic neuronal subtype markers (tyrosine hydroxylase and choline acetyl transferase) within the fetal pelvic ganglia, although the imbalance of neuronal subtype markers assayed is no longer apparent in adulthood. Loss of 5-HT3A activity results in a higher density of autonomic and sensory neuronal fibers supplying bladder smooth muscle in both fetal and adult mice. Collectively, our findings highlight 5-HT3A as a critical component in the autonomic control of micturition and identify a novel role for this serotonin receptor in peripheral nervous system development.
Collapse
Affiliation(s)
- K. Elaine Ritter
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Zunyi Wang
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Chad M. Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Dale E. Bjorling
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - E. Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
33
|
Chen H, Zhang L, Hill WG, Yu W. Evaluating the voiding spot assay in mice: a simple method with complex environmental interactions. Am J Physiol Renal Physiol 2017; 313:F1274-F1280. [PMID: 28835420 DOI: 10.1152/ajprenal.00318.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 11/22/2022] Open
Abstract
The voiding spot assay (VSA) on filter paper is an increasingly popular method for studying lower urinary tract physiology in mice. However, the ways VSAs are performed differ significantly between laboratories, and many variables are introduced compared with the mouse's normal housing situation. Rodents are intelligent social animals, and it is increasingly understood that social and environmental stresses have significant effects on their physiology. Surprisingly, little is known about whether change of environment during VSA affects mouse voiding and what the best methodologies are for retaining "natural" micturition patterns. It is well known that stress-related neuropeptide corticotropin-releasing factor is significantly elevated and induces dramatic voiding changes when rodents encounter stresses. Therefore we hypothesized that changes in the environmental situation could potentially alter voiding during VSA. We have examined multiple factors to test whether they affect female mouse voiding patterns during VSA, including cage type, cage floor, water availability, water bottle location, single or group housing, and different handlers. Our results indicate that mice are surprisingly sensitive to changes in cage type and floor surface, water bottle location, and single/group housing, each of which induces significant changes in voiding patterns, indicative of a stress response. In contrast, neither changing handler nor 4 h of water deprivation affected voiding patterns. Our data indicate that VSA should be performed under conditions as close as possible to the mouse's normal housing. Optimizing VSA methodology will be useful in uncovering voiding alterations in both genetic and disease models of lower urinary dysfunctions.
Collapse
Affiliation(s)
- Huan Chen
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Lanlan Zhang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Warren G Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
34
|
Ricke WA, Lee CW, Clapper TR, Schneider AJ, Moore RW, Keil KP, Abler LL, Wynder JL, López Alvarado A, Beaubrun I, Vo J, Bauman TM, Ricke EA, Peterson RE, Vezina CM. In Utero and Lactational TCDD Exposure Increases Susceptibility to Lower Urinary Tract Dysfunction in Adulthood. Toxicol Sci 2016; 150:429-40. [PMID: 26865671 DOI: 10.1093/toxsci/kfw009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Benign prostatic hyperplasia, prostate cancer, and changes in the ratio of circulating testosterone and estradiol often occur concurrently in aging men and can lead to lower urinary tract (LUT) dysfunction. To explore the possibility of a fetal basis for the development of LUT dysfunction in adulthood, Tg(CMV-cre);Nkx3-1(+/-);Pten(fl/+) mice, which are genetically predisposed to prostate neoplasia, were exposedin uteroand during lactation to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, 1 μg/kg po) or corn oil vehicle (5 ml/kg) after a single maternal dose on 13 days post coitus, and subsequently were aged without further manipulation, or at 8 weeks of age were exposed to exogenous 17 β-estradiol (2.5 mg) and testosterone (25 mg) (T+E2) via slow release subcutaneous implants.In uteroand lactational (IUL) TCDD exposure in the absence of exogenous hormone treatment reduced voiding pressure in adult mice, but otherwise had little effect on mouse LUT anatomy or function. By comparison, IUL TCDD exposure followed by exogenous hormone treatment increased relative kidney, bladder, dorsolateral prostate, and seminal vesicle weights, hydronephrosis incidence, and prostate epithelial cell proliferation, thickened prostate periductal smooth muscle, and altered prostate and bladder collagen fiber distribution. We propose a 2-hit model whereby IUL TCDD exposure sensitizes mice to exogenous-hormone-induced urinary tract dysfunction later in life.
Collapse
Affiliation(s)
- William A Ricke
- *Molecular and Environmental Toxicology Center; Department of Urology; University of Wisconsin Carbone Cancer Center; George M. O'Brien Benign Urology Center of Research Excellence
| | | | | | | | | | - Kimberly P Keil
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Lisa L Abler
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | | | | | | | - Jenny Vo
- *Molecular and Environmental Toxicology Center
| | | | | | - Richard E Peterson
- *Molecular and Environmental Toxicology Center; University of Wisconsin Carbone Cancer Center; School of Pharmacy; and
| | - Chad M Vezina
- *Molecular and Environmental Toxicology Center; Department of Urology; University of Wisconsin Carbone Cancer Center; George M. O'Brien Benign Urology Center of Research Excellence; School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
35
|
Bjorling DE, Wang Z, Vezina CM, Ricke WA, Keil KP, Yu W, Guo L, Zeidel ML, Hill WG. Evaluation of voiding assays in mice: impact of genetic strains and sex. Am J Physiol Renal Physiol 2015; 308:F1369-78. [PMID: 25904700 DOI: 10.1152/ajprenal.00072.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/20/2015] [Indexed: 11/22/2022] Open
Abstract
Void spot assays (VSA) and cystometry are two of the most common tests performed in mice to assess lower urinary tract function. Assay protocols and methodology vary greatly among laboratories, and little is known about reproducibility of results generated by different laboratories. We performed VSA in four mouse strains, comparing males with females and comparing results between two independent laboratories. Unique aspects of the current study include direct comparison of results of VSA performed in a similar manner in two locations and comparison of cystometry performed using two different rates of infusion in these two laboratories. Both assays were performed in male and female 129S1/SvImJ, C57BL/6J, NOD/ShiLtJ, and CAST/EiJ mice, and cystometry was performed under urethane anesthesia (10/group). Assays were performed and results analyzed as previously described. Results obtained in female mice were compared with previously reported values. Results of lower urinary tract function testing in mice vary in a consistent manner with strain and sex. Variables in husbandry, testing techniques, and analysis of results can significantly affect conclusions, particularly those obtained by cystometry. Although VSA results were remarkably similar between the two laboratories, consistent methods for performing lower urinary tract function testing in mice are required to compare results among studies with confidence.
Collapse
Affiliation(s)
- Dale E Bjorling
- School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin; Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; University of Wisconsin O'Brien Urology Research Center, Madison, Wisconsin; and
| | - Zunyi Wang
- School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin; University of Wisconsin O'Brien Urology Research Center, Madison, Wisconsin; and
| | - Chad M Vezina
- School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin; University of Wisconsin O'Brien Urology Research Center, Madison, Wisconsin; and
| | - William A Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; University of Wisconsin O'Brien Urology Research Center, Madison, Wisconsin; and
| | - Kimberly P Keil
- School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin
| | - Weiqun Yu
- Laboratory of Voiding Dysfunction, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Lianyu Guo
- Laboratory of Voiding Dysfunction, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Mark L Zeidel
- Laboratory of Voiding Dysfunction, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Warren G Hill
- Laboratory of Voiding Dysfunction, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
36
|
Keil KP, Abler LL, Altmann HM, Wang Z, Wang P, Ricke WA, Bjorling DE, Vezina CM. Impact of a folic acid-enriched diet on urinary tract function in mice treated with testosterone and estradiol. Am J Physiol Renal Physiol 2015; 308:F1431-43. [PMID: 25855514 DOI: 10.1152/ajprenal.00674.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/02/2015] [Indexed: 01/21/2023] Open
Abstract
Aging men are susceptible to developing lower urinary tract symptoms, but the underlying etiology is unknown and the influence of dietary and environmental factors on them is unclear. We tested whether a folic acid-enriched diet changed urinary tract physiology and biology in control male mice and male mice with urinary dysfunction induced by exogenous testosterone and estradiol (T+E2), which mimics changing hormone levels in aging humans. T+E2 treatment increased mouse urine output, time between voiding events, and bladder capacity and compliance. Consumption of a folic acid-enriched diet moderated these changes without decreasing prostate wet weight or threshold voiding pressure. One potential mechanism for these changes involves water balance. T+E2 treatment increases plasma concentrations of anti-diuretic hormone, which is offset at least in part by a folic acid-enriched diet. Another potential mechanism involves neural control of micturition. The folic acid-enriched diet, fed to T+E2-treated mice, increased voiding frequency in response to intravesicular capsaicin infusion and increased mRNA abundance of the capsaicin-sensitive cation channel transient receptor potential vanilloid subfamily member 1 (Trpv1) in L6 and S1 dorsal root ganglia (DRG) neurons. T+E2 treatment and a folic acid-enriched diet also modified DNA methylation, which is capable of altering gene expression. We found the enriched diet increased global DNA methylation in dorsal and ventral prostate and L6 and S1 DRG. Our results are consistent with folic acid acting to slow or reverse T+E2-mediated alteration in urinary function in part by normalizing water balance and enhancing or preserving afferent neuronal function.
Collapse
Affiliation(s)
- Kimberly P Keil
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lisa L Abler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Helene M Altmann
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Zunyi Wang
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Peiqing Wang
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - William A Ricke
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin; Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin; and George M. O'Brien Center of Benign Urology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Dale E Bjorling
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin; Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin; George M. O'Brien Center of Benign Urology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin; Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin; and George M. O'Brien Center of Benign Urology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|