1
|
Shao X, Zhang Z, Ma X, Liu F, Guo H, Ugurbil K, Wu X. Parallel-transmission spatial spectral pulse design with local specific absorption rate control: Demonstration for robust uniform water-selective excitation in the human brain at 7 T. Magn Reson Med 2025; 93:1238-1255. [PMID: 39481025 DOI: 10.1002/mrm.30346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024]
Abstract
PURPOSE To propose a novel method for parallel-transmission (pTx) spatial-spectral pulse design and demonstrate its utility for robust uniform water-selective excitation (water excitation) across the entire brain. THEORY AND METHODS Our design problem is formulated as a magnitude-least-squares minimization with joint RF and k-space optimization under explicit specific-absorption-rate constraints. For improved robustness against off-resonance effects, the spectral component of the excitation target is prescribed to have a water passband and a fat stopband. A two-step algorithm was devised to solve our design problem, with Step 1 aiming to solve a reduced problem to find a sensible start point for Step 2 to solve the original problem. The efficacy of our pulse design was evaluated in simulation, phantom, and human experiments using the commercial Nova head coil. Universal pulses were also designed based on a 10-subject training data set to demonstrate the utility of our method for plug-and-play pTx. RESULTS For kT-points and spiral nonselective parameterizations, our design method outperformed the pTx interleaved binomial approach, reducing RMS error by up to about 35% for water excitation and about 97% for fat suppression (over a 200-Hz bandwidth) while decreasing local specific absorption rate by about 30%. Both our subject-specific and universal pulses improved water excitation, restoring signal loss in the cerebellum while suppressing fat signal even in regions of large susceptibility-induced off-resonances. CONCLUSION Demonstrated useful for 4D (3D spatial, one-dimensional spectral) pTx spatial-spectral pulse design, our proposed method provides an effective solution for robust volumetric uniform water excitation, holding a promise to many ultrahigh-field applications.
Collapse
Affiliation(s)
- Xin Shao
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Zhe Zhang
- Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Ma
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Fan Liu
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Hua Guo
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Li R, Chen X, Liao Y, Xin SX. Evaluation of the RF depositions at 3T in routine clinical scans with respect to the SAR safety to improve efficiency of MRI utilization. BIOMED ENG-BIOMED TE 2025; 70:49-59. [PMID: 39286927 DOI: 10.1515/bmt-2024-0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVES This study explores the potential for improving of 3T MRI utilization by assessing and tailoring RF exposure in routine clinical scans while complying to standard safety limit. METHODS Using two generic human body models, we evaluated pbSAR10g values at four landmark positions (knee, pelvis, thoracic spine, head) at different wbSAR levels. Specifically, we analyzed local SAR10g in different operating modes and computed the maximum safety wbSAR, ensuring compliance with IEC limits. RESULTS In normal operating mode, the RF power deposition reached wbSAR limit before the pbSAR10g limit. In the first level controlled operating mode, pbSAR10g limit is reached before the wbSAR limit in the knee, thoracic spine scanning scenarios, while the wbSAR limit is reached first in the pelvis scanning scenarios, making it the most potential-releasing (up to 33.33 %) scanning scenario. For head exposure, the head SAR10g limit is reached before the wbSAR limit, highlighting the necessity for strict SAR control. Moreover, we calculated the minimum allowable TR for common imaging sequences for reference. CONCLUSIONS Different RF exposure setups are necessary to meet safety standards in various scenarios. By implementing careful RF exposure setups in routine clinical scans, the high potential capacity of 3T MRI can be fully released.
Collapse
Affiliation(s)
- Ruixin Li
- Laboratory of Biophysics, School of Medicine, South China University of Technology Guangzhou, China
| | - Xinlian Chen
- Laboratory of Biophysics, School of Medicine, South China University of Technology Guangzhou, China
| | - Yupeng Liao
- College of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Sherman Xuegang Xin
- Laboratory of Biophysics, School of Medicine, South China University of Technology Guangzhou, China
| |
Collapse
|
3
|
Drago JM, Guerin B, Stockmann JP, Wald LL. Multiphoton parallel transmission (MP-pTx): Pulse design methods and numerical validation. Magn Reson Med 2024; 92:1376-1391. [PMID: 38899391 PMCID: PMC11262987 DOI: 10.1002/mrm.30116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/01/2024] [Accepted: 04/01/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE We propose and evaluate multiphoton parallel transmission (MP-pTx) to mitigate flip angle inhomogeneities in high-field MRI. MP-pTx is an excitation method that utilizes a single, conventional birdcage coil supplemented with low-frequency (kHz) irradiation from a multichannel shim array and/or gradient channels. SAR analysis is simplified to that of a conventional birdcage coil, because only the radiofrequency (RF) field from the birdcage coil produces significant SAR. METHODS MP-pTx employs an off-resonance RF pulse from a conventional birdcage coil supplemented with oscillatingz $$ z $$ -directed fields from a multichannel shim array and/or the gradient coils. We simulate the ability of MP-pTx to create uniform nonselective brain excitations at 7 T using realisticB 1 + $$ {\mathrm{B}}_1^{+} $$ andΔ B 0 $$ \Delta {\mathrm{B}}_0 $$ field maps. The RF, shim array, and gradient waveform's amplitudes and phases are optimized using a genetic algorithm followed by sequential quadratic programming. RESULTS A 1 ms MP-pTx excitation using a 32-channel shim array with current constrained to less than 50 Amp-turns reduced the transverse magnetization's normalized root-mean-squared error from 29% for a conventional birdcage excitation to 6.6% and was nearly 40% better than a 1 ms birdcage coil 5 kT-point excitation with optimized kT-point locations and comparable pulse power. CONCLUSION The MP-pTx method resembles conventional pTx in its goals and approach but replaces the parallel RF channels with cheaper, low-frequency shim channels. The method mitigates high-field flip angle inhomogeneities to a level better than 3 T CP-mode and comparable to 7 T pTx while retaining the straightforward SAR characteristics of conventional birdcage excitations, as low-frequency shim array fields produce negligible SAR.
Collapse
Affiliation(s)
- John M. Drago
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, Massachusetts, USA
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Bastien Guerin
- Harvard Medical School, Boston, Massachusetts, USA
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Jason P. Stockmann
- Harvard Medical School, Boston, Massachusetts, USA
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Lawrence L. Wald
- Harvard Medical School, Boston, Massachusetts, USA
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard-MIT Division of Health Sciences Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Petzold J, Schmitter S, Silemek B, Winter L, Speck O, Ittermann B, Seifert F. Investigation of alternative RF power limit control methods for 0.5T, 1.5T, and 3T parallel transmission cardiac imaging: A simulation study. Magn Reson Med 2024; 91:1659-1675. [PMID: 38031517 DOI: 10.1002/mrm.29932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
PURPOSE To investigate safety and performance aspects of parallel-transmit (pTx) RF control-modes for a body coil atB 0 ≤ 3 T $$ {B}_0\le 3\mathrm{T} $$ . METHODS Electromagnetic simulations of 11 human voxel models in cardiac imaging position were conducted forB 0 = 0.5 T $$ {B}_0=0.5\mathrm{T} $$ ,1.5 T $$ 1.5\mathrm{T} $$ and3 T $$ 3\mathrm{T} $$ and a body coil with a configurable number of transmit channels (1, 2, 4, 8, 16). Three safety modes were considered: the 'SAR-controlled mode' (SCM), where specific absorption rate (SAR) is limited directly, a 'phase agnostic SAR-controlled mode' (PASCM), where phase information is neglected, and a 'power-controlled mode' (PCM), where the voltage amplitude for each channel is limited. For either mode, safety limits were established based on a set of 'anchor' simulations and then evaluated in 'target' simulations on previously unseen models. The comparison allowed to derive safety factors accounting for varying patient anatomies. All control modes were compared in terms of theB 1 + $$ {B}_1^{+} $$ amplitude and homogeneity they permit under their respective safety requirements. RESULTS Large safety factors (approximately five) are needed if only one or two anchor models are investigated but they shrink with increasing number of anchors. The achievableB 1 + $$ {B}_1^{+} $$ is highest for SCM but this advantage is reduced when the safety factor is included. PCM appears to be more robust against variations of subjects. PASCM performance is mostly in between SCM and PCM. Compared to standard circularly polarized (CP) excitation, pTx offers minorB 1 + $$ {B}_1^{+} $$ improvements if local SAR limits are always enforced. CONCLUSION PTx body coils can safely be used atB 0 ≤ 3 T $$ {B}_0\le 3\mathrm{T} $$ . Uncertainties in patient anatomy must be accounted for, however, by simulating many models.
Collapse
Affiliation(s)
- Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Berk Silemek
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Oliver Speck
- Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
5
|
Gao Y, Liu T, Hong T, Fang Y, Jiang W, Zhang X. Subwavelength dielectric waveguide for efficient travelling-wave magnetic resonance imaging. Nat Commun 2024; 15:2298. [PMID: 38485742 PMCID: PMC10940709 DOI: 10.1038/s41467-024-46638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
Magnetic resonance imaging (MRI) has diverse applications in physics, biology, and medicine. Uniform excitation of nuclei spins through circular-polarized transverse magnetic component of electromagnetic field is vital for obtaining unbiased tissue contrasts. However, achieving this in the electrically large human body poses a significant challenge, especially at ultra-high fields (UHF) with increased working frequencies (≥297 MHz). Canonical volume resonators struggle to meet this challenge, while radiative excitation methods like travelling-wave (TW) show promise but often suffer from inadequate excitation efficiency. Here, we introduce a new technique using a subwavelength dielectric waveguide insert that enhances both efficiency and homogeneity at 7 T. Through TE11-to-TM11 mode conversion, power focusing, wave impedance matching, and phase velocity matching, we achieved a 114% improvement in TW efficiency and mitigated the center-brightening effect. This fundamental advancement in TW MRI through effective wave manipulation could promote the electromagnetic design of UHF MRI systems.
Collapse
Affiliation(s)
- Yang Gao
- Hangzhou Institute of Technology, Xidian University, Hangzhou, China.
- School of Electronic Engineering, National Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi'an, China.
- College of Electrical Engineering, Zhejiang University, Hangzhou, China.
| | - Tong Liu
- Hangzhou Institute of Technology, Xidian University, Hangzhou, China
| | - Tao Hong
- Hangzhou Institute of Technology, Xidian University, Hangzhou, China
- School of Electronic Engineering, National Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi'an, China
| | - Youtong Fang
- College of Electrical Engineering, Zhejiang University, Hangzhou, China
| | - Wen Jiang
- Hangzhou Institute of Technology, Xidian University, Hangzhou, China
- School of Electronic Engineering, National Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi'an, China
| | - Xiaotong Zhang
- College of Electrical Engineering, Zhejiang University, Hangzhou, China.
- Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China.
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Kazemivalipour E, Wald LL, Guerin B. Comparison of tight-fitting 7T parallel-transmit head array designs using excitation uniformity and local specific absorption rate metrics. Magn Reson Med 2024; 91:1209-1224. [PMID: 37927216 PMCID: PMC10848211 DOI: 10.1002/mrm.29900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 09/15/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE We model the performance of parallel transmission (pTx) arrays with 8, 16, 24, and 32 channels and varying loop sizes built on a close-fitting helmet for brain imaging at 7 T and compare their local specific absorption rate (SAR) and flip-angle performances to that of birdcage coil (used as a baseline) and cylindrical 8-channel and 16-channel pTx coils (single-row and dual-row). METHODS We use the co-simulation approach along with MATLAB scripting for batch-mode simulation of the coils. For each coil, we extracted B1 + maps and SAR matrices, which we compressed using the virtual observation points algorithm, and designed slice-selective RF shimming pTx pulses with multiple local SAR and peak power constraints to generate L-curves in the transverse, coronal, and sagittal orientations. RESULTS Helmet designs outperformed cylindrical pTx arrays at a constant number of channels in the flip-angle uniformity at a constant local SAR metric: up to 29% for 8-channel arrays, and up to 34% for 16-channel arrays, depending on the slice orientation. For all helmet arrays, increasing the loop diameter led to better local SAR versus flip-angle uniformity tradeoffs, although this effect was more pronounced for the 8-channel and 16-channel systems than the 24-channel and 32-channel systems, as the former have more limited degrees of freedom and therefore benefit more from loop-size optimization. CONCLUSION Helmet pTx arrays significantly outperformed cylindrical arrays with the same number of channels in local SAR and flip-angle uniformity metrics. This improvement was especially pronounced for non-transverse slice excitations. Loop diameter optimization for helmets appears to favor large loops, compatible with nearest-neighbor decoupling by overlap.
Collapse
Affiliation(s)
- Ehsan Kazemivalipour
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L. Wald
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences Technology, Cambridge, Massachusetts, USA
| | - Bastien Guerin
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Choi CH, Webb A, Orzada S, Kelenjeridze M, Shah NJ, Felder J. A Review of Parallel Transmit Arrays for Ultra-High Field MR Imaging. IEEE Rev Biomed Eng 2024; 17:351-368. [PMID: 37022919 DOI: 10.1109/rbme.2023.3244132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Parallel transmission (pTX) techniques are required to tackle a number of challenges, e.g., the inhomogeneous distribution of the transmit field and elevated specific absorption rate (SAR), in ultra-high field (UHF) MR imaging. Additionally, they offer multiple degrees of freedom to create temporally- and spatially-tailored transverse magnetization. Given the increasing availability of MRI systems at 7 T and above, it is anticipated that interest in pTX applications will grow accordingly. One of the key components in MR systems capable of pTX is the design of the transmit array, as this has a major impact on performance in terms of power requirements, SAR and RF pulse design. While several reviews on pTX pulse design and the clinical applicability of UHF exist, there is currently no systematic review of pTX transmit/transceiver coils and their associated performance. In this article, we analyze transmit array concepts to determine the strengths and weaknesses of different types of design. We systematically review the different types of individual antennas employed for UHF, their combination into pTX arrays, and methods to decouple the individual elements. We also reiterate figures-of-merit (FoMs) frequently employed to describe the performance of pTX arrays and summarize published array designs in terms of these FoMs.
Collapse
|
8
|
Fiedler TM, Orzada S, Flöser M, Rietsch SHG, Schmidt S, Stelter JK, Wittrich M, Quick HH, Bitz AK, Ladd ME. Performance and safety assessment of an integrated transmit array for body imaging at 7 T under consideration of specific absorption rate, tissue temperature, and thermal dose. NMR IN BIOMEDICINE 2022; 35:e4656. [PMID: 34962689 DOI: 10.1002/nbm.4656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/18/2021] [Accepted: 11/05/2021] [Indexed: 05/12/2023]
Abstract
In this study, the performance of an integrated body-imaging array for 7 T with 32 radiofrequency (RF) channels under consideration of local specific absorption rate (SAR), tissue temperature, and thermal dose limits was evaluated and the imaging performance was compared with a clinical 3 T body coil. Thirty-two transmit elements were placed in three rings between the bore liner and RF shield of the gradient coil. Slice-selective RF pulse optimizations for B1 shimming and spokes were performed for differently oriented slices in the body under consideration of realistic constraints for power and local SAR. To improve the B1+ homogeneity, safety assessments based on temperature and thermal dose were performed to possibly allow for higher input power for the pulse optimization than permissible with SAR limits. The results showed that using two spokes, the 7 T array outperformed the 3 T birdcage in all the considered regions of interest. However, a significantly higher SAR or lower duty cycle at 7 T is necessary in some cases to achieve similar B1+ homogeneity as at 3 T. The homogeneity in up to 50 cm-long coronal slices can particularly benefit from the high RF shim performance provided by the 32 RF channels. The thermal dose approach increases the allowable input power and the corresponding local SAR, in one example up to 100 W/kg, without limiting the exposure time necessary for an MR examination. In conclusion, the integrated antenna array at 7 T enables a clinical workflow for body imaging and comparable imaging performance to a conventional 3 T clinical body coil.
Collapse
Affiliation(s)
- Thomas M Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Orzada
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Flöser
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan H G Rietsch
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Simon Schmidt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Jonathan K Stelter
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Wittrich
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Andreas K Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, FH Aachen - University of Applied Sciences, Aachen, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Schick F, Pieper CC, Kupczyk P, Almansour H, Keller G, Springer F, Mürtz P, Endler C, Sprinkart AM, Kaufmann S, Herrmann J, Attenberger UI. 1.5 vs 3 Tesla Magnetic Resonance Imaging: A Review of Favorite Clinical Applications for Both Field Strengths-Part 1. Invest Radiol 2021; 56:680-691. [PMID: 34324464 DOI: 10.1097/rli.0000000000000812] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ABSTRACT Whole-body magnetic resonance imaging (MRI) systems with a field strength of 3 T have been offered by all leading manufacturers for approximately 2 decades and are increasingly used in clinical diagnostics despite higher costs. Technologically, MRI systems operating at 3 T have reached a high standard in recent years, as well as the 1.5-T devices that have been in use for a longer time. For modern MRI systems with 3 T, more complexity is required, especially for the magnet and the radiofrequency (RF) system (with multichannel transmission). Many clinical applications benefit greatly from the higher field strength due to the higher signal yield (eg, imaging of the brain or extremities), but there are also applications where the disadvantages of 3 T might outweigh the advantages (eg, lung imaging or examinations in the presence of implants). This review describes some technical features of modern 1.5-T and 3-T whole-body MRI systems, and reports on the experience of using both types of devices in different clinical settings, with all sections written by specialist radiologists in the respective fields.This first part of the review includes an overview of the general physicotechnical aspects of both field strengths and elaborates the special conditions of diffusion imaging. Many relevant aspects in the application areas of musculoskeletal imaging, abdominal imaging, and prostate diagnostics are discussed.
Collapse
Affiliation(s)
- Fritz Schick
- From the Section of Experimental Radiology, Department of Radiology, Diagnostic, and Interventional Radiology, University of Tübingen, Tübingen
| | | | - Patrick Kupczyk
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn
| | - Haidara Almansour
- Department of Radiology, Diagnostic, and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Gabriel Keller
- Department of Radiology, Diagnostic, and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Fabian Springer
- Department of Radiology, Diagnostic, and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Petra Mürtz
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn
| | - Christoph Endler
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn
| | - Alois M Sprinkart
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn
| | - Sascha Kaufmann
- Department of Radiology, Diagnostic, and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Judith Herrmann
- Department of Radiology, Diagnostic, and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Ulrike I Attenberger
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn
| |
Collapse
|
10
|
Yetisir F, Abaci Turk E, Guerin B, Gagoski BA, Grant PE, Adalsteinsson E, Wald LL. Safety and imaging performance of two-channel RF shimming for fetal MRI at 3T. Magn Reson Med 2021; 86:2810-2821. [PMID: 34240759 DOI: 10.1002/mrm.28895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE This study investigates whether two-channel radiofrequency (RF) shimming can improve imaging without increasing specific absorption rate (SAR) for fetal MRI at 3T. METHODS Transmit field ( B 1 + ) average and variation in the fetus was simulated in seven numerical pregnant body models. Safety was quantified by maternal and fetal peak local SAR and fetal average SAR. The shim parameter space was divided into improved B 1 + (magnitude and homogeneity) and improved SAR regions, and an overlap where RF shimming improved both classes of metrics compared with birdcage mode was assessed. Additionally, the effect of fetal position, tissue detail, and dielectric properties on transmit field and SAR was studied. RESULTS A region of subject-specific RF shim parameter space improving both B 1 + and SAR metrics was found for five of the seven models. Optimizing only B 1 + metrics improved B 1 + efficiency across models by 15% on average and 28% for the best-case model. B 1 + variation improved by 26% on average and 49% for the best case. However, for these shim settings, fetal SAR increased by up to 106%. The overlap region, where both B 1 + and SAR metrics improve, showed an average B 1 + efficiency improvement of 6% on average across models and 19% for the best-case model. B 1 + variation improved by 13% on average and 40% for the best case. RFS could also decrease maternal/fetal SAR by up to 49%/58%. CONCLUSION RF shimming can improve imaging compared with birdcage mode without increasing fetal and maternal SAR when a patient-specific SAR model is incorporated into the shimming procedure.
Collapse
Affiliation(s)
- Filiz Yetisir
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Esra Abaci Turk
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Borjan A Gagoski
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Elfar Adalsteinsson
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
11
|
Fiedler TM, Orzada S, Flöser M, Rietsch SHG, Quick HH, Ladd ME, Bitz AK. Performance analysis of integrated RF microstrip transmit antenna arrays with high channel count for body imaging at 7 T. NMR IN BIOMEDICINE 2021; 34:e4515. [PMID: 33942938 DOI: 10.1002/nbm.4515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 05/12/2023]
Abstract
The aim of the current study was to investigate the performance of integrated RF transmit arrays with high channel count consisting of meander microstrip antennas for body imaging at 7 T and to optimize the position and number of transmit elements. RF simulations using multiring antenna arrays placed behind the bore liner were performed for realistic exposure conditions for body imaging. Simulations were performed for arrays with as few as eight elements and for arrays with high channel counts of up to 48 elements. The B1+ field was evaluated regarding the degrees of freedom for RF shimming in the abdomen. Worst-case specific absorption rate (SARwc ), SAR overestimation in the matrix compression, the number of virtual observation points (VOPs) and SAR efficiency were evaluated. Constrained RF shimming was performed in differently oriented regions of interest in the body, and the deviation from a target B1+ field was evaluated. Results show that integrated multiring arrays are able to generate homogeneous B1+ field distributions for large FOVs, especially for coronal/sagittal slices, and thus enable body imaging at 7 T with a clinical workflow; however, a low duty cycle or a high SAR is required to achieve homogeneous B1+ distributions and to exploit the full potential. In conclusion, integrated arrays allow for high element counts that have high degrees of freedom for the pulse optimization but also produce high SARwc , which reduces the SAR accuracy in the VOP compression for low-SAR protocols, leading to a potential reduction in array performance. Smaller SAR overestimations can increase SAR accuracy, but lead to a high number of VOPs, which increases the computational cost for VOP evaluation and makes online SAR monitoring or pulse optimization challenging. Arrays with interleaved rings showed the best results in the study.
Collapse
Affiliation(s)
- Thomas M Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Orzada
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Martina Flöser
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan H G Rietsch
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Andreas K Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, FH Aachen - University of Applied Sciences, Aachen, Germany
| |
Collapse
|
12
|
Tal A, Zhao T, Schirda C, Hetherington HP, Pan JW, Gonen O. Fast, regional three-dimensional hybrid (1D-Hadamard 2D-rosette) proton MR spectroscopic imaging in the human temporal lobes. NMR IN BIOMEDICINE 2021; 34:e4507. [PMID: 33754420 PMCID: PMC8122085 DOI: 10.1002/nbm.4507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 05/05/2023]
Abstract
1 H-MRSI is commonly performed with gradient phase encoding, due to its simplicity and minimal radio frequency (RF) heating (specific absorption rate). Its two well-known main problems-(i) "voxel bleed" due to the intrinsic point-spread function, and (ii) chemical shift displacement error (CSDE) when slice-selective RF pulses are used, which worsens with increasing volume of interest (VOI) size-have long become accepted as unavoidable. Both problems can be mitigated with Hadamard multislice RF encoding. This is demonstrated and quantified with numerical simulations, in a multislice phantom and in five healthy young adult volunteers at 3 T, targeting a 2-cm thick temporal lobe VOI through the bilateral hippocampus. This frequently targeted region (e.g. in epilepsy and Alzheimer's disease) is subject to strong, 1-2 ppm.cm-1 regional B0, susceptibility gradients that can dramatically reduce the signal-to-noise ratio (SNR) and water suppression effectiveness. The chemical shift imaging (CSI) sequence used a 3-ms Shinnar-Le Roux (SLR) 90° RF pulse, acquiring eight steps in the slice direction. The Hadamard sequence acquired two overlapping slices using the same SLR 90° pulses, under twofold stronger gradients that proportionally halved the CSDE. Both sequences used 2D 20 × 20 rosette spectroscopic imaging (RSI) for in-plane spatial localization and both used RF and gradient performance characteristics that are easily met by all modern MRI instruments. The results show that Hadamard spectroscopic imaging (HSI) suffered dramatically less signal bleed within the VOI compared with CSI (<1% vs. approximately 26% in simulations; and 5%-8% vs. >50%) in a phantom specifically designed to test these effects. The voxels' SNR per unit volume per unit time was also 40% higher for HSI. In a group of five healthy volunteers, we show that HSI with in-plane 2D-RSI facilitates fast, 3D multivoxel encoding at submilliliter spatial resolution, over the bilateral human hippocampus, in under 10 min, with negligible CSDE, spectral and spatial contamination and more than 6% improved SNR per unit time per unit volume.
Collapse
Affiliation(s)
- Assaf Tal
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot, Israel
| | - Tiejun Zhao
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Siemens Medical Solutions USA Inc., Malvern, Pennsylvania, USA
| | - Claudiu Schirda
- Departments of Radiology and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hoby P. Hetherington
- Departments of Radiology and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jullie W. Pan
- Departments of Radiology and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Oded Gonen
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
13
|
Tavaf N, Lagore RL, Jungst S, Gunamony S, Radder J, Grant A, Moeller S, Auerbach E, Ugurbil K, Adriany G, Van de Moortele PF. A self-decoupled 32-channel receive array for human-brain MRI at 10.5 T. Magn Reson Med 2021; 86:1759-1772. [PMID: 33780032 DOI: 10.1002/mrm.28788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE Receive array layout, noise mitigation, and B0 field strength are crucial contributors to SNR and parallel-imaging performance. Here, we investigate SNR and parallel-imaging gains at 10.5 T compared with 7 T using 32-channel receive arrays at both fields. METHODS A self-decoupled 32-channel receive array for human brain imaging at 10.5 T (10.5T-32Rx), consisting of 31 loops and one cloverleaf element, was co-designed and built in tandem with a 16-channel dual-row loop transmitter. Novel receive array design and self-decoupling techniques were implemented. Parallel imaging performance, in terms of SNR and noise amplification (g-factor), of the 10.5T-32Rx was compared with the performance of an industry-standard 32-channel receiver at 7 T (7T-32Rx) through experimental phantom measurements. RESULTS Compared with the 7T-32Rx, the 10.5T-32Rx provided 1.46 times the central SNR and 2.08 times the peripheral SNR. Minimum inverse g-factor value of the 10.5T-32Rx (min[1/g] = 0.56) was 51% higher than that of the 7T-32Rx (min[1/g] = 0.37) with R = 4 × 4 2D acceleration, resulting in significantly enhanced parallel-imaging performance at 10.5 T compared with 7 T. The g-factor values of 10.5 T-32 Rx were on par with those of a 64-channel receiver at 7 T (eg, 1.8 vs 1.9, respectively, with R = 4 × 4 axial acceleration). CONCLUSION Experimental measurements demonstrated effective self-decoupling of the receive array as well as substantial gains in SNR and parallel-imaging performance at 10.5 T compared with 7 T.
Collapse
Affiliation(s)
- Nader Tavaf
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Russell L Lagore
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Steve Jungst
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shajan Gunamony
- Center for Cognitive Neuroimaging, University of Glasgow, Glasgow, Scotland
| | - Jerahmie Radder
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrea Grant
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Edward Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | | |
Collapse
|
14
|
Noncontrast Magnetic Resonance Angiography in the Era of Nephrogenic Systemic Fibrosis and Gadolinium Deposition. J Comput Assist Tomogr 2021; 45:37-51. [PMID: 32976265 DOI: 10.1097/rct.0000000000001074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ABSTRACT Gadolinium-based contrast agents for clinical magnetic resonance imaging are overall safe. However, the discovery of nephrogenic systemic fibrosis in patients with severe renal impairment and gadolinium deposition in patients receiving contrast have generated developments in contrast-free imaging of the vasculature, that is, noncontrast magnetic resonance angiography. This article presents an update on noncontrast magnetic resonance angiography techniques, with comparison to other imaging alternatives. Potential benefits and challenges to implementation, and evidence to date for various clinical applications are discussed.
Collapse
|
15
|
Abadi E, Segars WP, Tsui BMW, Kinahan PE, Bottenus N, Frangi AF, Maidment A, Lo J, Samei E. Virtual clinical trials in medical imaging: a review. J Med Imaging (Bellingham) 2020; 7:042805. [PMID: 32313817 PMCID: PMC7148435 DOI: 10.1117/1.jmi.7.4.042805] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
The accelerating complexity and variety of medical imaging devices and methods have outpaced the ability to evaluate and optimize their design and clinical use. This is a significant and increasing challenge for both scientific investigations and clinical applications. Evaluations would ideally be done using clinical imaging trials. These experiments, however, are often not practical due to ethical limitations, expense, time requirements, or lack of ground truth. Virtual clinical trials (VCTs) (also known as in silico imaging trials or virtual imaging trials) offer an alternative means to efficiently evaluate medical imaging technologies virtually. They do so by simulating the patients, imaging systems, and interpreters. The field of VCTs has been constantly advanced over the past decades in multiple areas. We summarize the major developments and current status of the field of VCTs in medical imaging. We review the core components of a VCT: computational phantoms, simulators of different imaging modalities, and interpretation models. We also highlight some of the applications of VCTs across various imaging modalities.
Collapse
Affiliation(s)
- Ehsan Abadi
- Duke University, Department of Radiology, Durham, North Carolina, United States
| | - William P. Segars
- Duke University, Department of Radiology, Durham, North Carolina, United States
| | - Benjamin M. W. Tsui
- Johns Hopkins University, Department of Radiology, Baltimore, Maryland, United States
| | - Paul E. Kinahan
- University of Washington, Department of Radiology, Seattle, Washington, United States
| | - Nick Bottenus
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
- University of Colorado Boulder, Department of Mechanical Engineering, Boulder, Colorado, United States
| | - Alejandro F. Frangi
- University of Leeds, School of Computing, Leeds, United Kingdom
- University of Leeds, School of Medicine, Leeds, United Kingdom
| | - Andrew Maidment
- University of Pennsylvania, Department of Radiology, Philadelphia, Pennsylvania, United States
| | - Joseph Lo
- Duke University, Department of Radiology, Durham, North Carolina, United States
| | - Ehsan Samei
- Duke University, Department of Radiology, Durham, North Carolina, United States
| |
Collapse
|
16
|
Cao Z, Yan X, Gore JC, Grissom WA. Designing parallel transmit head coil arrays based on radiofrequency pulse performance. Magn Reson Med 2019; 83:2331-2342. [PMID: 31722120 DOI: 10.1002/mrm.28068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/23/2019] [Accepted: 10/16/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE A new approach to design parallel transmit (pTx) head arrays is proposed that integrates transmit radiofrequency pulse designs with electromagnetic modeling of array coil elements. THEORY AND METHODS An approach to design pTx head arrays is proposed that finds optimal groupings of a large number of coils into a small number of channels. An algorithm is proposed to extend array-compressed parallel transmit pulse design by adding the ability to optimally select and prune coil elements, in addition to optimizing compression weights. The performance of the method is demonstrated in simulations of dynamic multislice shimming of the human brain in axial, coronal, and sagittal directions, and of reduced field-of-view excitation targeting the human occipital lobe, with simulated electromagnetic field maps from a group of 5 human head models at 7T. RESULTS For both dynamic multislice shimming and reduced field-of-view excitation, the method successfully designed pTx arrays that simultaneously achieved in general 15% lower mean excitation errors with 20% lower SDs, along with 20% lower mean global averaged specific absorption rate and 50% lower SD than previously reported pTx head array designs. CONCLUSION With the proposed optimal coil element selection algorithm, the array-compressed parallel transmit pulse design can be extended to design pTx transmit head arrays with joint consideration of the fields within the sample and the radiofrequency pulse. The pTx arrays from such an approach achieved higher transmit excitation accuracy, lower radiofrequency heating in subjects, and more robust performance across subjects compared with previously reported pTx head arrays with the same number of channels.
Collapse
Affiliation(s)
- Zhipeng Cao
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Nashville, Tennessee
| | - Xinqiang Yan
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Nashville, Tennessee
| | - John C Gore
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
17
|
Wu X, Auerbach EJ, Vu AT, Moeller S, Van de Moortele PF, Yacoub E, Uğurbil K. Human Connectome Project-style resting-state functional MRI at 7 Tesla using radiofrequency parallel transmission. Neuroimage 2018; 184:396-408. [PMID: 30237033 DOI: 10.1016/j.neuroimage.2018.09.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 01/16/2023] Open
Abstract
We investigate the utility of radiofrequency (RF) parallel transmission (pTx) for whole-brain resting-state functional MRI (rfMRI) acquisition at 7 Tesla (7T). To this end, Human Connectome Project (HCP)-style data acquisitions were chosen as a showcase example. Five healthy subjects were scanned in pTx and single-channel transmit (1Tx) modes. The pTx data were acquired using a prototype 16-channel transmit system and a commercially available Nova 8-channel transmit 32-channel receive RF head coil. Additionally, pTx single-spoke multiband (MB) pulses were designed to image sagittal slices. HCP-style 7T rfMRI data (1.6-mm isotropic resolution, 5-fold slice and 2-fold in-plane acceleration, 3600 image volumes and ∼ 1-h scan) were acquired with pTx and the results were compared to those acquired with the original 7T HCP rfMRI protocol. The use of pTx significantly improved flip-angle uniformity across the brain, with coefficient of variation (i.e., std/mean) of whole-brain flip-angle distribution reduced on average by ∼39%. This in turn yielded ∼17% increase in group temporal SNR (tSNR) as averaged across the entire brain and ∼10% increase in group functional contrast-to-noise ratio (fCNR) as averaged across the grayordinate space (including cortical surfaces and subcortical voxels). Furthermore, when placing a seed in either the posterior parietal lobe or putamen to estimate seed-based dense connectome, the increase in fCNR was observed to translate into stronger correlation of the seed with the rest of the grayordinate space. We have demonstrated the utility of pTx for slice-accelerated high-resolution whole-brain rfMRI at 7T; as compared to current state-of-the-art, the use of pTx improves flip-angle uniformity, increases tSNR, enhances fCNR and strengthens functional connectivity estimation.
Collapse
Affiliation(s)
- Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States.
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - An T Vu
- Center for Imaging of Neurodegenerative Diseases, VA Healthcare System, San Francisco, CA, United States
| | - Steen Moeller
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | | | - Essa Yacoub
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
18
|
Liu C, Jin J, Guo L, Li M, Tesiram Y, Chen H, Liu F, Xin X, Crozier S. MR-based electrical property tomography using a modified finite difference scheme. Phys Med Biol 2018; 63:145013. [PMID: 29897046 DOI: 10.1088/1361-6560/aacc35] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Magnetic resonance electrical property tomography (MR-EPT) reconstructs electrical properties (EPs) from measured magnetic fields in magnetic resonance imaging (MRI) systems. In this study, an MR-EPT method was proposed that utilized a new finite difference approximation of the involved differential wave equation. Compared with existing MR-EPT approaches, the construction of the system matrix involves applying the first derivative twice based on a larger number of neighbouring finite-difference grids, which is different from a standard Laplacian operator on a regular grid structure, leading to a better conditioned linear inverse problem. With improved noise robustness, more faithful EPs can be obtained by the proposed method, particularly at tissue boundaries and regions with a poorly measured magnetic field (low signal-to-noise ratio). Numerical simulations with a specially designed multi-slice phantom and an anatomically accurate head model (Duke) have demonstrated that the proposed method can provide a more faithful reconstruction of EPs compared to existing methods, which usually offer unreliable solutions associated with traditional finite difference approximation of the central wave equation and unrealistic assumptions. Experiments on a 9.4 T MRI system have been conducted to validate the simulations.
Collapse
Affiliation(s)
- Chunyi Liu
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Garwood M, Uğurbil K. RF pulse methods for use with surface coils: Frequency-modulated pulses and parallel transmission. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:84-93. [PMID: 29705035 PMCID: PMC5943143 DOI: 10.1016/j.jmr.2018.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
The first use of a surface coil to obtain a 31P NMR spectrum from an intact rat by Ackerman and colleagues initiated a revolution in magnetic resonance imaging (MRI) and spectroscopy (MRS). Today, we take it for granted that one can detect signals in regions external to an RF coil; at the time, however, this concept was most unusual. In the approximately four decade long period since its introduction, this simple idea gave birth to an increasing number of innovations that has led to transformative changes in the way we collect data in an in vivo magnetic resonance experiment, particularly with MRI of humans. These innovations include spatial localization and/or encoding based on the non-uniform B1 field generated by the surface coil, leading to new spectroscopic localization methods, image acceleration, and unique RF pulses that deal with B1 inhomogeneities and even reduce power deposition. Without the surface coil, many of the major technological advances that define the extraordinary success of MRI in clinical diagnosis and in biomedical research, as exemplified by projects like the Human Connectome Project, would not have been possible.
Collapse
Affiliation(s)
- Michael Garwood
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN 55455 USA.
| | - Kamil Uğurbil
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
20
|
Wu X, Auerbach EJ, Vu AT, Moeller S, Lenglet C, Schmitter S, Van de Moortele PF, Yacoub E, Uğurbil K. High-resolution whole-brain diffusion MRI at 7T using radiofrequency parallel transmission. Magn Reson Med 2018; 80:1857-1870. [PMID: 29603381 DOI: 10.1002/mrm.27189] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 02/20/2018] [Accepted: 03/02/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Investigating the utility of RF parallel transmission (pTx) for Human Connectome Project (HCP)-style whole-brain diffusion MRI (dMRI) data at 7 Tesla (7T). METHODS Healthy subjects were scanned in pTx and single-transmit (1Tx) modes. Multiband (MB), single-spoke pTx pulses were designed to image sagittal slices. HCP-style dMRI data (i.e., 1.05-mm resolutions, MB2, b-values = 1000/2000 s/mm2 , 286 images and 40-min scan) and data with higher accelerations (MB3 and MB4) were acquired with pTx. RESULTS pTx significantly improved flip-angle detected signal uniformity across the brain, yielding ∼19% increase in temporal SNR (tSNR) averaged over the brain relative to 1Tx. This allowed significantly enhanced estimation of multiple fiber orientations (with ∼21% decrease in dispersion) in HCP-style 7T dMRI datasets. Additionally, pTx pulses achieved substantially lower power deposition, permitting higher accelerations, enabling collection of the same data in 2/3 and 1/2 the scan time or of more data in the same scan time. CONCLUSION pTx provides a solution to two major limitations for slice-accelerated high-resolution whole-brain dMRI at 7T; it improves flip-angle uniformity, and enables higher slice acceleration relative to current state-of-the-art. As such, pTx provides significant advantages for rapid acquisition of high-quality, high-resolution truly whole-brain dMRI data.
Collapse
Affiliation(s)
- Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - An T Vu
- Center for Imaging of Neurodegenerative Diseases, VA Healthcare System, San Francisco, California
| | - Steen Moeller
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Sebastian Schmitter
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota.,Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | | | - Essa Yacoub
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
21
|
Uğurbil K. Imaging at ultrahigh magnetic fields: History, challenges, and solutions. Neuroimage 2018; 168:7-32. [PMID: 28698108 PMCID: PMC5758441 DOI: 10.1016/j.neuroimage.2017.07.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 01/06/2023] Open
Abstract
Following early efforts in applying nuclear magnetic resonance (NMR) spectroscopy to study biological processes in intact systems, and particularly since the introduction of 4 T human scanners circa 1990, rapid progress was made in imaging and spectroscopy studies of humans at 4 T and animal models at 9.4 T, leading to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has provided numerous technological solutions to challenges posed at these ultrahigh fields, and demonstrated the existence of significant advantages in signal-to-noise ratio and biological information content. Primary difference from lower fields is the deviation from the near field regime at the radiofrequencies (RF) corresponding to hydrogen resonance conditions. At such ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image non-uniformities for a given sample-coil configuration because of destructive and constructive interferences. These non-uniformities were initially considered detrimental to progress of imaging at high field strengths. However, they are advantageous for parallel imaging in signal reception and transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies and improvements in instrumentation and imaging methods, today ultrahigh fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques.
Collapse
Affiliation(s)
- Kamil Uğurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
22
|
Nagy Z, Oliver-Taylor A, Kuehne A, Goluch S, Weiskopf N. Tx/Rx Head Coil Induces Less RF Transmit-Related Heating than Body Coil in Conductive Metallic Objects Outside the Active Area of the Head Coil. Front Neurosci 2017; 11:15. [PMID: 28184184 PMCID: PMC5266708 DOI: 10.3389/fnins.2017.00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/09/2017] [Indexed: 11/25/2022] Open
Abstract
The transmit-receive (Tx/Rx) birdcage head coil is often used for excitation instead of the body coil because of the presumably lower risk of heating in and around conductive implants. However, this common practice has not been systematically tested. To investigate whether the Tx/Rx birdcage head coil produces less heating than the body coil when scanning individuals with implants, we used a 3T clinical scanner and made temperature measurements around a straight 15 cm conductor using either the Tx/Rx body or the head coil for excitation. Additionally, the transmitted fields of a Tx/Rx head coil were measured both in air and in gel using a resonant and a non-resonant B field probes as well as a non-resonant E field probe. Simulations using a finite-difference time domain solver were compared with the experimental findings. When the body coil was used for excitation, we observed heating around the 15 cm wire at various anatomical locations (both within and outside of the active volume of the head coil). Outside its active area, no such heating was observed while using the Tx/Rx head coil for excitation. The E and B fields of the Tx/Rx birdcage head coil extended well-beyond the physical dimensions of the coil. In air, the fields were monotonically decreasing, while in gel they were more complex with local maxima at the end of the ASTM phantom. These experimental findings were line with the simulations. While caution must always be exercised when scanning individuals with metallic implants, these findings support the use of the Tx/Rx birdcage head coil in place of the body coil at 3T in order to reduce the risk of heating in and around conductive implants that are remote from the head coil.
Collapse
Affiliation(s)
- Zoltan Nagy
- Laboratory for Social and Neural Systems Research, University of ZürichZürich, Switzerland
- Wellcome Trust Centre for Neuroimaging, University College LondonLondon, UK
| | - Aaron Oliver-Taylor
- Department of Neonatology, Institute for Women's Health, University College LondonLondon, UK
| | - Andre Kuehne
- Center for Medical Physics and Biomedical Engineering, Medical University of ViennaVienna, Austria
- MR Center of Excellence, Medical University of ViennaVienna, Austria
| | - Sigrun Goluch
- Center for Medical Physics and Biomedical Engineering, Medical University of ViennaVienna, Austria
- MR Center of Excellence, Medical University of ViennaVienna, Austria
| | - Nikolaus Weiskopf
- Wellcome Trust Centre for Neuroimaging, University College LondonLondon, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
| |
Collapse
|
23
|
Weinberger O, Winter L, Dieringer MA, Els A, Oezerdem C, Rieger J, Kuehne A, Cassara AM, Pfeiffer H, Wetterling F, Niendorf T. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game? PLoS One 2016; 11:e0161863. [PMID: 27598923 PMCID: PMC5012568 DOI: 10.1371/journal.pone.0161863] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/20/2016] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. METHODS Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. RESULTS Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. CONCLUSION Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.
Collapse
Affiliation(s)
- Oliver Weinberger
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Lukas Winter
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Matthias A. Dieringer
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Antje Els
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Celal Oezerdem
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | | | | | - Antonino M. Cassara
- Medical Metrology Department, Physikalisch Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Harald Pfeiffer
- Medical Metrology Department, Physikalisch Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | | | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
- MRI.TOOLS GmbH, Berlin, Germany
| |
Collapse
|
24
|
Wu X, Tian J, Schmitter S, Vaughan JT, Uğurbil K, Van de Moortele PF. Distributing coil elements in three dimensions enhances parallel transmission multiband RF performance: A simulation study in the human brain at 7 Tesla. Magn Reson Med 2016; 75:2464-72. [PMID: 26997332 PMCID: PMC6014621 DOI: 10.1002/mrm.26194] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/18/2016] [Accepted: 02/10/2016] [Indexed: 12/26/2022]
Abstract
PURPOSE We explore the advantages of using a double-ring radiofrequency (RF) array and slice orientation to design parallel transmission (pTx) multiband (MB) pulses for simultaneous multislice (SMS) imaging with whole-brain coverage at 7 Tesla (T). METHODS A double-ring head array with 16 elements split evenly in two rings stacked in the z-direction was modeled and compared with two single-ring arrays consisting of 8 or 16 elements. The array performance was evaluated by designing band-specific pTx MB pulses with local specific absorption rate (SAR) control. The impact of slice orientations was also investigated. RESULTS The double-ring array consistently and significantly outperformed the other two single-ring arrays, with peak local SAR reduced by up to 40% at a fixed excitation error of 0.024. For all three arrays, exciting sagittal or coronal slices yielded better RF performance than exciting axial or oblique slices. CONCLUSIONS A double-ring RF array can be used to drastically improve SAR versus excitation fidelity tradeoff for pTx MB pulse design for brain imaging at 7 T; therefore, it is preferable against single-ring RF array designs when pursuing various biomedical applications of pTx SMS imaging. In comparing the stripline arrays, coronal and sagittal slices are more advantageous than axial and oblique slices for pTx MB pulses. Magn Reson Med 75:2464-2472, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoping Wu
- University of Minnesota Medical School, Center for Magnetic Resonance Research, Minneapolis, MN
| | - Jinfeng Tian
- University of Minnesota Medical School, Center for Magnetic Resonance Research, Minneapolis, MN
| | - Sebastian Schmitter
- University of Minnesota Medical School, Center for Magnetic Resonance Research, Minneapolis, MN
| | - J Tommy Vaughan
- University of Minnesota Medical School, Center for Magnetic Resonance Research, Minneapolis, MN
| | - Kâmil Uğurbil
- University of Minnesota Medical School, Center for Magnetic Resonance Research, Minneapolis, MN
| | | |
Collapse
|
25
|
Measurements of RF power reflected and radiated by multichannel transmit MR coils at 7T. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:371-8. [DOI: 10.1007/s10334-016-0551-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/23/2016] [Accepted: 03/12/2016] [Indexed: 10/22/2022]
|