1
|
Scholten H, Wech T, Köhler S, Smart SS, Boyle JH, Teh I, Köstler H, Schneider JE. On the correction of spiral trajectories on a preclinical MRI scanner with a high-performance gradient insert. NMR IN BIOMEDICINE 2024; 37:e5249. [PMID: 39267310 DOI: 10.1002/nbm.5249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/29/2024] [Accepted: 08/11/2024] [Indexed: 09/17/2024]
Abstract
This study aimed to examine different trajectory correction methods for spiral imaging on a preclinical scanner with high-performance gradients with respect to image quality in a phantom and in vivo. The gold standard method of measuring the trajectories in a separate experiment is compared to an isotropic delay-correction, a correction using the gradient system transfer function (GSTF), and a combination of the two. Three different spiral trajectories, with 96, 16, and three interleaves, are considered. The best image quality is consistently achieved when determining the trajectory in a separate phantom measurement. However, especially for the spiral with 96 interleaves, the other correction methods lead to almost comparable results. Remaining imperfections in the corrected gradient waveforms and trajectories are attributed to asymmetrically occurring undulations in the actual, generated gradients, suggesting that the underlying assumption of linearity is violated. In conclusion, images of sufficient quality can be acquired on preclinical small-animal scanners using spiral k-space trajectories without the need to carry out separate trajectory measurements each time. Depending on the trajectory, a simple isotropic delay-correction or a GSTF-based correction can provide images of similar quality.
Collapse
Affiliation(s)
- Hannah Scholten
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Tobias Wech
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | | | - Sean S Smart
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Jordan H Boyle
- Faculty of Industrial Design Engineering, Delft University of Technology, Delft, The Netherlands
| | - Irvin Teh
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Herbert Köstler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Jürgen E Schneider
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Loubrie S, Trotier A, Ribot E, Massot P, Lefrançois W, Thiaudière E, Dallaudière B, Miraux S, Bourdel-Marchasson I. New setup for multi-parametric MRI in young and old rat gastrocnemius at 4.7 and 7 T during muscle stimulation. NMR IN BIOMEDICINE 2022; 35:e4620. [PMID: 34585794 DOI: 10.1002/nbm.4620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
T1 and T2 relaxation times combined with 31 P spectroscopy have been proven efficient for muscular disease characterization as well as for pre- and post-muscle stimulation measurements. Even though 31 P spectroscopy can already be performed during muscle exercise, no method for T1 and T2 measurement enables this possibility. In this project, a complete setup and protocol for multi-parametrical MRI of the rat gastrocnemius before, during and after muscle stimulation at 4.7 and 7 T is presented. The setup is fully MRI compatible and is composed of a cradle, an electro-stimulator and an electronic card in order to synchronize MRI sequences with muscle stimulation. A 2D triggered radial-encoded Look-Locker sequence was developed, and enabled T1 measurements in less than 2 min on stimulated muscle. Also, a multi-slice multi-echo sequence was adapted and synchronized for T2 measurements as well as 31 P spectroscopy acquisitions in less than 4 min in both cases on stimulated muscle. Methods were validated on young rats using different stimulation paradigms. Then they were applied on older rats to compare quantification results, using the different stimulation paradigms, and allowed observation of metabolic changes related to aging with good reproducibility. The robustness of the whole setup shows wide application opportunities.
Collapse
Affiliation(s)
- Stéphane Loubrie
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
| | - Aurelien Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
| | - Emeline Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
| | - Philippe Massot
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
| | - William Lefrançois
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
| | - Eric Thiaudière
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
| | - Benjamin Dallaudière
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
- Centre d'Imagerie Ostéo-articulaire, Clinique du Sport de Bordeaux-Mérignac, Mérignac, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
| | - Isabelle Bourdel-Marchasson
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
- Pôle de gérontologie clinique, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
3
|
Shoghi KI, Badea CT, Blocker SJ, Chenevert TL, Laforest R, Lewis MT, Luker GD, Manning HC, Marcus DS, Mowery YM, Pickup S, Richmond A, Ross BD, Vilgelm AE, Yankeelov TE, Zhou R. Co-Clinical Imaging Resource Program (CIRP): Bridging the Translational Divide to Advance Precision Medicine. ACTA ACUST UNITED AC 2021; 6:273-287. [PMID: 32879897 PMCID: PMC7442091 DOI: 10.18383/j.tom.2020.00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The National Institutes of Health’s (National Cancer Institute) precision medicine initiative emphasizes the biological and molecular bases for cancer prevention and treatment. Importantly, it addresses the need for consistency in preclinical and clinical research. To overcome the translational gap in cancer treatment and prevention, the cancer research community has been transitioning toward using animal models that more fatefully recapitulate human tumor biology. There is a growing need to develop best practices in translational research, including imaging research, to better inform therapeutic choices and decision-making. Therefore, the National Cancer Institute has recently launched the Co-Clinical Imaging Research Resource Program (CIRP). Its overarching mission is to advance the practice of precision medicine by establishing consensus-based best practices for co-clinical imaging research by developing optimized state-of-the-art translational quantitative imaging methodologies to enable disease detection, risk stratification, and assessment/prediction of response to therapy. In this communication, we discuss our involvement in the CIRP, detailing key considerations including animal model selection, co-clinical study design, need for standardization of co-clinical instruments, and harmonization of preclinical and clinical quantitative imaging pipelines. An underlying emphasis in the program is to develop best practices toward reproducible, repeatable, and precise quantitative imaging biomarkers for use in translational cancer imaging and therapy. We will conclude with our thoughts on informatics needs to enable collaborative and open science research to advance precision medicine.
Collapse
Affiliation(s)
- Kooresh I Shoghi
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Cristian T Badea
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC
| | - Stephanie J Blocker
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC
| | | | - Richard Laforest
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Michael T Lewis
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Gary D Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI
| | - H Charles Manning
- Vanderbilt Center for Molecular Probes-Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN
| | - Daniel S Marcus
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, Durham, NC
| | - Stephen Pickup
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Ann Richmond
- Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN
| | - Brian D Ross
- Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Anna E Vilgelm
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Thomas E Yankeelov
- Departments of Biomedical Engineering, Diagnostic Medicine, and Oncology, Oden Institute for Computational Engineering and Sciences, Austin, TX; and.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Rong Zhou
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
4
|
Sanchez Panchuelo RM, Mougin O, Turner R, Francis ST. Quantitative T1 mapping using multi-slice multi-shot inversion recovery EPI. Neuroimage 2021; 234:117976. [PMID: 33781969 PMCID: PMC8204273 DOI: 10.1016/j.neuroimage.2021.117976] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/27/2021] [Accepted: 03/13/2021] [Indexed: 11/12/2022] Open
Abstract
An efficient multi-slice inversion–recovery EPI (MS-IR-EPI) sequence for fast, high spatial resolution, quantitative T1 mapping is presented, using a segmented simultaneous multi-slice acquisition, combined with slice order shifting across multiple acquisitions. The segmented acquisition minimises the effective TE and readout duration compared to a single-shot EPI scheme, reducing geometric distortions to provide high quality T1 maps with a narrow point-spread function. The precision and repeatability of MS-IR-EPI T1 measurements are assessed using both T1-calibrated and T2-calibrated ISMRM/NIST phantom spheres at 3 and 7 T and compared with single slice IR and MP2RAGE methods. Magnetization transfer (MT) effects of the spectrally-selective fat-suppression (FS) pulses required for in vivo imaging are shown to shorten the measured in-vivo T1 values. We model the effect of these fat suppression pulses on T1 measurements and show that the model can remove their MT contribution from the measured T1, thus providing accurate T1 quantification. High spatial resolution T1 maps of the human brain generated with MS-IR-EPI at 7 T are compared with those generated with the widely implemented MP2RAGE sequence. Our MS-IR-EPI sequence provides high SNR per unit time and sharper T1 maps than MP2RAGE, demonstrating the potential for ultra-high resolution T1 mapping and the improved discrimination of functionally relevant cortical areas in the human brain.
Collapse
Affiliation(s)
- Rosa M Sanchez Panchuelo
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom.
| | - Olivier Mougin
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Robert Turner
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
5
|
Radial MP2RAGE sequence for rapid 3D T 1 mapping of mouse abdomen: application to hepatic metastases. Eur Radiol 2019; 29:5844-5851. [PMID: 30888483 DOI: 10.1007/s00330-019-06081-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVES The T1 longitudinal recovery time is regarded as a biomarker of cancer treatment efficiency. In this scope, the Magnetization Prepared 2 RApid Gradient Echo (MP2RAGE) sequence relevantly complies with fast 3D T1 mapping. Nevertheless, with its Cartesian encoding scheme, it is very sensitive to respiratory motion. Consequently, a radial encoding scheme was implemented for the detection and T1 measurement of hepatic metastases in mice at 7T. METHODS A 3D radial encoding scheme was developed using a golden angle distribution for the k-space trajectories. As in that case, each projection contributes to the image contrast, the signal equations had to be modified. Phantoms containing increasing gadoteridol concentrations were used to determine the accuracy of the sequence in vitro. Healthy mice were repetitively scanned to assess the reproducibility of the T1 values. The growth of hepatic metastases was monitored. Undersampling robustness was also evaluated. RESULTS The accuracy of the T1 values obtained with the radial MP2RAGE sequence was > 90% compared to the Inversion-Recovery sequence. The motion robustness of this new sequence also enabled repeatable T1 measurements on abdominal organs. Hepatic metastases of less than 1-mm diameter were easily detected and T1 heterogeneities within the metastasis and between the metastases within the same animal were measured. With a twofold acceleration factor using undersampling, high-quality 3D T1 abdominal maps were achieved in 9 min. CONCLUSIONS The radial MP2RAGE sequence could be used for fast 3D T1 mapping, to detect and characterize metastases in regions subjected to respiratory motion. KEY POINTS • The Cartesian encoding of the MP2RAGE sequence was modified to a radial encoding. The modified sequence enabled accurate T 1 measurements on phantoms and on abdominal organs of mice. • Hepatic metastases were easily detected due to high contrast. Heterogeneity in T 1 was measured within the metastases and between each metastasis within the same animal. • As implementation of this sequence does not require specific hardware, we expect that it could be readily available for clinical practice in humans.
Collapse
|
6
|
Chen Y, Lo WC, Hamilton JI, Barkauskas K, Saybasili H, Wright KL, Batesole J, Griswold MA, Gulani V, Seiberlich N. Single breath-hold 3D cardiac T 1 mapping using through-time spiral GRAPPA. NMR IN BIOMEDICINE 2018; 31:e3923. [PMID: 29637637 PMCID: PMC5980781 DOI: 10.1002/nbm.3923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
The quantification of cardiac T1 relaxation time holds great potential for the detection of various cardiac diseases. However, as a result of both cardiac and respiratory motion, only one two-dimensional T1 map can be acquired in one breath-hold with most current techniques, which limits its application for whole heart evaluation in routine clinical practice. In this study, an electrocardiogram (ECG)-triggered three-dimensional Look-Locker method was developed for cardiac T1 measurement. Fast three-dimensional data acquisition was achieved with a spoiled gradient-echo sequence in combination with a stack-of-spirals trajectory and through-time non-Cartesian generalized autocalibrating partially parallel acquisition (GRAPPA) acceleration. The effects of different magnetic resonance parameters on T1 quantification with the proposed technique were first examined by simulating data acquisition and T1 map reconstruction using Bloch equation simulations. Accuracy was evaluated in studies with both phantoms and healthy subjects. These results showed that there was close agreement between the proposed technique and the reference method for a large range of T1 values in phantom experiments. In vivo studies further demonstrated that rapid cardiac T1 mapping for 12 three-dimensional partitions (spatial resolution, 2 × 2 × 8 mm3 ) could be achieved in a single breath-hold of ~12 s. The mean T1 values of myocardial tissue and blood obtained from normal volunteers at 3 T were 1311 ± 66 and 1890 ± 159 ms, respectively. In conclusion, a three-dimensional T1 mapping technique was developed using a non-Cartesian parallel imaging method, which enables fast and accurate T1 mapping of cardiac tissues in a single short breath-hold.
Collapse
Affiliation(s)
- Yong Chen
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Wei-Ching Lo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jesse I Hamilton
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kestutis Barkauskas
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Katherine L Wright
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Joshua Batesole
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A Griswold
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vikas Gulani
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nicole Seiberlich
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Anderson CE, Wang CY, Gu Y, Darrah R, Griswold MA, Yu X, Flask CA. Regularly incremented phase encoding - MR fingerprinting (RIPE-MRF) for enhanced motion artifact suppression in preclinical cartesian MR fingerprinting. Magn Reson Med 2017; 79:2176-2182. [PMID: 28796368 DOI: 10.1002/mrm.26865] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE The regularly incremented phase encoding-magnetic resonance fingerprinting (RIPE-MRF) method is introduced to limit the sensitivity of preclinical MRF assessments to pulsatile and respiratory motion artifacts. METHODS As compared to previously reported standard Cartesian-MRF methods (SC-MRF), the proposed RIPE-MRF method uses a modified Cartesian trajectory that varies the acquired phase-encoding line within each dynamic MRF dataset. Phantoms and mice were scanned without gating or triggering on a 7T preclinical MRI scanner using the RIPE-MRF and SC-MRF methods. In vitro phantom longitudinal relaxation time (T1 ) and transverse relaxation time (T2 ) measurements, as well as in vivo liver assessments of artifact-to-noise ratio (ANR) and MRF-based T1 and T2 mean and standard deviation, were compared between the two methods (n = 5). RESULTS RIPE-MRF showed significant ANR reductions in regions of pulsatility (P < 0.005) and respiratory motion (P < 0.0005). RIPE-MRF also exhibited improved precision in T1 and T2 measurements in comparison to the SC-MRF method (P < 0.05). The RIPE-MRF and SC-MRF methods displayed similar mean T1 and T2 estimates (difference in mean values < 10%). CONCLUSION These results show that the RIPE-MRF method can provide effective motion artifact suppression with minimal impact on T1 and T2 accuracy for in vivo small animal MRI studies. Magn Reson Med 79:2176-2182, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Christian E Anderson
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Charlie Y Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yuning Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rebecca Darrah
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A Griswold
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chris A Flask
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
8
|
In vivo MEMRI characterization of brain metastases using a 3D Look-Locker T1-mapping sequence. Sci Rep 2016; 6:39449. [PMID: 27995976 PMCID: PMC5171659 DOI: 10.1038/srep39449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/22/2016] [Indexed: 12/31/2022] Open
Abstract
Although MEMRI (Manganese Enhanced MRI) informations were obtained on primary tumors in small animals, MEMRI data on metastases are lacking. Thus, our goal was to determine if 3D Look-Locker T1 mapping was an efficient method to evaluate Mn ions transport in brain metastases in vivo. The high spatial resolution in 3D (156 × 156 × 218 μm) of the sequence enabled to detect metastases of 0.3 mm3. In parallel, the T1 quantitation enabled to distinguish three populations of MDA-MB-231 derived brain metastases after MnCl2 intravenous injection: one with a healthy blood-tumor barrier that did not internalize Mn2+ ions, and two others, which T1 shortened drastically by 54.2% or 24%. Subsequent scans of the mice, enabled by the fast acquisition (23 min), demonstrated that these T1 reached back their pre-injection values in 24 h. Contrarily to metastases, the T1 of U87-MG glioma remained 26.2% shorter for one week. In vitro results supported the involvement of the Transient Receptor Potential channels and the Calcium-Sensing Receptor in the uptake and efflux of Mn2+ ions, respectively. This study highlights the ability of the 3D Look-Locker T1 mapping sequence to study heterogeneities (i) amongst brain metastases and (ii) between metastases and glioma regarding Mn transport.
Collapse
|
9
|
Castets CR, Lefrançois W, Wecker D, Ribot EJ, Trotier AJ, Thiaudière E, Franconi JM, Miraux S. Fast 3D ultrashort echo-time spiral projection imaging using golden-angle: A flexible protocol for in vivo mouse imaging at high magnetic field. Magn Reson Med 2016; 77:1831-1840. [PMID: 27170060 DOI: 10.1002/mrm.26263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE To develop a fast three-dimensional (3D) k-space encoding method based on spiral projection imaging (SPI) with an interleaved golden-angle approach and to validate this novel sequence on small animal models. METHODS A disk-like trajectory, in which each disk contained spirals, was developed. The 3D encoding was performed by tilting the disks with a golden angle. The sharpness was first calculated at different T2* values. Then, the sharpness was measured on phantom using variable undersampling ratios. Finally, the sampling method was validated by whole brain time-of-flight angiography and ultrasmall superparamagnetic iron oxide (USPIO) enhanced free-breathing liver angiography on mouse. RESULTS The in vitro results demonstrated the robustness of the method for short T2* and high undersampling ratios. In vivo experiments showed the ability to properly detect small vessels in the brain with an acquisition time shorter than 1 min. Free-breathing mice liver angiography showed the insensitivity of this protocol toward motions and flow artifacts, and enabled the visualization of liver motion during breathing. CONCLUSIONS The method implemented here allowed fast 3D k-space sampling with a high undersampling ratio. Combining the advantages of center-out spirals with the flexibility of the golden angle approach could have major implications for real-time imaging. Magn Reson Med 77:1831-1840, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Charles R Castets
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - William Lefrançois
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | | | - Emeline J Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Aurélien J Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Eric Thiaudière
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| |
Collapse
|