1
|
Krueger F, Aigner CS, Lutz M, Riemann LT, Degenhardt K, Hadjikiriakos K, Zimmermann FF, Hammernik K, Schulz‐Menger J, Schaeffter T, Schmitter S. Deep learning-based whole-brain B 1 +-mapping at 7T. Magn Reson Med 2025; 93:1700-1711. [PMID: 39462473 PMCID: PMC11782730 DOI: 10.1002/mrm.30359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/17/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
PURPOSE This study investigates the feasibility of using complex-valued neural networks (NNs) to estimate quantitative transmit magnetic RF field (B1 +) maps from multi-slice localizer scans with different slice orientations in the human head at 7T, aiming to accelerate subject-specific B1 +-calibration using parallel transmission (pTx). METHODS Datasets containing channel-wise B1 +-maps and corresponding multi-slice localizers were acquired in axial, sagittal, and coronal orientation in 15 healthy subjects utilizing an eight-channel pTx transceiver head coil. Training included five-fold cross-validation for four network configurations:NN cx tra $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{tra}} $$ used transversal,NN cx sag $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{sag}} $$ sagittal,NN cx cor $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{cor}} $$ coronal data, andNN cx all $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{all}} $$ was trained on all slice orientations. The resulting maps were compared to B1 +-reference scans using different quality metrics. The proposed network was applied in-vivo at 7T in two unseen test subjects using dynamic kt-point pulses. RESULTS Predicted B1 +-maps demonstrated a high similarity with measured B1 +-maps across multiple orientations. The estimation matched the reference with a mean relative error in the magnitude of (2.70 ± 2.86)% and mean absolute phase difference of (6.70 ± 1.99)° for transversal, (1.82 ± 0.69)% and (4.25 ± 1.62)° for sagittal (NN cx sag $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{sag}} $$ ), as well as (1.33 ± 0.27)% and (2.66 ± 0.60)° for coronal slices (NN cx cor $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{cor}} $$ ) considering brain tissue.NN cx all $$ {\mathrm{NN}}_{\mathrm{cx}}^{\mathrm{all}} $$ trained on all orientations enables a robust prediction of B1 +-maps across different orientations. Achieving a homogenous excitation over the whole brain for an in-vivo application displayed the approach's feasibility. CONCLUSION This study demonstrates the feasibility of utilizing complex-valued NNs to estimate multi-slice B1 +-maps in different slice orientations from localizer scans in the human brain at 7T.
Collapse
Affiliation(s)
- Felix Krueger
- Physikalisch‐Technische BundesanstaltBerlinGermany
- Einstein Centre Digital FutureTechnische Universität Berlin, Biomedical EngineeringBerlinGermany
| | | | - Max Lutz
- Physikalisch‐Technische BundesanstaltBerlinGermany
| | - Layla Tabea Riemann
- Physikalisch‐Technische BundesanstaltBerlinGermany
- Institute for Applied Medical Informatics, Center for Experimental MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | | | | | - Kerstin Hammernik
- School of Computation, Information and TechnologyTechnical University of MunichMunichGermany
| | - Jeanette Schulz‐Menger
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinExperimental Clinical Research CenterBerlinGermany
- Working Group On CMR, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max‐Delbrueck Center for Molecular MedicineBerlinGermany
- DZHK (German Centre for Cardiovascular Research), partner site BerlinBerlinGermany
- Department of Cardiology and NephrologyHELIOS Hospital Berlin‐BuchBerlinGermany
| | - Tobias Schaeffter
- Physikalisch‐Technische BundesanstaltBerlinGermany
- Einstein Centre Digital FutureTechnische Universität Berlin, Biomedical EngineeringBerlinGermany
| | - Sebastian Schmitter
- Physikalisch‐Technische BundesanstaltBerlinGermany
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
- Medical Physics in RadiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
2
|
Soon SH, Li X, Waks M, Zhu XH, Wiesner HM, Gandji NP, Yang QX, Lanagan MT, Chen W. Large improvement in RF magnetic fields and imaging SNR with whole-head high-permittivity slurry helmet for human-brain MRI applications at 7 T. Magn Reson Med 2025; 93:1205-1219. [PMID: 39449244 DOI: 10.1002/mrm.30350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
PURPOSE To optimize the design and demonstrate the integration of a helmet-shaped container filled with a high-permittivity material (HPM) slurry with RF head coil arrays to improve RF coil sensitivity and SNR for human-brain proton MRI. METHODS RF reception magnetic fields (B 1 - $$ {\mathrm{B}}_1^{-} $$ ) of a 32-channel receive-only coil array with various geometries and permittivity values of HPM slurry helmet are calculated with electromagnetic simulation at 7 T. A 16-channel transmit-only coil array, a 32-channel receive-only coil array, and a 2-piece HPM slurry helmet were constructed and assembled. RF transmission magnetic field (B 1 + $$ {\mathrm{B}}_1^{+} $$ ),B 1 - $$ {\mathrm{B}}_1^{-} $$ , and MRI SNR maps from the entire human brain were measured and compared. RESULTS Simulations showed that averagedB 1 - $$ {\mathrm{B}}_1^{-} $$ improvement with the HPM slurry helmet increased from 57% to 87% as the relative permittivity (εr) of HPM slurry increased from 110 to 210. In vivo experiments showed that the averageB 1 + $$ {\mathrm{B}}_1^{+} $$ improvement over the human brain was 14.5% with the two-piece HPM slurry (εr ≈ 170) helmet, and the averageB 1 - $$ {\mathrm{B}}_1^{-} $$ and SNR were improved 63% and 34%, respectively, because the MRI noise level was increased by the lossy HPM. CONCLUSION The RF coil sensitivity and MRI SNR were largely improved with the two-piece HPM slurry helmet demonstrated by both electromagnetic simulations and in vivo human head experiments at 7 T. The findings demonstrate that incorporating an easily producible HPM slurry helmet into the RF coil array significantly enhances human-brain MRI SNR homogeneity and quality at ultrahigh field. Greater SNR improvement is anticipated using the less lossy HPM and optimal design.
Collapse
Affiliation(s)
- Soo Han Soon
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xin Li
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matt Waks
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiao-Hong Zhu
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hannes M Wiesner
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Navid P Gandji
- Center for NMR Research, Department of Neurosurgery and Radiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Qing X Yang
- Center for NMR Research, Department of Neurosurgery and Radiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Michael T Lanagan
- Department of Engineering Science and Mechanics, Pennsylvania State University, State College, Pennsylvania, USA
| | - Wei Chen
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Widmaier MS, Kaiser A, Baup S, Wenz D, Pierzchała K, Xiao Y, Huang Z, Jiang Y, Xin L. Fast 3D 31P B 1 + mapping with a weighted stack of spiral trajectory at 7 T. Magn Reson Med 2025; 93:481-489. [PMID: 39365949 PMCID: PMC11604843 DOI: 10.1002/mrm.30321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
PURPOSE Phosphorus MRS (31P MRS) enables noninvasive assessment of energy metabolism, yet its application is hindered by sensitivity limitations. To overcome this, often high magnetic fields are used, leading to challenges such as spatialB 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneity and therefore the need for accurate flip-angle determination in accelerated acquisitions with short TRs. In response to these challenges, we propose a novel short TR and look-up table-based double-angle method for fast 3D 31PB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping (fDAM). METHODS Our method incorporates 3D weighted stack-of-spiral gradient-echo acquisitions and a frequency-selective pulse to enable efficientB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping based on the phosphocreatine signal at 7 T. Protocols were optimized using simulations and validated through phantom experiments. The method was validated in the human brain using a 31P 1Ch-trasmit/32Ch-receive coil and skeletal muscle using a birdcage 1H/31P volume coil. RESULTS The results of fDAM were compared with the classical DAM. A good correlation (r = 0.95) was obtained between the twoB 1 + $$ {\mathrm{B}}_1^{+} $$ maps. A 3D 31PB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping in the human calf muscle was achieved in about 10:50 min using a birdcage volume coil, with a 20% extended coverage (number of voxels with SNR > 3) relative to that of the classical DAM (24 min). fDAM also enabled the first full-brain coverage 31P 3DB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping in approximately 10:15 min using a 1Ch-transmit/32Ch-receive coil. CONCLUSION fDAM is an efficient method for 31P 3DB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping, showing promise for future applications in rapid 31P MRSI.
Collapse
Affiliation(s)
- Mark Stephan Widmaier
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
- Laboratory of Functional and Metabolic ImagingEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| | - Antonia Kaiser
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| | - Salomé Baup
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| | - Daniel Wenz
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| | - Katarzyna Pierzchała
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| | - Ying Xiao
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
- Laboratory of Functional and Metabolic ImagingEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| | - Zhiwei Huang
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| | - Yun Jiang
- Department of RadiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Lijing Xin
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
- Institute of PhysicsEcole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
4
|
Alonso-Ortiz E, Papp D, Barry RL, Poëti K, Seifert AC, Gilbert KM, Lopez-Rios N, Paska J, Eippert F, Weiskopf N, Beghini L, Graedel N, Trampel R, Callaghan MF, Aigner CS, Freund P, Seif M, Destruel A, Callot V, Vannesjo J, Cohen-Adad J. Multi-center benchmarking of cervical spinal cord RF coils for 7 T MRI: A traveling spines study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632825. [PMID: 39868333 PMCID: PMC11761089 DOI: 10.1101/2025.01.13.632825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Purpose The depth within the body, small diameter, long length, and varying tissue surrounding the spinal cord impose specific considerations when designing radiofrequency coils. The optimal coil configuration for 7 T cervical spinal cord MRI is unknown and, currently, there are very few coil options. The purpose of this work was (1) to establish a quality control protocol for evaluating 7 T cervical spinal cord coils and (2) to use that protocol to evaluate the performance of 4 different coil designs. Methods Three healthy volunteers and a custom anthropomorphic phantom (the traveling spines cohort) were scanned at seven 7 T imaging centers using a common protocol and each center's specific cervical spinal cord coil. Four different coil designs were tested (two in-house, one Rapid Biomedical, and one MRI.TOOLS design). Results The Rapid Biomedical coil was found to have the highest B1 + efficiency, whereas one of the in-house designs (NeuroPoly Lab) had the highest SNR and the largest spinal cord coverage. The MRI.TOOLS coil had the most uniform B1 + profile along the cervical spinal cord; however, it was limited in its ability to provide the requested flip angles (especially for larger individuals). The latter was also the case for the second in-house coil (MSSM). Conclusion The results of this study serve as a guide for the spinal cord MRI community in selecting the most suitable coil based on specific requirements and offer a standardized protocol for assessing future coils.
Collapse
Affiliation(s)
- Eva Alonso-Ortiz
- NeuroPoly Lab, Department of Electrical Engineering, Polytechnique Montreal, Montreal
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Daniel Papp
- NeuroPoly Lab, Department of Electrical Engineering, Polytechnique Montreal, Montreal
| | - Robert L Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | | | - Alan C Seifert
- Biomedical Engineering and Imaging Institute, Department of Radiology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario Canada
| | - Nibardo Lopez-Rios
- NeuroPoly Lab, Department of Electrical Engineering, Polytechnique Montreal, Montreal
| | - Jan Paska
- NeuroPoly Lab, Department of Electrical Engineering, Polytechnique Montreal, Montreal
| | - Falk Eippert
- Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth System Sciences, Leipzig University, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, UK
| | - Laura Beghini
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nadine Graedel
- Functional Imaging Laboratory, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Martina F Callaghan
- Functional Imaging Laboratory, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London
| | - Christoph S Aigner
- Max Planck Research Group MR Physics, Max Planck Institute for Human Development, Berlin, Germany
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Patrick Freund
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Maryam Seif
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Aurélien Destruel
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Virginie Callot
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Johanna Vannesjo
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julien Cohen-Adad
- NeuroPoly Lab, Department of Electrical Engineering, Polytechnique Montreal, Montreal
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
| |
Collapse
|
5
|
Hirano Y, Ishizaka K, Sugimori H, Taniguchi Y, Amemiya T, Bito Y, Kudo K. Assessment of accuracy and repeatability of quantitative parameter mapping in MRI. Radiol Phys Technol 2024; 17:918-928. [PMID: 39198352 PMCID: PMC11579128 DOI: 10.1007/s12194-024-00836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024]
Abstract
We aimed to evaluate the accuracy and repeatability of the T1, T2*, and proton density (PD) values obtained by quantitative parameter mapping (QPM) using the ISMRM/NIST MRI system phantom and compared them with computer simulations. We compared the relaxation times and PD obtained through QPM with the reference values of the ISMRM/NIST MRI system phantom and conventional methods. Furthermore, we evaluated the presence or absence of influences other than noise in T1 and T2* values obtained by QPM by comparing the obtained coefficient of variation (CV) with simulation results. The T1, T2*, and PD values by QPM showed a strong correlation with the measured values and the referenced values. The simulated CVs of QPM calculated for each sphere showed similar trends to those of the actual scans.
Collapse
Affiliation(s)
- Yuya Hirano
- Department of Radiological Technology, Hokkaido University Hospital, N15, W7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Kinya Ishizaka
- Department of Radiological Technology, Hokkaido University Hospital, N15, W7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Hiroyuki Sugimori
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Clinical AI Human Resources Development Program, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8648, Japan
| | - Yo Taniguchi
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Tomoki Amemiya
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Yoshitaka Bito
- FUJIFILM Healthcare Corporation, Tokyo, Japan
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, N15, W7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Kohsuke Kudo
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, N15, W7, Kita-Ku, Sapporo, 060-8638, Japan.
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, N15, W7, Kita-Ku, Sapporo, 060-8638, Japan.
| |
Collapse
|
6
|
Lutz M, Aigner CS, Flassbeck S, Krueger F, Gatefait CGF, Kolbitsch C, Silemek B, Seifert F, Schaeffter T, Schmitter S. B1-MRF: Large dynamic range MRF-based absolute B 1 + mapping in the human body at 7T. Magn Reson Med 2024; 92:2473-2490. [PMID: 39133639 DOI: 10.1002/mrm.30242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/03/2024] [Accepted: 07/21/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE This study aims to map the transmit magnetic field (B 1 + $$ {B}_1^{+} $$ ) in the human body at 7T using MR fingerprinting (MRF), with a focus on achieving high accuracy and precision across a large dynamic range, particularly at low flip angles (FAs). METHODS A FLASH-based MRF sequence (B1-MRF) with highB 1 + $$ {B}_1^{+} $$ sensitivity was developed. Phantom and in vivo abdominal imaging were performed at 7T, and the results were compared with established reference methods, including a slow but precise preparation-based method (PEX), saturated TurboFLASH (satTFL), actual flip angle imaging (AFI) and Bloch-Siegert shift (BSS). RESULTS The MRF signal curve was highly sensitive toB 1 + $$ {B}_1^{+} $$ , while T1 sensitivity was comparatively low. The phantom experiment showed good agreement ofB 1 + $$ {B}_1^{+} $$ to PEX for a T1 range of 204-1691 ms evaluated at FAs from 0° to 70°. Compared to the references, a dynamic range increase larger than a factor of two was determined experimentally. In vivo liver scans showed a strong correlation between B1-MRF, satTFL, and RPE-AFI in a low body mass index (BMI) subject (18.1 kg/m2). However, in larger BMI subjects (≥25.5 kg/m2), inconsistencies were observed in lowB 1 + $$ {B}_1^{+} $$ regions for satTFL and RPE-AFI, while B1-MRF still provided consistent results in these regions. CONCLUSION B1-MRF provides accurate and preciseB 1 + $$ {B}_1^{+} $$ maps over a wide range of FAs, surpassing the capabilities of existing methods in the FA range < 60°. Its enhanced sensitivity at low FAs is advantageous for various applications requiring preciseB 1 + $$ {B}_1^{+} $$ estimates, potentially advancing the frontiers of ultra-high field (UHF) body imaging at 7T and beyond.
Collapse
Affiliation(s)
- Max Lutz
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | | | - Sebastian Flassbeck
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Felix Krueger
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | | | | | - Berk Silemek
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
- Department of Biomedical Engineering, Technical University of Berlin, Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
7
|
Iyyakkunnel S, Weigel M, Bieri O. Fast bias-corrected conductivity mapping using stimulated echoes. MAGMA (NEW YORK, N.Y.) 2024; 37:1047-1057. [PMID: 39105952 PMCID: PMC11582100 DOI: 10.1007/s10334-024-01194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVE To demonstrate the potential of a double angle stimulated echo (DA-STE) method for fast and accurate "full" homogeneous Helmholtz-based electrical properties tomography using a simultaneous B 1 + magnitude and transceive phase measurement. METHODS The combination of a spin and stimulated echo can be used to yield an estimate of both B 1 + magnitude and transceive phase and thus provides the means for "full" EPT reconstruction. An interleaved 2D acquisition scheme is used for rapid acquisition. The method was validated in a saline phantom and compared to a double angle method based on two single gradient echo acquisitions (GRE-DAM). The method was evaluated in the brain of a healthy volunteer. RESULTS The B 1 + magnitude obtained with DA-STE showed excellent agreement with the GRE-DAM method. Conductivity values based on the "full" EPT reconstruction also agreed well with the expectations in the saline phantom. In the brain, the method delivered conductivity values close to literature values. DISCUSSION The method allows the use of the "full" Helmholtz-based EPT reconstruction without the need for additional measurements. As a result, quantitative conductivity values are improved compared to phase-based EPT reconstructions. DA-STE is a fast complex- B 1 + mapping technique that could render EPT clinically relevant at 3 T.
Collapse
Affiliation(s)
- Santhosh Iyyakkunnel
- Division of Radiological Physics, Department of Radiology , University Hospital Basel, Basel, Switzerland.
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland.
| | - Matthias Weigel
- Division of Radiological Physics, Department of Radiology , University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology , University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Šiurytė P, Tourais J, Zhang Y, Coletti C, van de Steeg-Henzen C, Mandija S, Tao Q, Henningsson M, Weingärtner S. Preparation-based B 1 + mapping in the heart using Bloch-Siegert shifts. Magn Reson Med 2024; 92:2596-2606. [PMID: 39044620 DOI: 10.1002/mrm.30232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE To develop and evaluate a robust cardiacB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping sequence at 3 T, using Bloch-Siegert shift (BSS)-based preparations. METHODS A longitudinal magnetization preparation module was designed to encode| B 1 + | $$ \mid {\mathrm{B}}_1^{+}\mid $$ . After magnetization tip-down, off-resonant Fermi pulses, placed symmetrically around two refocusing pulses, induced BSS, followed by tipping back of the magnetization. Bloch simulations were used to optimize refocusing pulse parameters and to assess the mapping sensitivity. Relaxation-inducedB 1 + $$ {\mathrm{B}}_1^{+} $$ error was simulated for variousT 1 $$ {\mathrm{T}}_1 $$ /T 2 $$ {\mathrm{T}}_2 $$ times. The effective mapping range was determined in phantom experiments, and| B 1 + | $$ \mid {\mathrm{B}}_1^{+}\mid $$ maps were compared to the conventional BSS method and subadiabatic hyperbolic-secant 8 (HS8) pulse-sensitized method. CardiacB 1 + $$ {\mathrm{B}}_1^{+} $$ maps were acquired in healthy subjects, and evaluated for repeatability and imaging plane intersection consistency. The technique was modified for three-dimensional (3D) acquisition of the whole heart in a single breath-hold, and compared to two-dimensional (2D) acquisition. RESULTS Simulations indicate that the proposed preparation can be tailored to achieve high mapping sensitivity across variousB 1 + $$ {\mathrm{B}}_1^{+} $$ ranges, with maximum sensitivity at the upperB 1 + $$ {\mathrm{B}}_1^{+} $$ range.T 1 $$ {\mathrm{T}}_1 $$ /T 2 $$ {\mathrm{T}}_2 $$ -induced bias did not exceed 5.2% $$ \% $$ . Experimentally reproducedB 1 + $$ {\mathrm{B}}_1^{+} $$ sensitization closely matched simulations forB 1 + ≥ 0 . 3 B 1 , max + $$ {\mathrm{B}}_1^{+}\ge 0.3{\mathrm{B}}_{1,\max}^{+} $$ (mean difference 0.031± $$ \pm $$ 0.022, compared to 0.018± $$ \pm $$ 0.025 in the HS8-sensitized method), and showed 20-fold reduction in the standard deviation of repeated scans, compared with conventional BSSB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping, and an equivalent 2-fold reduction compared with HS8-sensitization. Robust cardiacB 1 + $$ {\mathrm{B}}_1^{+} $$ map quality was obtained, with an average test-retest variability of 0.027± $$ \pm $$ 0.043 relative to normalizedB 1 + $$ {\mathrm{B}}_1^{+} $$ magnitude, and plane intersection bias of 0.052± $$ \pm $$ 0.031. 3D acquisitions showed good agreement with 2D scans (mean absolute deviation 0.055± $$ \pm $$ 0.061). CONCLUSION BSS-based preparations enable robust and tailorable 2D/3D cardiacB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping at 3 T in a single breath-hold.
Collapse
Affiliation(s)
- Paulina Šiurytė
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Joao Tourais
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Yi Zhang
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Chiara Coletti
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | | | - Stefano Mandija
- Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Qian Tao
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Markus Henningsson
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Sebastian Weingärtner
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
- HollandPTC, Delft, The Netherlands
| |
Collapse
|
9
|
Egger N, Nagelstraßer S, Wildenberg S, Bitz A, Ruck L, Herrler J, Meixner CR, Kimmlingen R, Lanz T, Schmitter S, Uder M, Nagel AM. Accelerated B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping and robust parallel transmit pulse design for heart and prostate imaging at 7 T. Magn Reson Med 2024; 92:1933-1951. [PMID: 38888143 DOI: 10.1002/mrm.30185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE To investigate the impact of reduced k-space sampling onB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping and the resulting impact on phase shimming and dynamic/universal parallel transmit (pTx) RF pulse design. METHODS Channel-wise 3DB 1 + $$ {\mathrm{B}}_1^{+} $$ maps were measured at 7 T in 35 and 23 healthy subjects for the heart and prostate region, respectively. With theseB 1 + $$ {\mathrm{B}}_1^{+} $$ maps, universal phase shims optimizing homogeneity andB 1 + $$ {\mathrm{B}}_1^{+} $$ efficiency were designed for heart and prostate imaging. In addition, universal 4kT-point pulses were designed for the heart. Subsequently, individual phase shims and individual 4kT-pulses were designed based onB 1 + $$ {\mathrm{B}}_1^{+} $$ maps with different acceleration factors and tested on the original maps. The performance of the pulses was compared by evaluating their coefficients of variation (CoV),B 1 + $$ {\mathrm{B}}_1^{+} $$ efficiencies and specific energy doses (SED). Furthermore, validation measurements were carried out for one heart and one prostate subject. RESULTS For both organs, the universal phase shims showed significantly higherB 1 + $$ {\mathrm{B}}_1^{+} $$ efficiencies and lower CoVs compared to the vendor provided default shim, but could still be improved with individual phase shims based on acceleratedB 1 + $$ {\mathrm{B}}_1^{+} $$ maps (acquisition time = 30 s). In the heart, the universal 4kT-pulse achieved significantly lower CoVs than tailored phase shims. Tailored 4kT-pulses based on acceleratedB 1 + $$ {\mathrm{B}}_1^{+} $$ maps resulted in even further reduced CoVs or a 2.5-fold reduction in SED at the same CoVs as the universal 4kT-pulse. CONCLUSION AcceleratedB 1 + $$ {\mathrm{B}}_1^{+} $$ maps can be used for the design of tailored pTx pulses for prostate and cardiac imaging at 7 T, which further improve homogeneity,B 1 + $$ {\mathrm{B}}_1^{+} $$ efficiency, or SED compared to universal pulses.
Collapse
Affiliation(s)
- Nico Egger
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sophia Nagelstraßer
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Saskia Wildenberg
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Electrical Engineering and Information Technology, University of Applied Sciences - FH Aachen, Aachen, Germany
| | - Andreas Bitz
- Electrical Engineering and Information Technology, University of Applied Sciences - FH Aachen, Aachen, Germany
| | - Laurent Ruck
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | | | | | | | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin Michael Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Pohmann R, Avdievich NI, Scheffler K. Signal-to-noise ratio versus field strength for small surface coils. NMR IN BIOMEDICINE 2024; 37:e5168. [PMID: 38716493 DOI: 10.1002/nbm.5168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 10/12/2024]
Abstract
The increasing signal-to-noise ratio (SNR) is the main reason to use ultrahigh field MRI. Here, we investigate the dependence of the SNR on the magnetic field strength, especially for small animal applications, where small surface coils are used and coil noise cannot be ignored. Measurements were performed at five field strengths from 3 to 14.1 T, using 2.2-cm surface coils with an identical coil design for transmit and receive on two water samples with and without salt. SNR was measured in a series of spoiled gradient echo images with varying flip angle and corrected for saturation based on a series of flip angle and T1 measurements. Furthermore, the noise figure of the receive chain was determined and eliminated to remove instrument dependence. Finally, the coil sensitivity was determined based on the principle of reciprocity to obtain a measure for ultimate SNR. Before coil sensitivity correction, the SNR increase in nonconductive samples is highly supralinear with B0 1.6-2.7, depending on distance to the coil, while in the conductive sample, the growth is smaller, being around linear close to the surface coil and increasing up to a B0 2.0 dependence when moving away from the coil. After sensitivity correction, the SNR increase is independent of loading with B0 2.1. This study confirms the supralinear increase of SNR with increasing field strengths. Compared with most human measurements with larger coil sizes, smaller surface coils, as mainly used in animal studies, have a higher contribution of coil noise and thus a different behavior of SNR at high fields.
Collapse
Affiliation(s)
- Rolf Pohmann
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Nikolai I Avdievich
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Wang J, Gao Y, Xin SX. Using the Probability Density Function-Based Channel-Combination Bloch-Siegert Method Realizes Permittivity Imaging at 3T. Bioengineering (Basel) 2024; 11:699. [PMID: 39061781 PMCID: PMC11274052 DOI: 10.3390/bioengineering11070699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Magnetic resonance electrical properties tomography (MR EPT) can retrieve permittivity from the B1+ magnitude. However, the accuracy of the permittivity measurement using MR EPT is still not ideal due to the low signal-to-noise ratio (SNR) of B1+ magnitude. In this study, the probability density function (PDF)-based channel-combination Bloch-Siegert (BSS) method was firstly introduced to MR EPT for improving the accuracy of the permittivity measurement. MRI experiments were performed using a 3T scanner with an eight-channel receiver coil. The homogeneous water phantom was scanned for assessing the spatial distribution of B1+ magnitude obtained from the PDF-based channel-combination BSS method. Gadolinium (Gd) phantom and rats were scanned for assessing the feasibility of the PDF-based channel-combination BSS method in MR EPT. The Helmholtz-based EPT reconstruction algorithm was selected. For quantitative comparison, the permittivity measured by the open-ended coaxial probe method was considered as the ground-truth value. The accuracy of the permittivity measurement was estimated by the relative error between the reconstructed value and the ground-truth value. The reconstructed relative permittivity of Gd phantom was 52.413, while that of rat leg muscle was 54.053. The ground-truth values of relative permittivity of Gd phantom and rat leg muscle were 78.86 and 49.04, respectively. The relative error of average permittivity was 33.53% for Gd and 10.22% for rat leg muscle. The results indicated the high accuracy of the permittivity measurement using the PDF-based channel-combination BSS method in MR EPT. This improvement may promote the clinical application of MR EPT technology, such as in the early diagnosis of cancers.
Collapse
Affiliation(s)
| | | | - Sherman Xuegang Xin
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
12
|
Dudysheva N, Mauconduit F, Abdeddaim R, Gapais PF, Hosseinnezhadian S, Dubois M, Amadon A, Boulant N, Hertz-Pannier L, Vignaud A. The restricted SAR protocol: A method to assess MRI coil prototypes in an unconditionally safe manner. Magn Reson Med 2024; 91:1723-1734. [PMID: 38084471 DOI: 10.1002/mrm.29962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE Testing an RF coil prototype on subjects involves laborious verifications to ensure its safety. In particular, it requires preliminary electromagnetic simulations and their validations on phantoms to accurately predict the specific absorption rate (SAR). For coil design validation with a simpler safety procedure, the restricted SAR (rS) mode is proposed, enabling representative first experiments in vivo. The goal of the developed approach is to accelerate the transition of a custom coil system from prototype to clinical use. METHODS The restricted specific absorption rate (SAR) (rS) mode imposes a radical limitation on the transmitted RF power based on a worst-case scenario of local RF power absorption. The limitations used are independent of the SAR spatial distribution, making this approach unconditionally safe. The developed rS protocol contains the sequences required for coil evaluation and satisfies the imposed rS conditions. It provides a quantitative characterization of the coil transmission and reception profiles and a qualitative evaluation of the anatomical images. Protocol validation was performed on commercial and pre-industrial prototype coils on a small cohort of healthy volunteers. RESULTS The proposed rS protocol enables coil evaluation within an acquisition time compatible with common clinical protocol duration. The total time of all evaluation steps does not exceed 17 min. At the same time, the global SAR remains 100 times less than the International Electrotechnical Commission safety limit for played sequences. CONCLUSION The rS protocol allows characterizing and comparing coil prototypes on volunteers without extensive electromagnetic calculations and phantom validations in an unconditionally safe way.
Collapse
Affiliation(s)
- Natalia Dudysheva
- Paris-Saclay University, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
- Multiwave Imaging, Marseille, France
| | - Franck Mauconduit
- Paris-Saclay University, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Redha Abdeddaim
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Institut Marseille Imaging, Marseille, France
| | | | | | | | - Alexis Amadon
- Paris-Saclay University, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Nicolas Boulant
- Paris-Saclay University, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Lucie Hertz-Pannier
- Paris-Saclay University, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Alexandre Vignaud
- Paris-Saclay University, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| |
Collapse
|
13
|
Zampini MA, Sijbers J, Verhoye M, Garipov R. A preparation pulse for fast steady state approach in Actual Flip angle Imaging. Med Phys 2024; 51:306-318. [PMID: 37480220 DOI: 10.1002/mp.16624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Actual Flip angle Imaging (AFI) is a sequence used for B1 mapping, also embedded in the Variable flip angle with AFI for simultaneous estimation of T1 , B1 and equilibrium magnetization. PURPOSE To investigate the design of a preparation module for AFI to allow a fast approach to steady state (SS) without requiring the use of dummy acquisitions. METHODS The features of a preparation module with a B1 insensitive adiabatic pulse, spoiler gradients, and a recovery timeT r e c $T_{rec}$ were studied with simulations and validated via experiments and acquired with different k-space traveling strategies. The robustness of the flip angle of the preparation pulse on the acquired signal is studied. RESULTS When a 90° adiabatic pulse is used, the forthcomingT r e c $T_{rec}$ can be expressed as a function of repetition times and AFI flip angle only asTR 1 ( n + cos α ) / ( 1 - cos 2 α ) $\mathrm{TR_1}(n+\cos \alpha )/(1-\cos ^2\alpha )$ , where n represents the ratio between the two repetition times of AFI. The robustness of the method is demonstrated by showing that using the values further away from 90° still allows for a faster approach to SS than the use of dummy pulses. CONCLUSIONS The preparation module is particularly advantageous for low flip angles, as well as for AFI sequences that sample the center of the k-space early in the sequence, such as centric ordering acquisitions, and for ultrafast EPI-based AFI methods, thus allowing to reduce scanner overhead time.
Collapse
Affiliation(s)
- Marco Andrea Zampini
- MR Solutions Ltd., Ashbourne House, Guildford, Surrey, UK
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Belgium
| | - Jan Sijbers
- imec-Vision Lab, Department of Physics, University of Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Belgium
| | - Ruslan Garipov
- MR Solutions Ltd., Ashbourne House, Guildford, Surrey, UK
| |
Collapse
|
14
|
de Buck MHS, Kent JL, Jezzard P, Hess AT. Head-and-neck multichannel B1 + mapping and RF shimming of the carotid arteries using a 7T parallel-transmit head coil. Magn Reson Med 2024; 91:190-204. [PMID: 37794847 PMCID: PMC10962593 DOI: 10.1002/mrm.29845] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 10/06/2023]
Abstract
PURPOSE Neurovascular MRI suffers from a rapid drop in B1 + into the neck when using transmit head coils at 7 T. One solution to improving B1 + magnitude in the major feeding arteries in the neck is to use custom RF shims on parallel-transmit head coils. However, calculating such shims requires robust multichannel B1 + maps in both the head and the neck, which is challenging due to low RF penetration into the neck, limited dynamic range of multichannel B1 + mapping techniques, and B0 sensitivity. We therefore sought a robust, large-dynamic-range, parallel-transmit field mapping protocol and tested whether RF shimming can improve carotid artery B1 + magnitude in practice. METHODS A pipeline is presented that combines B1 + mapping data acquired using circularly polarized (CP) and CP2-mode RF shims at multiple voltages. The pipeline was evaluated by comparing the predicted and measured B1 + for multiple random transmit shims, and by assessing the ability of RF shimming to increase B1 + in the carotid arteries. RESULTS The proposed method achieved good agreement between predicted and measured B1 + in both the head and the neck. The B1 + magnitude in the carotid arteries can be increased by 43% using tailored RF shims or by 37% using universal RF shims, while also improving the RF homogeneity compared with CP mode. CONCLUSION B1 + in the neck can be increased using RF shims calculated from multichannel B1 + maps in both the head and the neck. This can be achieved using universal phase-only RF shims, facilitating easy implementation in existing sequences.
Collapse
Affiliation(s)
- Matthijs H. S. de Buck
- FMRIB Division, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - James L. Kent
- FMRIB Division, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Peter Jezzard
- FMRIB Division, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Aaron T. Hess
- FMRIB Division, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| |
Collapse
|
15
|
Ren Y, Gao Y, Qiu B, Nan X, Han J. Effects of radiofrequency channel numbers on B 1+ mapping using the Bloch-Siegert shift method. Neuroimage 2023; 279:120308. [PMID: 37544415 DOI: 10.1016/j.neuroimage.2023.120308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023] Open
Abstract
PURPOSE This paper aims to investigate the impact of the channel numbers on the performance of B1+ mapping, by using the Bloch-Siegert shift (BSS) method. B1+ mapping plays a crucial role in various brain imaging protocols. THEORY AND METHODS We simulated the radiofrequency field of the human head model in six groups of multi-channel receive coil with a range of different channel numbers. MR signals were synthesized according to the standard BSS sequence, with quantified Gaussian added. Next, we combined the signals of each channel to reconstruct the B1+ map by weighted averaging and maximum likelihood estimation strategies and evaluate the bias by relative standard deviation of each coil. RESULTS The simulation results revealed that the accuracy of B1+ maps improved with the increasing of channel numbers, meanwhile the per channel efficiency of B1+maps accuracy gradually decrease. Both trends slowed down when the channel numbers reached 12 or above. CONCLUSION Our finding suggests that increasing the channel numbers can improve the accuracy of B1+map. However, a diminishing efficiency of per channel accuracy improvement was overserved, indicating that the relationship between quality of B1+ map and the channel numbers is nonlinear. Based on these findings, our study provides a reference for determining channel numbers to achieve a balance of coil selection and manufacturing cost. It also provides a theoretical basis for evaluating other B1+ mapping techniques.
Collapse
Affiliation(s)
- Yinhao Ren
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Yunyu Gao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Bensheng Qiu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China
| | - Xiang Nan
- Department of Anatomy, Anhui Medical University, Hefei, China.
| | - Jijun Han
- School of Biomedical Engineering, Anhui Medical University, Hefei, China.
| |
Collapse
|
16
|
Kent JL, Dragonu I, Valkovič L, Hess AT. Rapid 3D absolute B 1 + mapping using a sandwiched train presaturated TurboFLASH sequence at 7 T for the brain and heart. Magn Reson Med 2023; 89:964-976. [PMID: 36336893 PMCID: PMC10099228 DOI: 10.1002/mrm.29497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To shorten the acquisition time of magnetization-prepared absolute transmit field (B1 + ) mapping known as presaturation TurboFLASH, or satTFL, to enable single breath-hold whole-heart 3D B1 + mapping. METHODS SatTFL is modified to remove the delay between the reference and prepared images (typically 5 T1 ), with matching transmit configurations for excitation and preparation RF pulses. The new method, called Sandwich, is evaluated as a 3D sequence, measuring whole-brain and gated whole-heart B1 + maps in a single breath-hold. We evaluate the sensitivity to B1 + and T1 using numerical Bloch, extended phase graph, and Monte Carlo simulations. Phantom and in vivo images were acquired in both the brain and heart using an 8-channel transmit 7 Tesla MRI system to support the simulations. A segmented satTFL with a short readout train was used as a reference. RESULTS The method significantly reduces acquisition times of 3D measurements from 360 s to 20 s, in the brain, while simultaneously reducing bias in the measured B1 + due to T1 and magnetization history. The mean coefficient of variation was reduced by 81% for T1 s of 0.5-3 s compared to conventional satTFL. In vivo, the reproducibility coefficient for flip angles in the range 0-130° was 4.5° for satTFL and 4.7° for our scheme, significantly smaller than for a short TR satTFL sequence, which was 12°. The 3D sequence measured B1 + maps of the whole thorax in 26 heartbeats. CONCLUSION Our adaptations enable faster B1 + mapping, with minimal T1 sensitivity and lower sensitivity to magnetization history, enabling single breath-hold whole-heart absolute B1 + mapping.
Collapse
Affiliation(s)
- James L Kent
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Oxford, UK.,Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Aaron T Hess
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Bosch D, Bause J, Geldschläger O, Scheffler K. Optimized ultrahigh field parallel transmission workflow using rapid presaturated TurboFLASH transmit field mapping with a three-dimensional centric single-shot readout. Magn Reson Med 2022; 89:322-330. [PMID: 36120984 DOI: 10.1002/mrm.29459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE To evaluate the usage of three-dimensional (3D) presaturated TurboFLASH (satTFL) for B 1 + $$ {\mathrm{B}}_1^{+} $$ and B 0 $$ {\mathrm{B}}_0 $$ mapping on single channel and parallel transmission (pTx) systems. METHODS B 1 + $$ {\mathrm{B}}_1^{+} $$ maps recorded with 3D satTFL were compared to maps from three other 3D B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping sequences in an agar phantom. Furthermore, individual-channel B 1 + $$ {\mathrm{B}}_1^{+} $$ maps of 18 human subjects were recorded with 3D satTFL using B 1 + $$ {\mathrm{B}}_1^{+} $$ interferometry. A neural network was trained for masking of the maps. RESULTS Out of the sequences compared satTFL was the only one with a mapping range exceeding well over 90°. In regions with lower flip angles there was high correspondence between satTFL and AFI. DREAM and double angle method also showed high qualitative similarity, however the magnitude differed from the other two measurements. The individual-channel B 1 + $$ {\mathrm{B}}_1^{+} $$ maps were successfully used for pTx pulse calculation in a separate study. CONCLUSION 3D satTFL can record high-quality B 1 + $$ {\mathrm{B}}_1^{+} $$ maps with a high dynamic range in a short time. Correspondence with AFI maps is high, while measurement duration is reduced drastically.
Collapse
Affiliation(s)
- Dario Bosch
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Jonas Bause
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Ole Geldschläger
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Wright AM, Murali-Manohar S, Henning A. Quantitative T1-relaxation corrected metabolite mapping of 12 metabolites in the human brain at 9.4 T. Neuroimage 2022; 263:119574. [PMID: 36058442 DOI: 10.1016/j.neuroimage.2022.119574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 10/31/2022] Open
Abstract
Magnetic resonance spectroscopic imaging (MRSI) is a non-invasive imaging modality that enables observation of metabolites. Applications of MRSI for neuroimaging have shown promise for monitoring and detecting various diseases. This study builds off previously developed techniques of short TR, 1H FID MRSI by correcting for T1-weighting of the metabolites and utilizing an internal water reference to produce quantitative (mmol kg-1) metabolite maps. This work reports and shows quantitative metabolite maps for 12 metabolites for a single slice. Voxel-specific T1-corrections for water are common in MRSI studies; however, most studies use either averaged T1-relaxation times to correct for T1-weighting of metabolites or omit this correction step entirely. This work employs the use of voxel-specific T1-corrections for metabolites in addition to water. Utilizing averaged T1-relaxation times for metabolites can bias metabolite maps for metabolites that have strong differences between T1-relaxation for GM and WM (i.e. Glu). This work systematically compares quantitative metabolite maps to single voxel quantitative results and qualitatively compares metabolite maps to previous works.
Collapse
|
19
|
Geldschläger O, Bosch D, Henning A. OTUP workflow: target specific optimization of the transmit k-space trajectory for flexible universal parallel transmit RF pulse design. NMR IN BIOMEDICINE 2022; 35:e4728. [PMID: 35297104 DOI: 10.1002/nbm.4728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
PURPOSE To optimize transmit k-space trajectories for a wide range of excitation targets and to design "universal pTx RF pulses" based on these trajectories. METHODS Transmit k-space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets using the parameters of the analytical equations of spirals and SPINS. The performances of RF pulses designed based on optimized and non-optimized trajectories were compared. The optimized trajectories were utilized for universal pulse design. The universal pulse performances were compared with subject specific tailored pulse performances. The OTUP workflow (optimization of transmit k-space trajectories and universal pulse calculation) was tested on three test target excitation patterns. For one target (local excitation of a central area in the human brain) the pulses were tested in vivo at 9.4 T. RESULTS The workflow produced appropriate transmit k-space trajectories for each test target. Utilization of an optimized trajectory was crucial for the pulse performance. Using unsuited trajectories diminished the performance. It was possible to create target specific universal pulses. However, not every test target is equally well suited for universal pulse design. There was no significant difference in the in vivo performance between subject specific tailored pulses and a universal pulse at 9.4 T. CONCLUSIONS The proposed workflow further exploited and improved the universal pulse concept by combining it with gradient trajectory optimization for stack of spirals and SPINS. It emphasized the importance of a well suited trajectory for pTx RF pulse design. Universal and tailored pulses performed with a sufficient degree of similarity in simulations and a high degree of similarity in vivo. The implemented OTUP workflow and the B0 /B1+ map data from 18 subjects measured at 9.4 T are available as open source (https://github.com/ole1965/workflow_OTUP.git).
Collapse
Affiliation(s)
- Ole Geldschläger
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Dario Bosch
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
| | - Anke Henning
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
20
|
Clerjon S, El Sabbagh N, Pages G, Traore A, Bonny JM. Quantitative sodium magnetic resonance imaging in food: Addressing sensitivity issues using single quantum chemical shift imaging at high field. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:628-636. [PMID: 34907589 DOI: 10.1002/mrc.5239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
According to various health organizations, the global consumption of salt is higher than recommended and needs to be reduced. Ideally, this would be achieved without losing the taste of the salt itself. In order to accomplish this goal, both at the industrial and domestic levels, we need to understand the mechanisms that govern the final distribution of salt in food. The in-silico solutions in use today greatly over-simplify the real food structure. Measuring the quantity of sodium at the local level is key to understanding sodium distribution. Sodium magnetic resonance imaging (MRI), a non-destructive approach, is the ideal choice for salt mapping along transformational process. However, the low sensitivity of the sodium nucleus and its short relaxation times make this imaging difficult. In this paper, we show how sodium MRI can be used to highlight salt heterogeneities in food products, provided that the temporal decay is modeled, thus correcting for differences in relaxation speeds. We then propose an abacus which shows the relationship between the signal-to-noise ratio of the sodium MRI, the salt concentration, the B0 field, and the spatial and temporal resolutions. This abacus simplifies making the right choices when implementing sodium MRI.
Collapse
Affiliation(s)
- Sylvie Clerjon
- INRAE, UR QuaPA, St Genes Champanelle, France
- INRAE, PROBE Research Infrastructure, AgroResonance Facility, St Genes Champanelle, France
| | - Nour El Sabbagh
- INRAE, UR QuaPA, St Genes Champanelle, France
- INRAE, PROBE Research Infrastructure, AgroResonance Facility, St Genes Champanelle, France
- Institute Pascal, Clermont Auvergne University, CHU, CNRS, Clermont Auvergne INP, Clermont-Ferrand, France
| | - Guilhem Pages
- INRAE, UR QuaPA, St Genes Champanelle, France
- INRAE, PROBE Research Infrastructure, AgroResonance Facility, St Genes Champanelle, France
| | - Amidou Traore
- INRAE, UR QuaPA, St Genes Champanelle, France
- INRAE, PROBE Research Infrastructure, AgroResonance Facility, St Genes Champanelle, France
| | - Jean-Marie Bonny
- INRAE, UR QuaPA, St Genes Champanelle, France
- INRAE, PROBE Research Infrastructure, AgroResonance Facility, St Genes Champanelle, France
| |
Collapse
|
21
|
Katscher U, Minhas AS, Katoch N. Magnetic Resonance Electrical Properties Tomography (MREPT). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1380:185-202. [DOI: 10.1007/978-3-031-03873-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Nazemorroaya A, Aghaeifar A, Shiozawa T, Hirt B, Schulz H, Scheffler K, Hagberg GE. Developing formalin-based fixative agents for post mortem brain MRI at 9.4 T. Magn Reson Med 2021; 87:2481-2494. [PMID: 34931721 DOI: 10.1002/mrm.29122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE To develop fixative agents for high-field MRI with suitable dielectric properties and measure MR properties in immersion-fixed brain tissue. METHODS Dielectric properties of formalin-based agents were assessed (100 MHz-4.5 GHz), and four candidate fixatives with/without polyvinylpyrrolidone (PVP) and different salt concentrations were formulated. B1 field and MR properties (T1 , R 2 ∗ , R2 , R 2 ' , and magnetic susceptibility [QSM]) were observed in white and gray matter of pig brain samples during 0.5-35 days of immersion fixation. The kinetics were fitted using exponential functions. The immersion time required to reach maximum R 2 ∗ values at different tissue depths was used to estimate the Medawar coefficient for fixative penetration. The effect of replacing the fixatives with Fluoroinert and phosphate-buffered saline as embedding media was also evaluated. RESULTS The dielectric properties of formalin were nonlinearly modified by increasing amounts of additives. With 5% PVP and 0.04% NaCl, the dielectric properties and B1 field reflected in vivo conditions. The highest B1 values were found in white matter with PVP and varied significantly with tissue depth and embedding media, but not with immersion time. The MR properties depended on PVP yielding lower T1 , higher R 2 ∗ , more paramagnetic QSM values, and a lower Medawar coefficient (0.9 mm / h ; without PVP: 1.5). Regardless of fixative, switching to phosphate-buffered saline as embedder caused a paramagnetic shift in QSM and decreased R 2 ∗ that progressed during 1 month of storage, whereas no differences were found with Fluorinert. CONCLUSION In vivo-like B1 fields can be achieved in formalin fixatives using PVP and a low salt concentration, yielding lower T1 , higher R 2 ∗ , and more paramagnetic QSM than without additives. The kinetics of R 2 ∗ allowed estimation of fixative tissue penetration.
Collapse
Affiliation(s)
- Azadeh Nazemorroaya
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Ali Aghaeifar
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Thomas Shiozawa
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karl's University of Tübingen, Tübingen, Germany
| | - Bernhard Hirt
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karl's University of Tübingen, Tübingen, Germany
| | - Hildegard Schulz
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Institute of Biomedical Magnetic Resonance, Eberhard Karl's University of Tübingen, Tübingen, Germany
| | - Gisela E Hagberg
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Institute of Biomedical Magnetic Resonance, Eberhard Karl's University of Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Katscher U, Weiss S. Mapping electric bulk conductivity in the human heart. Magn Reson Med 2021; 87:1500-1506. [PMID: 34739149 DOI: 10.1002/mrm.29067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 11/06/2022]
Abstract
PURPOSE To explore the technical feasibility of mapping the electric bulk conductivity in the human heart, and to determine quantitative conductivity values of myocardium and blood from a small group of volunteers. METHODS Using a 3T MR system, 6 healthy male volunteers were measured. For all volunteers, a time-resolved 2D sequence over the cardiac cycle was applied (electrocardiogram [ECG]-triggered SSFP acquired in breath-hold). From these data, a dedicated, so-called "2D conductivity" has been derived in the framework of electrical properties tomography (EPT). To validate the concept of 2D conductivity, a static 3D sequence (ECG-triggered and respiratory-gated SSFP 3D whole heart acquisition, allowing the full 3D reconstruction of conductivity) as well as a Q-flow sequence (for investigating the relation between flow and reconstruction errors of the conductivity) have been applied for one of the volunteers. RESULTS For both, blood and myocardium, quantitative values of obtained 2D conductivity were approximately two-thirds of the obtained 3D conductivity, as expected from Maxwell's equations. Furthermore, the quantitative conductivity values agreed with corresponding literature values. Conductivity of left-ventricular blood volume showed characteristic over- and under-shooting at specific time points during the cardiac cycle for all volunteers investigated. This over- and under-shooting correlated with the phase pattern caused by blood flow into/out of the ventricle. CONCLUSION The study demonstrated the technical feasibility of cardiac conductivity measurements using standard MR systems and standard MR sequences, and therefore, may open new options for MR-based cardiac diagnosis.
Collapse
|
24
|
Geldschläger O, Bosch D, Glaser S, Henning A. Local excitation universal parallel transmit pulses at 9.4T. Magn Reson Med 2021; 86:2589-2603. [PMID: 34180089 DOI: 10.1002/mrm.28905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE To demonstrate that the concept of "universal pTx pulses" is applicable to local excitation applications. METHODS A database of B0 / B 1 + maps from eight different subjects was acquired at 9.4T. Based on these maps, universal pulses that aim at local excitation of the visual cortex area in the human brain (with a flip angle of 90° or 7°) were calculated. The remaining brain regions should not experience any excitation. The pulses were designed with an extension of the "spatial domain method." A 2D and a 3D target excitation pattern were tested, respectively. The pulse performance was examined on non-database subjects by Bloch simulations and in vivo at 9.4T using a GRE anatomical MRI and a presaturated TurboFLASH B 1 + mapping sequence. RESULTS The calculated universal pulses show excellent performance in simulations and in vivo on subjects that were not contained in the design database. The visual cortex region is excited, while the desired non-excitation areas produce the only minimal signal. In simulations, the pulses with 3D target pattern show a lack of excitation uniformity in the visual cortex region; however, in vivo, this inhomogeneity can be deemed acceptable. A reduced field of view application of the universal pulse design concept was performed successfully. CONCLUSIONS The proposed design approach creates universal local excitation pulses for a flip angle of 7° and 90°, respectively. Providing universal pTx pulses for local excitation applications prospectively abandons the need for time-consuming subject-specific B0 / B 1 + mapping and pTx-pulse calculation during the scan session.
Collapse
Affiliation(s)
- Ole Geldschläger
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Dario Bosch
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
| | - Steffen Glaser
- Department for Chemistry, Technical University of Munich, Garching, Germany
| | - Anke Henning
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
25
|
Lee SK, Oh S, Kim HS, Song BP. Radio-Frequency Vector Magnetic Field Mapping in Magnetic Resonance Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:963-973. [PMID: 33290213 DOI: 10.1109/tmi.2020.3043294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A method is presented to measure the radio-frequency (RF) vector magnetic field inside an object using magnetic resonance imaging (MRI). Conventional " [Formula: see text] mapping" in MRI can measure the proton co-rotating component ( [Formula: see text] of the RF field produced by a transmit coil. Here we show that by repeating [Formula: see text] mapping on the same object and coil at multiple (8) specific orientations with respect to the main magnet, the magnitudes and relative phases of all (x, y, z) Cartesian components of the RF field can be determined unambiguously. We demonstrate the method on a circularly polarized volume coil and a loop coil tuned at 123.25 MHz in a 3 Tesla MRI scanner, with liquid phantoms. The volume coil measurement showed the axial component of the RF field, which is normally unmeasurable in MRI, away from the center of the coil. The measured RF vector field maps of both coils compared favorably with numerical simulation, with volumetric normalized root-mean-square difference in the range of 7~20%. While the proposed method cannot be applied to human imaging at present, applications to phantoms and small animals could provide a useful experimental tool to validate RF simulation and verify certain assumptions in [Formula: see text] map-based electrical properties tomography (EPT).
Collapse
|
26
|
Voelker MN, Kraff O, Goerke S, Laun FB, Hanspach J, Pine KJ, Ehses P, Zaiss M, Liebert A, Straub S, Eckstein K, Robinson S, Nagel AN, Stefanescu MR, Wollrab A, Klix S, Felder J, Hock M, Bosch D, Weiskopf N, Speck O, Ladd ME, Quick HH. The traveling heads 2.0: Multicenter reproducibility of quantitative imaging methods at 7 Tesla. Neuroimage 2021; 232:117910. [PMID: 33647497 DOI: 10.1016/j.neuroimage.2021.117910] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/25/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECT This study evaluates inter-site and intra-site reproducibility at ten different 7 T sites for quantitative brain imaging. MATERIAL AND METHODS Two subjects - termed the "traveling heads" - were imaged at ten different 7 T sites with a harmonized quantitative brain MR imaging protocol. In conjunction with the system calibration, MP2RAGE, QSM, CEST and multi-parametric mapping/relaxometry were examined. RESULTS Quantitative measurements with MP2RAGE showed very high reproducibility across sites and subjects, and errors were in concordance with previous results and other field strengths. QSM had high inter-site reproducibility for relevant subcortical volumes. CEST imaging revealed systematic differences between the sites, but reproducibility was comparable to results in the literature. Relaxometry had also very high agreement between sites, but due to the high sensitivity, differences caused by different applications of the B1 calibration of the two RF coil types used were observed. CONCLUSION Our results show that quantitative brain imaging can be performed with high reproducibility at 7 T and with similar reliability as found at 3 T for multicenter studies of the supratentorial brain.
Collapse
Affiliation(s)
- Maximilian N Voelker
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany; High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Steffen Goerke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jannis Hanspach
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kerrin J Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Philipp Ehses
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Moritz Zaiss
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Andrzej Liebert
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sina Straub
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Korbinian Eckstein
- High Field MR Center, Department for Biomedical Imaging and Image guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Simon Robinson
- High Field MR Center, Department for Biomedical Imaging and Image guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Armin N Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maria R Stefanescu
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Astrid Wollrab
- Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sabrina Klix
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin-Buch, Germany
| | - Jörg Felder
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Michael Hock
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Dario Bosch
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Oliver Speck
- Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Mark E Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany; High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
27
|
Herrler J, Liebig P, Gumbrecht R, Ritter D, Schmitter S, Maier A, Schmidt M, Uder M, Doerfler A, Nagel AM. Fast online-customized (FOCUS) parallel transmission pulses: A combination of universal pulses and individual optimization. Magn Reson Med 2021; 85:3140-3153. [PMID: 33400302 DOI: 10.1002/mrm.28643] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra-high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject-specific optimization. METHODS Data sets consisting of B0 , B 1 + maps, and virtual observation point (VOP) data were acquired from 72 subjects (study groups of 48/12 healthy Europeans/Asians and 12 Europeans with pathological or incidental findings) using an 8Tx/32Rx head coil on a 7T whole-body MR system. Combined optimization values (COV) were defined as combination of spiral-nonselective (SPINS) trajectory parameters and an energy regularization weight. A set of COV was optimized universally by simulating the individual RF pulse optimizations of 12 training data sets (healthy Europeans). Subsequently, corresponding universal pulses (UPs) were calculated. Using COV and UPs, individually optimized pulses (IOPs) were calculated during the sequence preparation phase (maximum 15 s). Two different UPs and IOPs were evaluated by calculating their normalized root-mean-square error (NRMSE) of the FA and SAR in simulations of all data sets. Seven additional subjects were examined using an MPRAGE sequence that uses the designed pTx excitation pulses and a conventional adiabatic inversion. RESULTS All pTx pulses resulted in decreased mean NRMSE compared to a circularly polarized (CP) pulse (CP = ~28%, UPs = ~17%, and IOPs = ~12%). UPs and IOPs improved homogeneity for all subjects. Differences in NRMSE between study groups were much lower than differences between different pulse types. CONCLUSION UPs can be used to generate fast online-customized (FOCUS) pulses gaining lower NRMSE and/or lower SAR values.
Collapse
Affiliation(s)
- Jürgen Herrler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | | | | | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Andreas Maier
- Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Manuel Schmidt
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Institute of Medical Physics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
28
|
Desmond KL, Xu R, Sun Y, Chavez S. A practical method for post-acquisition reduction of bias in fast, whole-brain B1-maps. Magn Reson Imaging 2020; 77:88-98. [PMID: 33338561 DOI: 10.1016/j.mri.2020.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/22/2020] [Accepted: 12/13/2020] [Indexed: 12/24/2022]
Abstract
Large consistent differences have been observed between maps of the flip angle correction factor (commonly called "B1-maps") produced with different fast methods in the human brain. We present an empirical procedure for first-order multiplicative bias correction that can be applied when more than one B1-mapping method is available. We use a B1-map measurement in a calibration phantom as a reference and the voxel-wise histogram mode between ratios of B1-maps produced from different methods to calculate determine the bias as a multiplicative correcting scale factor. Institutional implementations of four common methods of B1-mapping were assessed: Method of Slopes, FSE and EPI double angle methods (DAM), and Bloch-Siegert. In human subjects, the multiplicative bias used to correct for each of the four methods was: Method of Slopes = 1.005, FSE-DAM = 0.956, EPI-DAM = 1.080, and Bloch-Siegert = 1.128. Scaling to remove this bias between methods produces more consistent B1-maps which enable more consistent values for any computations requiring flip angle correction. In addition, we present evidence that the corrected B1 maps, using our calibration method, are also more accurate.
Collapse
Affiliation(s)
- Kimberly L Desmond
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada.
| | - Ruiyang Xu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
| | - Yutong Sun
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
| | - Sofia Chavez
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada
| |
Collapse
|
29
|
Oran OF, Klassen LM, Serrai H, Menon RS. Demonstration and suppression of respiration-related artifacts in Bloch-Siegert shift-based B 1+ maps of the human brain. NMR IN BIOMEDICINE 2020; 33:e4299. [PMID: 32215985 DOI: 10.1002/nbm.4299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/14/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Respiration-induced movement of the chest wall and internal organs causes temporal B0 variations extending throughout the brain. This study demonstrates that these variations can cause significant artifacts in B1+ maps obtained at 7 T with the Bloch-Siegert shift (BSS) B1+ mapping technique. To suppress these artifacts, a navigator correction scheme was proposed. Two sets of experiments were performed. In the first set of experiments, phase shifts induced by respiration-related B0 variations were assessed for five subjects at 7 T by using a gradient echo (GRE) sequence without phase-encoding. In the second set of experiments, B1+ maps were acquired using a GRE-based BSS pulse sequence with navigator echoes. For this set, the measurements were consecutively repeated 16 times for the same imaging slice. These measurements were averaged to obtain the reference B1+ map. Due to the periodicity of respiration-related phase shifts, their effect on the reference B1+ map was assumed to be negligible through averaging. The individual B1+ maps of the 16 repetitions were calculated with and without using the proposed navigator scheme. These maps were compared with the B1+ reference map. The peak-to-peak value of respiration-related phase shifts varied between subjects. Without navigator correction, the interquartile range of percentage error in B1+ varied between 4.0% and 8.3% among subjects. When the proposed navigator scheme was used, these numbers were reduced to 2.5% and 2.9%, indicating an improvement in the precision of GRE-based BSS B1+ mapping at high magnetic fields.
Collapse
Affiliation(s)
- Omer F Oran
- Centre for Functional and Metabolic Mapping, University of Western Ontario, London, Ontario, Canada
| | - L Martyn Klassen
- Centre for Functional and Metabolic Mapping, University of Western Ontario, London, Ontario, Canada
| | - Hacene Serrai
- Centre for Functional and Metabolic Mapping, University of Western Ontario, London, Ontario, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
30
|
Lee SH, Han MJ, Lee J, Lee SK. Experimental setup for bulk susceptibility effect-minimized, multi-orientation MRI of ex vivo tissue samples. Med Phys 2020; 47:3032-3043. [PMID: 32282079 DOI: 10.1002/mp.14174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/06/2020] [Accepted: 03/20/2020] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Many conventional ex vivo magnetic resonance imaging (MRI) setups utilize cylindrical or other nonspherical tissue containers which can cause static field (B0 ) inhomogeneity affecting the accuracy of the measurements in an orientation-dependent manner. In this work we demonstrate an experimental method to obtain MRI of ex vivo tissue samples held in a spherical container in order to minimize bulk susceptibility-induced B0 inhomogeneity in arbitrary orientations. METHODS B0 inhomogeneity caused by tissue-air susceptibility mismatch can be theoretically eliminated if the surface of susceptibility discontinuity is spherical. This situation can be approximated by putting a tissue sample in a spherical shell filled with materials with tissue-like magnetic susceptibility. We achieved this on an intact monkey brain by (a) holding the brain with a three-dimensional (3D)-printed holder with tissue-like (within 0.5 ppm) susceptibility, and (b) enclosing the brain and the holder in an acrylic spherical shell filled with diamagnetic liquid. Furthermore, the sphere and the radio-frequency coil for MRI were mounted on a 3D-printed frame designed to reduce B0 inhomogeneity contributions. The sphere could be rotated freely without disturbing the RF coil to facilitate multi-orientation imaging. We verified our setup by mapping B0 in the monkey brain at 13 different orientations in a human 7T scanner, and measuring orientation-dependent R 2 ∗ relaxation rates in the white and gray matters of the brain. The results were then compared with a setup where the brain was held inside a cylindrical container. RESULTS In all orientations, the B0 standard deviation in the brain in the spherical setup (converted to Larmor frequency offset) was less than about 10 Hz. This corresponds to two-sigma deviation of B0 of <0.07 ppm. The B0 gradient was <9 Hz/mm in 95 % of the brain voxels in all orientations. In high-resolution imaging with e.g. voxel size <0.4 mm, this corresponds to voxel line broadening of <4 Hz (0.013 ppm). R 2 ∗ in the corpus callosum showed distinctly different orientation dependence compared to the gray matter. The B0 uniformity and R 2 ∗ reliability were much reduced in the cylindrical container setup. CONCLUSIONS We have demonstrated an experimental method to effectively minimize bulk susceptibility-induced B0 perturbation in multi-orientation ex vivo MRI. The method promises to benefit a range of tissue orientation-dependent MR property studies.
Collapse
Affiliation(s)
- So-Hee Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Min-Jun Han
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Joonyeol Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Seung-Kyun Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, South Korea.,Department of Physics, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
31
|
Gao Y, Han J, Zhu Y, Wang J, Wei X, Xin X. Channel-combination method for phase-based |B 1+| mapping techniques. Magn Reson Imaging 2019; 65:1-7. [PMID: 31670236 DOI: 10.1016/j.mri.2019.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/06/2019] [Accepted: 09/15/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE The aim of this study was to propose a channel combination method for |B1+| mapping methods using phase difference to reconstruct |B1+| map. THEORY AND METHODS Phase-based |B1+| mapping methods commonly consider the phase difference of two scans to measure |B1+|. Multiple receiver coils acquire a number of images and the phase difference at each channel is theoretically the same in the absence of noise. Affected by noise, phase difference is approximately governed by Gaussian distribution. Considering data from all channels as samples, estimation can be achieved by maximum likelihood method. With this method, all phase differences at each channel are combined into one. In this study, the proposed method is applied with Bloch-Siegert shift |B1+| mapping method. Simulations are performed to illustrate the phase difference distribution and demonstrate the feasibility and facility of the proposed method. Phantom and vivo experiments are carried out at 1.5 T scanner equipped with 8-channel receiver coil. In all experiments, the proposed method is compared with weighted averaging (WA) method. RESULTS Simulations revealed appropriateness of approximating the distribution of phase difference to Gaussian distribution. Compared with WA method, the proposed method reduces errors of |B1+| calculation. Phantom and vivo experiments provide further validation. CONCLUSION Considering phase noise distribution, the proposed method achieves channel combination by finding the estimation from data acquired by multiple receivers coil. The proposed method reduces |B1+| reconstruction errors caused by noise.
Collapse
Affiliation(s)
- Yunyu Gao
- School of Biomedical Engineering, Southern Medical University, No. 1023-1063 Shatai South Road, Baiyun district, Guangzhou City, Guangdong Province 510515, China
| | - Jijun Han
- School of Biomedical Engineering, Southern Medical University, No. 1023-1063 Shatai South Road, Baiyun district, Guangzhou City, Guangdong Province 510515, China
| | - Yurong Zhu
- School of Biomedical Engineering, Southern Medical University, No. 1023-1063 Shatai South Road, Baiyun district, Guangzhou City, Guangdong Province 510515, China
| | - Jiajia Wang
- School of Biomedical Engineering, Southern Medical University, No. 1023-1063 Shatai South Road, Baiyun district, Guangzhou City, Guangdong Province 510515, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, South China University of Technology, No. 1 Panfu Road, Yuexiu District, Guangzhou City, Guangzhou Province 510180, China
| | - Xuegang Xin
- School of Biomedical Engineering, Southern Medical University, No. 1023-1063 Shatai South Road, Baiyun district, Guangzhou City, Guangdong Province 510515, China; School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou City, Guangzhou Province 510006, China.
| |
Collapse
|
32
|
Corbin N, Acosta-Cabronero J, Malik SJ, Callaghan MF. Robust 3D Bloch-Siegert based B 1 + mapping using multi-echo general linear modeling. Magn Reson Med 2019; 82:2003-2015. [PMID: 31321823 PMCID: PMC6771691 DOI: 10.1002/mrm.27851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/16/2019] [Accepted: 05/19/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Quantitative MRI applications, such as mapping the T1 time of tissue, puts high demands on the accuracy and precision of transmit field ( B 1 + ) estimation. A candidate approach to satisfy these requirements exploits the difference in phase induced by the Bloch-Siegert frequency shift (BSS) of 2 acquisitions with opposite off-resonance frequency radiofrequency pulses. Interleaving these radiofrequency pulses ensures robustness to motion and scanner drifts; however, here we demonstrate that doing so also introduces a bias in the B 1 + estimates. THEORY AND METHODS It is shown here by means of simulation and experiments that the amplitude of the error depends on MR pulse sequence parameters, such as repetition time and radiofrequency spoiling increment, but more problematically, on the intrinsic properties, T1 and T2 , of the investigated tissue. To solve these problems, a new approach to BSS-based B 1 + estimation that uses a multi-echo acquisition and a general linear model to estimate the correct BSS-induced phase is presented. RESULTS In line with simulations, phantom and in vivo experiments confirmed that the general linear model-based method removed the dependency on tissue properties and pulse sequence settings. CONCLUSION The general linear model-based method is recommended as a more accurate approach to BSS-based B 1 + mapping.
Collapse
Affiliation(s)
- Nadège Corbin
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Julio Acosta-Cabronero
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Shaihan J Malik
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
33
|
Tabelow K, Balteau E, Ashburner J, Callaghan MF, Draganski B, Helms G, Kherif F, Leutritz T, Lutti A, Phillips C, Reimer E, Ruthotto L, Seif M, Weiskopf N, Ziegler G, Mohammadi S. hMRI - A toolbox for quantitative MRI in neuroscience and clinical research. Neuroimage 2019; 194:191-210. [PMID: 30677501 PMCID: PMC6547054 DOI: 10.1016/j.neuroimage.2019.01.029] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
Neuroscience and clinical researchers are increasingly interested in quantitative magnetic resonance imaging (qMRI) due to its sensitivity to micro-structural properties of brain tissue such as axon, myelin, iron and water concentration. We introduce the hMRI-toolbox, an open-source, easy-to-use tool available on GitHub, for qMRI data handling and processing, presented together with a tutorial and example dataset. This toolbox allows the estimation of high-quality multi-parameter qMRI maps (longitudinal and effective transverse relaxation rates R1 and R2⋆, proton density PD and magnetisation transfer MT saturation) that can be used for quantitative parameter analysis and accurate delineation of subcortical brain structures. The qMRI maps generated by the toolbox are key input parameters for biophysical models designed to estimate tissue microstructure properties such as the MR g-ratio and to derive standard and novel MRI biomarkers. Thus, the current version of the toolbox is a first step towards in vivo histology using MRI (hMRI) and is being extended further in this direction. Embedded in the Statistical Parametric Mapping (SPM) framework, it benefits from the extensive range of established SPM tools for high-accuracy spatial registration and statistical inferences and can be readily combined with existing SPM toolboxes for estimating diffusion MRI parameter maps. From a user's perspective, the hMRI-toolbox is an efficient, robust and simple framework for investigating qMRI data in neuroscience and clinical research.
Collapse
Affiliation(s)
| | | | | | | | - Bogdan Draganski
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Switzerland; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gunther Helms
- Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ferath Kherif
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Tobias Leutritz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Switzerland
| | | | - Enrico Reimer
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | | | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gabriel Ziegler
- Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Germany
| | | |
Collapse
|
34
|
Hu R, Kleimaier D, Malzacher M, Hoesl MA, Paschke NK, Schad LR. X‐nuclei imaging: Current state, technical challenges, and future directions. J Magn Reson Imaging 2019; 51:355-376. [DOI: 10.1002/jmri.26780] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ruomin Hu
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Dennis Kleimaier
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Matthias Malzacher
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | | | - Nadia K. Paschke
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Lothar R. Schad
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| |
Collapse
|
35
|
Gavazzi S, van den Berg CAT, Sbrizzi A, Kok HP, Stalpers LJA, Lagendijk JJW, Crezee H, van Lier ALHMW. Accuracy and precision of electrical permittivity mapping at 3T: the impact of three B 1 + mapping techniques. Magn Reson Med 2019; 81:3628-3642. [PMID: 30737816 PMCID: PMC6593818 DOI: 10.1002/mrm.27675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/29/2022]
Abstract
Purpose To investigate the sequence‐specific impact of B1+ amplitude mapping on the accuracy and precision of permittivity reconstruction at 3T in the pelvic region. Methods B1+ maps obtained with actual flip angle imaging (AFI), Bloch–Siegert (BS), and dual refocusing echo acquisition mode (DREAM) sequences, set to a clinically feasible scan time of 5 minutes, were compared in terms of accuracy and precision with electromagnetic and Bloch simulations and MR measurements. Permittivity maps were reconstructed based on these B1+ maps with Helmholtz‐based electrical properties tomography. Accuracy and precision in permittivity were assessed. A 2‐compartment phantom with properties and size similar to the human pelvis was used for both simulations and measurements. Measurements were also performed on a female volunteer’s pelvis. Results Accuracy was evaluated with noiseless simulations on the phantom. The maximum B1+ bias relative to the true B1+ distribution was 1% for AFI and BS and 6% to 15% for DREAM. This caused an average permittivity bias relative to the true permittivity of 7% to 20% for AFI and BS and 12% to 35% for DREAM. Precision was assessed in MR experiments. The lowest standard deviation in permittivity, found in the phantom for BS, measured 22.4 relative units and corresponded to a standard deviation in B1+ of 0.2% of the B1+ average value. As regards B1+ precision, in vivo and phantom measurements were comparable. Conclusions Our simulation framework quantitatively predicts the different impact of B1+ mapping techniques on permittivity reconstruction and shows high sensitivity of permittivity reconstructions to sequence‐specific bias and noise perturbation in the B1+ map. These findings are supported by the experimental results.
Collapse
Affiliation(s)
- Soraya Gavazzi
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alessandro Sbrizzi
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan J W Lagendijk
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
36
|
Kulpanovich A, Tal A. The application of magnetic resonance fingerprinting to single voxel proton spectroscopy. NMR IN BIOMEDICINE 2018; 31:e4001. [PMID: 30176091 DOI: 10.1002/nbm.4001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Magnetic resonance fingerprinting has been proposed as a method for undersampling k-space while simultaneously yielding multiparametric tissue maps. In the context of single voxel spectroscopy, fingerprinting can provide a unified framework for parameter estimation. We demonstrate the utility of such a magnetic resonance spectroscopic fingerprinting (MRSF) framework for simultaneously quantifying metabolite concentrations, T1 and T2 relaxation times and transmit inhomogeneity for major singlets of N-acetylaspartate, creatine and choline. This is achieved by varying TR , TE and the flip angle of the first pulse in a PRESS sequence between successive excitations (i.e. successive TR values). The need for multiparametric schemes such as MRSF for accurate medical diagnostics is demonstrated with the aid of realistic in vivo simulations; these show that certain schemes lead to substantial increases to the area under receiver operating characteristics of metabolite concentrations, when viewed as classifiers of pathologies. Numerical simulations and phantom and in vivo experiments using several different schedules of variable length demonstrate superior precision and accuracy for metabolite concentrations and longitudinal relaxation, and similar performance for the quantification of transverse relaxation.
Collapse
Affiliation(s)
- Alexey Kulpanovich
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Tal
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
37
|
Lee Y, Callaghan MF, Acosta-Cabronero J, Lutti A, Nagy Z. Establishing intra- and inter-vendor reproducibility of T1
relaxation time measurements with 3T MRI. Magn Reson Med 2018; 81:454-465. [DOI: 10.1002/mrm.27421] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/28/2018] [Accepted: 06/04/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Yoojin Lee
- Laboratory for Social and Neural Systems Research; University of Zurich; Zürich Switzerland
| | - Martina F. Callaghan
- Wellcome Centre for Human Neuroimaging; UCL Institute of Neurology; London United Kingdom
| | - Julio Acosta-Cabronero
- Wellcome Centre for Human Neuroimaging; UCL Institute of Neurology; London United Kingdom
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience,; Lausanne University Hospital and University of Lausanne; Lausanne Switzerland
| | - Zoltan Nagy
- Laboratory for Social and Neural Systems Research; University of Zurich; Zürich Switzerland
| |
Collapse
|
38
|
Brunheim S, Gratz M, Johst S, Bitz AK, Fiedler TM, Ladd ME, Quick HH, Orzada S. Fast and accurate multi-channel B1+ mapping based on the TIAMO technique for 7T UHF body MRI. Magn Reson Med 2018; 79:2652-2664. [PMID: 28994132 DOI: 10.1002/mrm.26925] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/21/2017] [Accepted: 08/26/2017] [Indexed: 01/11/2023]
Abstract
PURPOSE Current methods for mitigation of transmit field B1+ inhomogeneities at ultrahigh field (UHF) MRI by multi-channel radiofrequency (RF) shimming rely on accurate B1+ mapping. This can be time consuming when many RF channels have to be mapped for in vivo body MRI, where the B1 maps should ideally be acquired within a single breath-hold. Therefore, a new B1+ mapping technique (B1TIAMO) is proposed. METHODS The performance of this technique is validated against an established method (DREAM) in phantom measurements for a cylindrical head phantom with an 8-channel transmit/receive (Tx/Rx) array. Furthermore, measurements for a 32-channel Tx/Rx remote array are conducted in a large body phantom and the |B1+| map reliability is validated against simulations of the transmit RF field distribution. Finally, in vivo results of this new mapping technique for human abdomen are presented. RESULTS For the head phantom (8-channel Tx/Rx coil), the single |B1+| comparison between B1 TIAMO, the direct DREAM measurements, and simulation data showed good agreement with 10-19% difference. For the large body phantom (32-channel Tx/Rx coil), B1TIAMO matched the RF field simulations well. CONCLUSION The results demonstrate the potential to acquire 32 accurate single-channel B1+ maps for large field-of-view body imaging within only a single breath-hold of 16 s at 7T UHF MRI. Magn Reson Med 79:2652-2664, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Sascha Brunheim
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Marcel Gratz
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Sören Johst
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Andreas K Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, FH Aachen-University of Applied Sciences, Aachen, Germany
| | - Thomas M Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Stephan Orzada
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
39
|
Bane O, Hectors S, Wagner M, Arlinghaus LL, Aryal M, Cao Y, Chenevert T, Fennessy F, Huang W, Hylton N, Kalpathy-Cramer J, Keenan K, Malyarenko D, Mulkern R, Newitt D, Russek SE, Stupic KF, Tudorica A, Wilmes L, Yankeelov TE, Yen YF, Boss M, Taouli B. Accuracy, repeatability, and interplatform reproducibility of T 1 quantification methods used for DCE-MRI: Results from a multicenter phantom study. Magn Reson Med 2018; 79:2564-2575. [PMID: 28913930 PMCID: PMC5821553 DOI: 10.1002/mrm.26903] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 02/05/2023]
Abstract
PURPOSE To determine the in vitro accuracy, test-retest repeatability, and interplatform reproducibility of T1 quantification protocols used for dynamic contrast-enhanced MRI at 1.5 and 3 T. METHODS A T1 phantom with 14 samples was imaged at eight centers with a common inversion-recovery spin-echo (IR-SE) protocol and a variable flip angle (VFA) protocol using seven flip angles, as well as site-specific protocols (VFA with different flip angles, variable repetition time, proton density, and Look-Locker inversion recovery). Factors influencing the accuracy (deviation from reference NMR T1 measurements) and repeatability were assessed using general linear mixed models. Interplatform reproducibility was assessed using coefficients of variation. RESULTS For the common IR-SE protocol, accuracy (median error across platforms = 1.4-5.5%) was influenced predominantly by T1 sample (P < 10-6 ), whereas test-retest repeatability (median error = 0.2-8.3%) was influenced by the scanner (P < 10-6 ). For the common VFA protocol, accuracy (median error = 5.7-32.2%) was influenced by field strength (P = 0.006), whereas repeatability (median error = 0.7-25.8%) was influenced by the scanner (P < 0.0001). Interplatform reproducibility with the common VFA was lower at 3 T than 1.5 T (P = 0.004), and lower than that of the common IR-SE protocol (coefficient of variation 1.5T: VFA/IR-SE = 11.13%/8.21%, P = 0.028; 3 T: VFA/IR-SE = 22.87%/5.46%, P = 0.001). Among the site-specific protocols, Look-Locker inversion recovery and VFA (2-3 flip angles) protocols showed the best accuracy and repeatability (errors < 15%). CONCLUSIONS The VFA protocols with 2 to 3 flip angles optimized for different applications achieved acceptable balance of extensive spatial coverage, accuracy, and repeatability in T1 quantification (errors < 15%). Further optimization in terms of flip-angle choice for each tissue application, and the use of B1 correction, are needed to improve the robustness of VFA protocols for T1 mapping. Magn Reson Med 79:2564-2575, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Octavia Bane
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai,Radiology, Icahn School of Medicine at Mount Sinai
| | - Stefanie Hectors
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai,Radiology, Icahn School of Medicine at Mount Sinai
| | - Mathilde Wagner
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai,Radiology, Icahn School of Medicine at Mount Sinai
| | | | | | - Yue Cao
- Radiation Oncology, University of Michigan
| | | | | | - Wei Huang
- Advanced Imaging Research Center, Knight Cancer Institute, Oregon Health and Science University
| | - Nola Hylton
- Radiology, University of California San Francisco
| | | | | | | | | | - David Newitt
- Radiology, University of California San Francisco
| | | | | | | | - Lisa Wilmes
- Radiology, University of California San Francisco
| | | | - Yi-Fei Yen
- Radiology, Massachusetts General Hospital
| | | | - Bachir Taouli
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai,Radiology, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
40
|
Haast RAM, Ivanov D, Uludağ K. The impact of B1+ correction on MP2RAGE cortical T 1 and apparent cortical thickness at 7T. Hum Brain Mapp 2018; 39:2412-2425. [PMID: 29457319 PMCID: PMC5969159 DOI: 10.1002/hbm.24011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 01/06/2023] Open
Abstract
Determination of cortical thickness using MRI has often been criticized due to the presence of various error sources. Specifically, anatomical MRI relying on T1 contrast may be unreliable due to spatially variable image contrast between gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). Especially at ultra‐high field (≥ 7T) MRI, transmit and receive B1‐related image inhomogeneities can hamper correct classification of tissue types. In the current paper, we demonstrate that residual
B1+ (transmit) inhomogeneities in the T1‐weighted and quantitative T1 images using the MP2RAGE sequence at 7T lead to biases in cortical thickness measurements. As expected, post‐hoc correction for the spatially varying
B1+ profile reduced the apparent T1 values across the cortex in regions with low
B1+, and slightly increased apparent T1 in regions with high
B1+. As a result, improved contrast‐to‐noise ratio both at the GM‐CSF and GM‐WM boundaries can be observed leading to more accurate surface reconstructions and cortical thickness estimates. Overall, the changes in cortical thickness ranged between a 5% decrease to a 70% increase after
B1+ correction, reducing the variance of cortical thickness values across the brain dramatically and increasing the comparability with normative data. More specifically, the cortical thickness estimates increased in regions characterized by a strong decrease of apparent T1 after
B1+ correction in regions with low
B1+ due to improved detection of the pial surface. The current results suggest that cortical thickness can be more accurately determined using MP2RAGE data at 7T if
B1+ inhomogeneities are accounted for.
Collapse
Affiliation(s)
- Roy A M Haast
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Maastricht Centre for Systems Biology, Maastricht University, Maastricht, Netherlands
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Kâmil Uludağ
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
41
|
Weingärtner S, Zimmer F, Metzger GJ, Uğurbil K, Van de Moortele PF, Akçakaya M. Motion-robust cardiac B1+ mapping at 3T using interleaved bloch-siegert shifts. Magn Reson Med 2017; 78:670-677. [PMID: 27599782 PMCID: PMC5340643 DOI: 10.1002/mrm.26395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/15/2016] [Accepted: 08/06/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE To develop and evaluate a robust motion-insensitive Bloch-Siegert shift based B1+ mapping method in the heart. METHODS Cardiac Bloch-Siegert B1+ mapping was performed with interleaved positive and negative off-resonance shifts and diastolic spoiled gradient echo imaging in 12 heartbeats. Numerical simulations were performed to study the impact of respiratory motion. The method was compared with three-dimensional (3D) actual flip angle imaging (AFI) and two-dimensional (2D) saturated double angle method (SDAM) in phantom scans. Cardiac B1+ maps of three different views were acquired in six healthy volunteers using Bloch-Siegert and SDAM during breath-hold and free breathing. In vivo maps were evaluated for inter-view consistency using the correlation coefficients of the B1+ profiles along the lines of intersection between the views. RESULTS For the Bloch-Siegert sequence, numerical simulations indicated high similarity between breath-hold and free breathing scans, and phantom results indicated low deviation from the 3D AFI reference (normalized root mean square error [NRMSE] = 2.0%). Increased deviation was observed with 2D SDAM (NRMSE = 5.0%) due to underestimation caused by imperfect excitation slice profiles. Breath-hold and free breathing Bloch-Siegert in vivo B1+ maps were visually comparable with no significant difference in the inter-view consistency (P > 0.36). SDAM showed strongly impaired B1+ map quality during free breathing. Inter-view consistency was significantly lower than with the Bloch-Siegert method (breath-hold: P = 0.014, free breathing: P < 0.0001). CONCLUSION The proposed interleaved Bloch-Siegert sequence enables cardiac B1+ mapping with improved inter-view consistency and high resilience to respiratory motion. Magn Reson Med 78:670-677, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Sebastian Weingärtner
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
- Computer Assisted Clinical Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabian Zimmer
- Computer Assisted Clinical Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Mehmet Akçakaya
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
42
|
Katscher U, van den Berg CAT. Electric properties tomography: Biochemical, physical and technical background, evaluation and clinical applications. NMR IN BIOMEDICINE 2017; 30:e3729. [PMID: 28543640 DOI: 10.1002/nbm.3729] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
Electric properties tomography (EPT) derives the patient's electric properties, i.e. conductivity and permittivity, using standard magnetic resonance (MR) systems and standard MR sequences. Thus, EPT does not apply externally mounted electrodes, currents or radiofrequency (RF) probes, as is the case in competing techniques. EPT is quantitative MR, i.e. it yields absolute values of conductivity and permittivity. This review summarizes the physical equations underlying EPT, the corresponding basic and advanced reconstruction techniques and practical numerical aspects to realize these reconstruction techniques. MR sequences which map the field information required for EPT are outlined, and experiments to validate EPT in phantom and in vivo studies are described. Furthermore, the review describes the clinical findings which have been obtained with EPT so far, and attempts to understand the physiologic background of these findings.
Collapse
Affiliation(s)
- Ulrich Katscher
- Department of Tomographic Imaging, Philips Research Laboratories, Hamburg, Germany
| | | |
Collapse
|
43
|
Boudreau M, Tardif CL, Stikov N, Sled JG, Lee W, Pike GB. B 1 mapping for bias-correction in quantitative T 1 imaging of the brain at 3T using standard pulse sequences. J Magn Reson Imaging 2017; 46:1673-1682. [PMID: 28301086 DOI: 10.1002/jmri.25692] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/10/2017] [Indexed: 11/07/2022] Open
Abstract
PURPOSE B1 mapping is important for many quantitative imaging protocols, particularly those that include whole-brain T1 mapping using the variable flip angle (VFA) technique. However, B1 mapping sequences are not typically available on many magnetic resonance imaging (MRI) scanners. The aim of this work was to demonstrate that B1 mapping implemented using standard scanner product pulse sequences can produce B1 (and VFA T1 ) maps comparable in quality and acquisition time to advanced techniques. MATERIALS AND METHODS Six healthy subjects were scanned at 3.0T. An interleaved multislice spin-echo echo planar imaging double-angle (EPI-DA) B1 mapping protocol, using a standard product pulse sequence, was compared to two alternative methods (actual flip angle imaging, AFI, and Bloch-Siegert shift, BS). Single-slice spin-echo DA B1 maps were used as a reference for comparison (Ref. DA). VFA flip angles were scaled using each B1 map prior to fitting T1 ; the nominal flip angle case was also compared. RESULTS The pooled-subject voxelwise correlation (ρ) for B1 maps (BS/AFI/EPI-DA) relative to the reference B1 scan (Ref. DA) were ρ = 0.92/0.95/0.98. VFA T1 correlations using these maps were ρ = 0.86/0.88/0.96, much better than without B1 correction (ρ = 0.53). The relative error for each B1 map (BS/AFI/EPI-DA/Nominal) had 95th percentiles of 5/4/3/13%. CONCLUSION Our findings show that B1 mapping implemented using product pulse sequences can provide excellent quality B1 (and VFA T1 ) maps, comparable to other custom techniques. This fast whole-brain measurement (∼2 min) can serve as an excellent alternative for researchers without access to advanced B1 pulse sequences. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1673-1682.
Collapse
Affiliation(s)
- Mathieu Boudreau
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Christine L Tardif
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Canada
| | - Nikola Stikov
- Ecole Polytechnique de Montreal, Montreal, Quebec, Canada.,Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada
| | - John G Sled
- Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Wayne Lee
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - G Bruce Pike
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Hotchkiss Brain Institute and Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
44
|
Lee Y, Callaghan MF, Nagy Z. Analysis of the Precision of Variable Flip Angle T1 Mapping with Emphasis on the Noise Propagated from RF Transmit Field Maps. Front Neurosci 2017; 11:106. [PMID: 28337119 PMCID: PMC5343565 DOI: 10.3389/fnins.2017.00106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/20/2017] [Indexed: 11/13/2022] Open
Abstract
In magnetic resonance imaging, precise measurements of longitudinal relaxation time (T1) is crucial to acquire useful information that is applicable to numerous clinical and neuroscience applications. In this work, we investigated the precision of T1 relaxation time as measured using the variable flip angle method with emphasis on the noise propagated from radiofrequency transmit field ([Formula: see text]) measurements. The analytical solution for T1 precision was derived by standard error propagation methods incorporating the noise from the three input sources: two spoiled gradient echo (SPGR) images and a [Formula: see text] map. Repeated in vivo experiments were performed to estimate the total variance in T1 maps and we compared these experimentally obtained values with the theoretical predictions to validate the established theoretical framework. Both the analytical and experimental results showed that variance in the [Formula: see text] map propagated comparable noise levels into the T1 maps as either of the two SPGR images. Improving precision of the [Formula: see text] measurements significantly reduced the variance in the estimated T1 map. The variance estimated from the repeatedly measured in vivoT1 maps agreed well with the theoretically-calculated variance in T1 estimates, thus validating the analytical framework for realistic in vivo experiments. We concluded that for T1 mapping experiments, the error propagated from the [Formula: see text] map must be considered. Optimizing the SPGR signals while neglecting to improve the precision of the [Formula: see text] map may result in grossly overestimating the precision of the estimated T1 values.
Collapse
Affiliation(s)
- Yoojin Lee
- Laboratory for Social and Neural Systems Research, University of ZürichZürich, Switzerland; Department of Information Technology and Electrical Engineering, Institute of Biomedical Engineering, ETH ZürichZürich, Switzerland
| | - Martina F Callaghan
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London London, UK
| | - Zoltan Nagy
- Laboratory for Social and Neural Systems Research, University of ZürichZürich, Switzerland; Department of Information Technology and Electrical Engineering, Institute of Biomedical Engineering, ETH ZürichZürich, Switzerland
| |
Collapse
|
45
|
Hagberg GE, Bause J, Ethofer T, Ehses P, Dresler T, Herbert C, Pohmann R, Shajan G, Fallgatter A, Pavlova MA, Scheffler K. Whole brain MP2RAGE-based mapping of the longitudinal relaxation time at 9.4T. Neuroimage 2017; 144:203-216. [DOI: 10.1016/j.neuroimage.2016.09.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 11/16/2022] Open
|
46
|
Frass-Kriegl R, Laistler E, Hosseinnezhadian S, Schmid AI, Moser E, Poirier-Quinot M, Darrasse L, Ginefri JC. Multi-turn multi-gap transmission line resonators - Concept, design and first implementation at 4.7T and 7T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 273:65-72. [PMID: 27750073 DOI: 10.1016/j.jmr.2016.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/18/2016] [Accepted: 10/09/2016] [Indexed: 06/06/2023]
Abstract
A novel design scheme for monolithic transmission line resonators (TLRs) is presented - the multi-turn multi-gap TLR (MTMG-TLR) design. The MTMG-TLR design enables the construction of TLRs with multiple turns and multiple gaps. This presents an additional degree of freedom in tuning self-resonant TLRs, as their resonance frequency is fully determined by the coil geometry (e.g. diameter, number of turns, conductor width, etc.). The novel design is evaluated at 4.7T and 7T by simulations and experiments, where it is demonstrated that MTMG-TLRs can be used for MRI, and that the B1 distribution of MTMG-TLRs strongly depends on the number and distribution of turns. A comparison to conventional loop coils revealed that the B1 performance of MTMG-TLRs is comparable to a loop coil with the same mean diameter; however, lower 10g SAR values were found for MTMG-TLRs. The MTMG-TLR design is expected to bring most benefits at high static field, where it allows for independent size and frequency selection, which cannot be achieved with standard TLR design. However, it also enables more accurate geometric optimization at low static field. Thereby, the MTMG-TLR design preserves the intrinsic advantages of TLRs, i.e. mechanical flexibility, high SAR efficiency, mass production, and coil miniaturization.
Collapse
Affiliation(s)
- Roberta Frass-Kriegl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria.
| | - Elmar Laistler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | - Sajad Hosseinnezhadian
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria; Laboratoire d'Imagerie par Résonance Magnétique Médicale et Multi-Modalités (IR4M), Université Paris-Sud, CNRS, Université Paris-Saclay, Bâtiment 220, Rue André Ampère, 91405 Orsay, France
| | - Albrecht Ingo Schmid
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | - Marie Poirier-Quinot
- Laboratoire d'Imagerie par Résonance Magnétique Médicale et Multi-Modalités (IR4M), Université Paris-Sud, CNRS, Université Paris-Saclay, Bâtiment 220, Rue André Ampère, 91405 Orsay, France
| | - Luc Darrasse
- Laboratoire d'Imagerie par Résonance Magnétique Médicale et Multi-Modalités (IR4M), Université Paris-Sud, CNRS, Université Paris-Saclay, Bâtiment 220, Rue André Ampère, 91405 Orsay, France
| | - Jean-Christophe Ginefri
- Laboratoire d'Imagerie par Résonance Magnétique Médicale et Multi-Modalités (IR4M), Université Paris-Sud, CNRS, Université Paris-Saclay, Bâtiment 220, Rue André Ampère, 91405 Orsay, France
| |
Collapse
|
47
|
Tardif CL, Gauthier CJ, Steele CJ, Bazin PL, Schäfer A, Schaefer A, Turner R, Villringer A. Advanced MRI techniques to improve our understanding of experience-induced neuroplasticity. Neuroimage 2016; 131:55-72. [DOI: 10.1016/j.neuroimage.2015.08.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/13/2022] Open
|
48
|
Bisdas S, Chadzynski GL, Braun C, Schittenhelm J, Skardelly M, Hagberg GE, Ethofer T, Pohmann R, Shajan G, Engelmann J, Tabatabai G, Ziemann U, Ernemann U, Scheffler K. MR spectroscopy for in vivo assessment of the oncometabolite 2-hydroxyglutarate and its effects on cellular metabolism in human brain gliomas at 9.4T. J Magn Reson Imaging 2016; 44:823-33. [PMID: 26970248 DOI: 10.1002/jmri.25221] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/22/2016] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To examine in vivo metabolic alterations in the isocitrate dehydrogenase (IDH) mutated gliomas using magnetic resonance spectroscopy (MRS) at magnetic field 9.4T. MATERIALS AND METHODS Spectra were acquired with a 9.4T whole-body scanner with the use of a custom-built head coil (16 channel transmit and 31 channel receive). A modified stimulated echo acquisition mode (STEAM) sequence was used for localization. Eighteen patients with brain tumors of probable glial origin participated in this study. The study was performed in accordance with the guidelines of the local Ethics Committee. RESULTS The increased spectral resolution allowed us to directly address metabolic alterations caused by the specific pathophysiology of IDH mutations including the presence of the oncometabolite 2-hydroxglutarate (2HG) and a significant decrease of the pooled glutamate and glutamine (20%, P = 0.024), which probably reflects an attempt to replenish α-ketoglutarate lost by conversion to 2HG. We also observed significantly reduced glutathione (GSH) levels (39%, P = 0.019), which could be similarly caused by depletion of dihydronicotinamide-adenine dinucleotide phosphate (NADPH) during this conversion in IDH mutant gliomas. CONCLUSION We demonstrate that MRS at 9.4T provides a noninvasive measure of 2HG in vivo, which may be used for therapy planning and prognostication, and may provide insights into related pathophysiologic metabolic alterations associated with IDH mutations. J. MAGN. RESON. IMAGING 2016;44:823-833.
Collapse
Affiliation(s)
- Sotirios Bisdas
- Department of Neuroradiology, Eberhard-Karls University Tübingen, Tübingen, Germany.,Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK.,Center for CNS tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Grzegorz L Chadzynski
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University Tübingen, Tübingen, Germany. .,High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | - Christian Braun
- Center for CNS tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Tübingen, Germany.,Interdisciplinary Division of Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberahrd Karls University, Tübingen, Germany
| | - Jens Schittenhelm
- Center for CNS tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,Interdisciplinary Division of Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberahrd Karls University, Tübingen, Germany.,Department of Neuropathology, Eberhard-Karls University Tübingen, Tübingen, Germany.,Center for Personalized Medicine, Eberhard Karls University, Tübingen, Germany
| | - Marco Skardelly
- Center for CNS tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,Interdisciplinary Division of Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberahrd Karls University, Tübingen, Germany.,Center for Personalized Medicine, Eberhard Karls University, Tübingen, Germany.,Department of Neurosurgery, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Gisela E Hagberg
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University Tübingen, Tübingen, Germany.,High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Thomas Ethofer
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University Tübingen, Tübingen, Germany.,Clinic for Psychiatry and Psychotherapy, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Rolf Pohmann
- High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - G Shajan
- High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Jörn Engelmann
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University Tübingen, Tübingen, Germany.,High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Ghazaleh Tabatabai
- Center for CNS tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Tübingen, Germany.,Interdisciplinary Division of Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberahrd Karls University, Tübingen, Germany.,Center for Personalized Medicine, Eberhard Karls University, Tübingen, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| | - Ulf Ziemann
- Center for CNS tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Tübingen, Germany.,Center for Personalized Medicine, Eberhard Karls University, Tübingen, Germany
| | - Ulrike Ernemann
- Department of Neuroradiology, Eberhard-Karls University Tübingen, Tübingen, Germany.,Center for CNS tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,Center for Personalized Medicine, Eberhard Karls University, Tübingen, Germany
| | - Klaus Scheffler
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University Tübingen, Tübingen, Germany.,High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
49
|
Michel E, Hernandez D, Lee SY. Electrical conductivity and permittivity maps of brain tissues derived from water content based on T 1 -weighted acquisition. Magn Reson Med 2016; 77:1094-1103. [PMID: 26946979 DOI: 10.1002/mrm.26193] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/15/2016] [Accepted: 02/10/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE To develop an electrical properties tomography (EPT) technique that can provide in vivo electrical conductivity and permittivity images of biological tissue without performing complex-valued radiofrequency field measurements. THEORY AND METHODS Electrical conductivity and permittivity images are modeled as a monotonic function of tissues' water content (W) under the principle of Maxwell's mixture theory. Water content maps are estimated from two spin-echo images having different repetition times (TRs). For the modeling functions, physically measured parameters (electrical properties, water content, and T1 ) of brain cerebrospinal fluid (CSF), gray matter, and white matter are used as landmark literature references. The formulations are validated by a developed electrolyte-protein phantom and by human brain studies at 3 Tesla (T). RESULTS The electrical properties (EPs) of the phantom estimated by the proposed method match well with the values measured on the bench. The conductivity and permittivity maps from all experiments show uncompromised spatial resolution without boundary artifacts and higher contrast when compared with water content maps. CONCLUSIONS Human brain and phantom EP images suggest that water content is a dominating factor in determining the electrical properties of tissues. Despite possible literature inaccuracies, the proposed method offers EP maps that can provide complementary information to current approaches, to facilitate EPT scans in clinical applications. Magn Reson Med 77:1094-1103, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Eric Michel
- Department of Biomedical Engineering, Kyung Hee University, Yongin, Korea
| | - Daniel Hernandez
- Department of Biomedical Engineering, Kyung Hee University, Yongin, Korea
| | - Soo Yeol Lee
- Department of Biomedical Engineering, Kyung Hee University, Yongin, Korea
| |
Collapse
|
50
|
Bause J, Ehses P, Mirkes C, Shajan G, Scheffler K, Pohmann R. Quantitative and functional pulsed arterial spin labeling in the human brain at 9.4 t. Magn Reson Med 2016; 75:1054-63. [DOI: 10.1002/mrm.25671] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Jonas Bause
- Max Planck Institute for Biological Cybernetics, High‐Field Magnetic Resonance CenterTübingen Germany
- Graduate Training Center of Neuronal SciencesInternational Max Planck Research SchoolUniversity of TübingenTübingen Germany
| | - Philipp Ehses
- Max Planck Institute for Biological Cybernetics, High‐Field Magnetic Resonance CenterTübingen Germany
- Department of Biomedical Magnetic ResonanceUniversity of TübingenTübingen Germany
| | - Christian Mirkes
- Max Planck Institute for Biological Cybernetics, High‐Field Magnetic Resonance CenterTübingen Germany
- Department of Biomedical Magnetic ResonanceUniversity of TübingenTübingen Germany
| | - G. Shajan
- Max Planck Institute for Biological Cybernetics, High‐Field Magnetic Resonance CenterTübingen Germany
| | - Klaus Scheffler
- Max Planck Institute for Biological Cybernetics, High‐Field Magnetic Resonance CenterTübingen Germany
- Department of Biomedical Magnetic ResonanceUniversity of TübingenTübingen Germany
| | - Rolf Pohmann
- Max Planck Institute for Biological Cybernetics, High‐Field Magnetic Resonance CenterTübingen Germany
| |
Collapse
|