1
|
Tensaouti F, Desmoulin F, Gilhodes J, Roques M, Ken S, Lotterie JA, Noël G, Truc G, Sunyach MP, Charissoux M, Magné N, Lubrano V, Péran P, Cohen-Jonathan Moyal E, Laprie A. Is pre-radiotherapy metabolic heterogeneity of glioblastoma predictive of progression-free survival? Radiother Oncol 2023; 183:109665. [PMID: 37024057 DOI: 10.1016/j.radonc.2023.109665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND AND PURPOSE All glioblastoma subtypes share the hallmark of aggressive invasion, meaning that it is crucial to identify their different components if we are to ensure effective treatment and improve survival. Proton MR spectroscopic imaging (MRSI) is a noninvasive technique that yields metabolic information and is able to identify pathological tissue with high accuracy. The aim of the present study was to identify clusters of metabolic heterogeneity, using a large MRSI dataset, and determine which of these clusters are predictive of progression-free survival (PFS). MATERIALS AND METHODS MRSI data of 180 patients acquired in a pre-radiotherapy examination were included in the prospective SPECTRO-GLIO trial. Eight features were extracted for each spectrum: Cho/NAA, NAA/Cr, Cho/Cr, Lac/NAA, and the ratio of each metabolite to the sum of all the metabolites. Clustering of data was performed using a mini-batch k-means algorithm. The Cox model and logrank test were used for PFS analysis. RESULTS Five clusters were identified as sharing similar metabolic information and being predictive of PFS. Two clusters revealed metabolic abnormalities. PFS was lower when Cluster 2 was the dominant cluster in patients' MRSI data. Among the metabolites, lactate (present in this cluster and in Cluster 5) was the most statistically significant predictor of poor outcome. CONCLUSION Results showed that pre-radiotherapy MRSI can be used to reveal tumor heterogeneity. Groups of spectra, which have the same metabolic information, reflect the different tissue components representative of tumor burden proliferation and hypoxia. Clusters with metabolic abnormalities and high lactate are predictive of PFS.
Collapse
Affiliation(s)
- Fatima Tensaouti
- Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopôle, Radiation oncology, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.
| | - Franck Desmoulin
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Julia Gilhodes
- Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopôle, Biostatistics, Toulouse, France
| | - Margaux Roques
- CHU Toulouse, Neuroradiology, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Soleakhena Ken
- Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopôle, Engineering and Medical Physics, Toulouse, France; Inserm U1037- Centre de Recherches contre le Cancer de Toulouse, Radiation oncology, Toulouse, France
| | - Jean-Albert Lotterie
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; CHU Toulouse, Nuclear Medicine, Toulouse, France
| | | | - Gilles Truc
- Centre Georges-François Leclerc, Radiation Oncology, Dijon, France
| | | | - Marie Charissoux
- Institut du Cancer de Montpellier, Radiation Oncology, Montpellier, France
| | - Nicolas Magné
- Institut de Cancérologie de la Loire Lucien Neuwirth, Radiation Oncology, Saint-Priest-en-Jarez, France
| | - Vincent Lubrano
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Elizabeth Cohen-Jonathan Moyal
- Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopôle, Radiation oncology, Toulouse, France; Inserm U1037- Centre de Recherches contre le Cancer de Toulouse, Radiation oncology, Toulouse, France
| | - Anne Laprie
- Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopôle, Radiation oncology, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| |
Collapse
|
2
|
Hamamoto R, Takasawa K, Machino H, Kobayashi K, Takahashi S, Bolatkan A, Shinkai N, Sakai A, Aoyama R, Yamada M, Asada K, Komatsu M, Okamoto K, Kameoka H, Kaneko S. Application of non-negative matrix factorization in oncology: one approach for establishing precision medicine. Brief Bioinform 2022; 23:bbac246. [PMID: 35788277 PMCID: PMC9294421 DOI: 10.1093/bib/bbac246] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022] Open
Abstract
The increase in the expectations of artificial intelligence (AI) technology has led to machine learning technology being actively used in the medical field. Non-negative matrix factorization (NMF) is a machine learning technique used for image analysis, speech recognition, and language processing; recently, it is being applied to medical research. Precision medicine, wherein important information is extracted from large-scale medical data to provide optimal medical care for every individual, is considered important in medical policies globally, and the application of machine learning techniques to this end is being handled in several ways. NMF is also introduced differently because of the characteristics of its algorithms. In this review, the importance of NMF in the field of medicine, with a focus on the field of oncology, is described by explaining the mathematical science of NMF and the characteristics of the algorithm, providing examples of how NMF can be used to establish precision medicine, and presenting the challenges of NMF. Finally, the direction regarding the effective use of NMF in the field of oncology is also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rina Aoyama
- Showa University Graduate School of Medicine School of Medicine
| | | | - Ken Asada
- RIKEN Center for Advanced Intelligence Project
| | | | | | | | | |
Collapse
|
3
|
Bhalodiya JM, Lim Choi Keung SN, Arvanitis TN. Magnetic resonance image-based brain tumour segmentation methods: A systematic review. Digit Health 2022; 8:20552076221074122. [PMID: 35340900 PMCID: PMC8943308 DOI: 10.1177/20552076221074122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/20/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023] Open
Abstract
Background Image segmentation is an essential step in the analysis and subsequent characterisation of brain tumours through magnetic resonance imaging. In the literature, segmentation methods are empowered by open-access magnetic resonance imaging datasets, such as the brain tumour segmentation dataset. Moreover, with the increased use of artificial intelligence methods in medical imaging, access to larger data repositories has become vital in method development. Purpose To determine what automated brain tumour segmentation techniques can medical imaging specialists and clinicians use to identify tumour components, compared to manual segmentation. Methods We conducted a systematic review of 572 brain tumour segmentation studies during 2015-2020. We reviewed segmentation techniques using T1-weighted, T2-weighted, gadolinium-enhanced T1-weighted, fluid-attenuated inversion recovery, diffusion-weighted and perfusion-weighted magnetic resonance imaging sequences. Moreover, we assessed physics or mathematics-based methods, deep learning methods, and software-based or semi-automatic methods, as applied to magnetic resonance imaging techniques. Particularly, we synthesised each method as per the utilised magnetic resonance imaging sequences, study population, technical approach (such as deep learning) and performance score measures (such as Dice score). Statistical tests We compared median Dice score in segmenting the whole tumour, tumour core and enhanced tumour. Results We found that T1-weighted, gadolinium-enhanced T1-weighted, T2-weighted and fluid-attenuated inversion recovery magnetic resonance imaging are used the most in various segmentation algorithms. However, there is limited use of perfusion-weighted and diffusion-weighted magnetic resonance imaging. Moreover, we found that the U-Net deep learning technology is cited the most, and has high accuracy (Dice score 0.9) for magnetic resonance imaging-based brain tumour segmentation. Conclusion U-Net is a promising deep learning technology for magnetic resonance imaging-based brain tumour segmentation. The community should be encouraged to contribute open-access datasets so training, testing and validation of deep learning algorithms can be improved, particularly for diffusion- and perfusion-weighted magnetic resonance imaging, where there are limited datasets available.
Collapse
Affiliation(s)
- Jayendra M Bhalodiya
- Institute of Digital Healthcare, Warwick Manufacturing Group, The University of Warwick, UK
| | - Sarah N Lim Choi Keung
- Institute of Digital Healthcare, Warwick Manufacturing Group, The University of Warwick, UK
| | - Theodoros N Arvanitis
- Institute of Digital Healthcare, Warwick Manufacturing Group, The University of Warwick, UK
| |
Collapse
|
4
|
An Automated Segmentation Pipeline for Intratumoural Regions in Animal Xenografts Using Machine Learning and Saturation Transfer MRI. Sci Rep 2020; 10:8063. [PMID: 32415137 PMCID: PMC7228927 DOI: 10.1038/s41598-020-64912-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/24/2020] [Indexed: 11/16/2022] Open
Abstract
Saturation transfer MRI can be useful in the characterization of different tumour types. It is sensitive to tumour metabolism, microstructure, and microenvironment. This study aimed to use saturation transfer to differentiate between intratumoural regions, demarcate tumour boundaries, and reduce data acquisition times by identifying the imaging scheme with the most impact on segmentation accuracy. Saturation transfer-weighted images were acquired over a wide range of saturation amplitudes and frequency offsets along with T1 and T2 maps for 34 tumour xenografts in mice. Independent component analysis and Gaussian mixture modelling were used to segment the images and identify intratumoural regions. Comparison between the segmented regions and histopathology indicated five distinct clusters: three corresponding to intratumoural regions (active tumour, necrosis/apoptosis, and blood/edema) and two extratumoural (muscle and a mix of muscle and connective tissue). The fraction of tumour voxels segmented as necrosis/apoptosis quantitatively matched those calculated from TUNEL histopathological assays. An optimal protocol was identified providing reasonable qualitative agreement between MRI and histopathology and consisting of T1 and T2 maps and 22 magnetization transfer (MT)-weighted images. A three-image subset was identified that resulted in a greater than 90% match in positive and negative predictive value of tumour voxels compared to those found using the entire 24-image dataset. The proposed algorithm can potentially be used to develop a robust intratumoural segmentation method.
Collapse
|
5
|
Stamile C, Cotton F, Sappey-Marinier D, Van Huffel S. Tensor Based Blind Source Separation in Longitudinal Magnetic Resonance Imaging Analysis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:3879-3883. [PMID: 31946720 DOI: 10.1109/embc.2019.8856772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Study of white matter (WM) fiber-bundles is a crucial challenge in the investigation of neurological diseases like multiple sclerosis (MS). In this activity, the amount of data to process is huge, and an automated approach to carry out this task is in order.In this paper we show how tensor-based blind source separation (BSS) techniques can be successfully applied to model complex anatomical brain structures. More in detail, we show how through vector hankelization it is possible to formalize data extracted from WM fiber-bundles using a tensor model. Two main tensor factorization techniques, namely (Lr, Lr, 1) block term decomposition (BTD) and canonical polyadic decomposition (CPD), were applied to the generated tensor. The information extracted from the factorization was then used to differentiate between sets of fibers, within the bundle, affected by the pathology and normal appearing fibers.Performances of the proposed tensor-based model was evaluated on simulated data representing pathological effects of MS. Results show the capability of our tensor-based model to detect small pathological phenomena appearing along WM fibers.
Collapse
|
6
|
Julià-Sapé M, Candiota AP, Arús C. Cancer metabolism in a snapshot: MRS(I). NMR IN BIOMEDICINE 2019; 32:e4054. [PMID: 30633389 DOI: 10.1002/nbm.4054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
The contribution of MRS(I) to the in vivo evaluation of cancer-metabolism-derived metrics, mostly since 2016, is reviewed here. Increased carbon consumption by tumour cells, which are highly glycolytic, is now being sampled by 13 C magnetic resonance spectroscopic imaging (MRSI) following the injection of hyperpolarized [1-13 C] pyruvate (Pyr). Hot-spots of, mostly, increased lactate dehydrogenase activity or flow between Pyr and lactate (Lac) have been seen with cancer progression in prostate (preclinical and in humans), brain and pancreas (both preclinical) tumours. Therapy response is usually signalled by decreased Lac/Pyr 13 C-labelled ratio with respect to untreated or non-responding tumour. For therapeutic agents inducing tumour hypoxia, the 13 C-labelled Lac/bicarbonate ratio may be a better metric than the Lac/Pyr ratio. 31 P MRSI may sample intracellular pH changes from brain tumours (acidification upon antiangiogenic treatment, basification at fast proliferation and relapse). The steady state tumour metabolome pattern is still in use for cancer evaluation. Metrics used for this range from quantification of single oncometabolites (such as 2-hydroxyglutarate in mutant IDH1 glial brain tumours) to selected metabolite ratios (such as total choline to N-acetylaspartate (plain ratio or CNI index)) or the whole 1 H MRSI(I) pattern through pattern recognition analysis. These approaches have been applied to address different questions such as tumour subtype definition, following/predicting the response to therapy or defining better resection or radiosurgery limits.
Collapse
Affiliation(s)
- Margarida Julià-Sapé
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Carles Arús
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| |
Collapse
|
7
|
Ortega-Martorell S, Candiota AP, Thomson R, Riley P, Julia-Sape M, Olier I. Embedding MRI information into MRSI data source extraction improves brain tumour delineation in animal models. PLoS One 2019; 14:e0220809. [PMID: 31415601 PMCID: PMC6695141 DOI: 10.1371/journal.pone.0220809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/23/2019] [Indexed: 01/22/2023] Open
Abstract
Glioblastoma is the most frequent malignant intra-cranial tumour. Magnetic resonance imaging is the modality of choice in diagnosis, aggressiveness assessment, and follow-up. However, there are examples where it lacks diagnostic accuracy. Magnetic resonance spectroscopy enables the identification of molecules present in the tissue, providing a precise metabolomic signature. Previous research shows that combining imaging and spectroscopy information results in more accurate outcomes and superior diagnostic value. This study proposes a method to combine them, which builds upon a previous methodology whose main objective is to guide the extraction of sources. To this aim, prior knowledge about class-specific information is integrated into the methodology by setting the metric of a latent variable space where Non-negative Matrix Factorisation is performed. The former methodology, which only used spectroscopy and involved combining spectra from different subjects, was adapted to use selected areas of interest that arise from segmenting the T2-weighted image. Results showed that embedding imaging information into the source extraction (the proposed semi-supervised analysis) improved the quality of the tumour delineation, as compared to those obtained without this information (unsupervised analysis). Both approaches were applied to pre-clinical data, involving thirteen brain tumour-bearing mice, and tested against histopathological data. On results of twenty-eight images, the proposed Semi-Supervised Source Extraction (SSSE) method greatly outperformed the unsupervised one, as well as an alternative semi-supervised approach from the literature, with differences being statistically significant. SSSE has proven successful in the delineation of the tumour, while bringing benefits such as 1) not constricting the metabolomic-based prediction to the image-segmented area, 2) ability to deal with signal-to-noise issues, 3) opportunity to answer specific questions by allowing researchers/radiologists define areas of interest that guide the source extraction, 4) creation of an intra-subject model and avoiding contamination from inter-subject overlaps, and 5) extraction of meaningful, good-quality sources that adds interpretability, conferring validation and better understanding of each case.
Collapse
Affiliation(s)
- Sandra Ortega-Martorell
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool, England, United Kingdom
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- * E-mail:
| | - Ana Paula Candiota
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ryan Thomson
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool, England, United Kingdom
| | - Patrick Riley
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool, England, United Kingdom
| | - Margarida Julia-Sape
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ivan Olier
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool, England, United Kingdom
| |
Collapse
|
8
|
Wang X, Gao W, Li F, Shi W, Li H, Zeng Q. Diffusion kurtosis imaging as an imaging biomarker for predicting prognosis of the patients with high-grade gliomas. Magn Reson Imaging 2019; 63:131-136. [PMID: 31425809 DOI: 10.1016/j.mri.2019.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/08/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE To retrospectively explore the utilization of MR diffusion kurtosis imaging (DKI) in predicting prognosis of the patients with high-grade gliomas. MATERIALS AND METHODS Thirty-three consecutive patients with cerebral gliomas underwent pretreatment DKI and diffusion-weighted imaging examination on a 3.0-T MR scanner. Diffusion parameters, including conventional tensor parameters, kurtosis metrics (mean kurtosis [MK], radial kurtosis [AK], and axial kurtosis [RK]), and minimum apparent diffusion coefficient (minADC), were obtained and normalized to the contralateral normal-appearing white matter. Correlations among each diffusion parameter and overall survival were analyzed by a Spearman method. The diagnostic efficiency of each parameter in predicting survival for patients with high-grade gliomas was assessed by a receiver operating characteristic curve. The favorable prognostic imaging biomarkers were further analyzed by using a Kaplan-Meier method with log-rank test. RESULTS In 33 patients, 17 patients reached overall survival >15 months (long survival group), whereas 16 showed overall survival <15 months (short survival group). Negative correlations between kurtosis metrics (MK, AK, and RK) and overall survival were obtained by using Spearman analysis (r = -0.63, -0.57, and -0.61, respectively, all P < 0.01), whereas minADC was positively correlated with overall survival (r = 0.56, P < 0.01). The kurtosis parameters of the long survival group were significantly lower than that of the short survival group (P < 0.001), while the minADC of the long survival group was significantly higher than that of the short survival group (P = 0.002). Among these diffusion parameters, the optimal cut-off value of MK (0.688) provided the best combination of sensitivity (93.75%) and specificity (76.47%) for differentiation of patients with long survival from those with short survival. High kurtosis metrics and low minADC were significant predictors of poor outcome. (P < 0.05). CONCLUSION Both kurtosis metrics and minADC have the potential to predict survival for the patients with high-grade gliomas. The preoperative kurtosis parameters, especially MK, can be taken as a preoperative prognostic biomarker to predict prognosis in patients with high-grade gliomas.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Radiology, Jining No.1 People's Hospital, Jining, China
| | - Wenjing Gao
- Department of CT/MRI, ZiBo Central Hosipital, Zibo, China
| | - Fuyan Li
- Department of Radiology, Shandong Medical Imaging Research Institute, Jinan, China
| | - Wenqi Shi
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongxia Li
- Department of Radiology, The Second Hospital of Shandong University, Jinan, China
| | - Qingshi Zeng
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
9
|
Pedrosa de Barros N, Meier R, Pletscher M, Stettler S, Knecht U, Reyes M, Gralla J, Wiest R, Slotboom J. Analysis of metabolic abnormalities in high-grade glioma using MRSI and convex NMF. NMR IN BIOMEDICINE 2019; 32:e4109. [PMID: 31131943 DOI: 10.1002/nbm.4109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Clinical use of MRSI is limited by the level of experience required to properly translate MRSI examinations into relevant clinical information. To solve this, several methods have been proposed to automatically recognize a predefined set of reference metabolic patterns. Given the variety of metabolic patterns seen in glioma patients, the decision on the optimal number of patterns that need to be used to describe the data is not trivial. In this paper, we propose a novel framework to (1) separate healthy from abnormal metabolic patterns and (2) retrieve an optimal number of reference patterns describing the most important types of abnormality. Using 41 MRSI examinations (1.5 T, PRESS, TE 135 ms) from 22 glioma patients, four different patterns describing different types of abnormality were detected: edema, healthy without Glx, active tumor and necrosis. The identified patterns were then evaluated on 17 MRSI examinations from nine different glioma patients. The results were compared against BraTumIA, an automatic segmentation method trained to identify different tumor compartments on structural MRI data. Finally, the ability to predict future contrast enhancement using the proposed approach was also evaluated.
Collapse
Affiliation(s)
- Nuno Pedrosa de Barros
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Raphael Meier
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Martin Pletscher
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Samuel Stettler
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Urspeter Knecht
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Mauricio Reyes
- Institute for Surgical Technology and Biomechanics (ISTB), University of Bern, Bern, Switzerland
| | - Jan Gralla
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Johannes Slotboom
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| |
Collapse
|
10
|
Wang XC, Lei Y, Wang L, Tan Y, Qin JB, Ma GL, Zhang H. Diffusion Kurtosis Imaging Reflects Glial Fibrillary Acidic Protein (GFAP), Topo IIα, and O⁶-Methylguanine-DNA Methyltransferase (MGMT) Expression in Astrocytomas. Med Sci Monit 2018; 24:8822-8830. [PMID: 30520434 PMCID: PMC6292149 DOI: 10.12659/msm.911631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/18/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Astrocytomas are the most common primary brain neoplasms. Biological indicators of astrocytomas can reflect its biological characteristics. The aim of this study was to assess the expression of the pathological glial fibrillary acidic protein (GFAP) Topo IIα and O⁶-methylguanine-DNA methyltransferase (MGMT) in astrocytomas using magnetic resonance (MR) diffusion kurtosis imaging (DKI) to evaluate the biological characteristics of astrocytomas. MATERIAL AND METHODS Sixty-six patients with pathologically proven astrocytomas were enrolled in this study. All patients underwent conventional MRI head scanning, DKI scanning, and enhanced scanning under the same conditions. Spearman's rank correlation analysis and Bonferroni correction were used to compare the values of DKI and the expression levels of GFAP, Topo IIα, and MGMT between the 2 groups. RESULTS Mean kurtosis (MK) values were negatively correlated with the expression of GFAP (r=-0.836; P=0.03). However, these were positively correlated with the expression of Topo IIα (r=0.896; P=0.01). Moreover, fractional anisotropy (FA) values were not correlated with the expression of GFAP (r=0.366; P=0.05), Topo IIα (r=-0.562; P=0.05), or MGMT (r=-0.153; P=0.10). CONCLUSIONS MK was significantly associated with the expression of GFAP and Topo IIα. To a certain extent, applying DKI may show the biological behavior of tumor cell differentiation, proliferation activity, invasion, and metastasis, and guide individual treatment.
Collapse
Affiliation(s)
- Xiao-chun Wang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Ying Lei
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Le Wang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Yan Tan
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Jiang-bo Qin
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Guo-lin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Hui Zhang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| |
Collapse
|
11
|
Carass A, Cuzzocreo JL, Han S, Hernandez-Castillo CR, Rasser PE, Ganz M, Beliveau V, Dolz J, Ben Ayed I, Desrosiers C, Thyreau B, Romero JE, Coupé P, Manjón JV, Fonov VS, Collins DL, Ying SH, Onyike CU, Crocetti D, Landman BA, Mostofsky SH, Thompson PM, Prince JL. Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images. Neuroimage 2018; 183:150-172. [PMID: 30099076 PMCID: PMC6271471 DOI: 10.1016/j.neuroimage.2018.08.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 01/26/2023] Open
Abstract
The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method.
Collapse
Affiliation(s)
- Aaron Carass
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Jennifer L Cuzzocreo
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Shuo Han
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA; Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 20892, USA
| | - Carlos R Hernandez-Castillo
- Consejo Nacional de Ciencia y Tecnología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Paul E Rasser
- Priority Research Centre for Brain & Mental Health and Stroke & Brain Injury, University of Newcastle, Callaghan, NSW, Australia
| | - Melanie Ganz
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark; Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Vincent Beliveau
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jose Dolz
- Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada
| | - Ismail Ben Ayed
- Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada
| | - Christian Desrosiers
- Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada
| | - Benjamin Thyreau
- Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - José E Romero
- Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Pierrick Coupé
- University of Bordeaux, LaBRI, UMR 5800, PICTURA, Talence, F-33400, France; CNRS, LaBRI, UMR 5800, PICTURA, Talence, F-33400, France
| | - José V Manjón
- Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Vladimir S Fonov
- Image Processing Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - D Louis Collins
- Image Processing Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sarah H Ying
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Deana Crocetti
- Center for Neurodevelopmental Medicine and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Bennett A Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, 37235, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental Medicine and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, 21205, USA; Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA; Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
12
|
Aggarwal P, Gupta A. Low rank and sparsity constrained method for identifying overlapping functional brain networks. PLoS One 2018; 13:e0208068. [PMID: 30485369 PMCID: PMC6261626 DOI: 10.1371/journal.pone.0208068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/12/2018] [Indexed: 11/19/2022] Open
Abstract
Analysis of functional magnetic resonance imaging (fMRI) data has revealed that brain regions can be grouped into functional brain networks (fBNs) or communities. A community in fMRI analysis signifies a group of brain regions coupled functionally with one another. In neuroimaging, functional connectivity (FC) measure can be utilized to quantify such functionally connected regions for disease diagnosis and hence, signifies the need of devising novel FC estimation methods. In this paper, we propose a novel method of learning FC by constraining its rank and the sum of non-zero coefficients. The underlying idea is that fBNs are sparse and can be embedded in a relatively lower dimension space. In addition, we propose to extract overlapping networks. In many instances, communities are characterized as combinations of disjoint brain regions, although recent studies indicate that brain regions may participate in more than one community. In this paper, large-scale overlapping fBNs are identified on resting state fMRI data by employing non-negative matrix factorization. Our findings support the existence of overlapping brain networks.
Collapse
Affiliation(s)
- Priya Aggarwal
- Signal Processing and Bio-medical Imaging Lab (SBILab), Indraprastha Institute of Information Technology-Delhi (IIIT-D), New Delhi, India
- * E-mail:
| | - Anubha Gupta
- Signal Processing and Bio-medical Imaging Lab (SBILab), Indraprastha Institute of Information Technology-Delhi (IIIT-D), New Delhi, India
| |
Collapse
|
13
|
Rank-Two NMF Clustering for Glioblastoma Characterization. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:1048164. [PMID: 30425818 PMCID: PMC6218733 DOI: 10.1155/2018/1048164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022]
Abstract
This study investigates a novel classification method for 3D multimodal MRI glioblastomas tumor characterization. We formulate our segmentation problem as a linear mixture model (LMM). Thus, we provide a nonnegative matrix M from every MRI slice in every segmentation process' step. This matrix will be used as an input for the first segmentation process to extract the edema region from T2 and FLAIR modalities. After that, in the rest of segmentation processes, we extract the edema region from T1c modality, generate the matrix M, and segment the necrosis, the enhanced tumor, and the nonenhanced tumor regions. In the segmentation process, we apply a rank-two NMF clustering. We have executed our tumor characterization method on BraTS 2015 challenge dataset. Quantitative and qualitative evaluations over the publicly training and testing dataset from the MICCAI 2015 multimodal brain segmentation challenge (BraTS 2015) attested that the proposed algorithm could yield a competitive performance for brain glioblastomas characterization (necrosis, tumor core, and edema) among several competing methods.
Collapse
|
14
|
Khambhati AN, Sizemore AE, Betzel RF, Bassett DS. Modeling and interpreting mesoscale network dynamics. Neuroimage 2018; 180:337-349. [PMID: 28645844 PMCID: PMC5738302 DOI: 10.1016/j.neuroimage.2017.06.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 11/28/2022] Open
Abstract
Recent advances in brain imaging techniques, measurement approaches, and storage capacities have provided an unprecedented supply of high temporal resolution neural data. These data present a remarkable opportunity to gain a mechanistic understanding not just of circuit structure, but also of circuit dynamics, and its role in cognition and disease. Such understanding necessitates a description of the raw observations, and a delineation of computational models and mathematical theories that accurately capture fundamental principles behind the observations. Here we review recent advances in a range of modeling approaches that embrace the temporally-evolving interconnected structure of the brain and summarize that structure in a dynamic graph. We describe recent efforts to model dynamic patterns of connectivity, dynamic patterns of activity, and patterns of activity atop connectivity. In the context of these models, we review important considerations in statistical testing, including parametric and non-parametric approaches. Finally, we offer thoughts on careful and accurate interpretation of dynamic graph architecture, and outline important future directions for method development.
Collapse
Affiliation(s)
- Ankit N Khambhati
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeautics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ann E Sizemore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard F Betzel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeautics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Sauwen N, Acou M, Bharath HN, Sima DM, Veraart J, Maes F, Himmelreich U, Achten E, Van Huffel S. The successive projection algorithm as an initialization method for brain tumor segmentation using non-negative matrix factorization. PLoS One 2017; 12:e0180268. [PMID: 28846686 PMCID: PMC5573288 DOI: 10.1371/journal.pone.0180268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/13/2017] [Indexed: 11/19/2022] Open
Abstract
Non-negative matrix factorization (NMF) has become a widely used tool for additive parts-based analysis in a wide range of applications. As NMF is a non-convex problem, the quality of the solution will depend on the initialization of the factor matrices. In this study, the successive projection algorithm (SPA) is proposed as an initialization method for NMF. SPA builds on convex geometry and allocates endmembers based on successive orthogonal subspace projections of the input data. SPA is a fast and reproducible method, and it aligns well with the assumptions made in near-separable NMF analyses. SPA was applied to multi-parametric magnetic resonance imaging (MRI) datasets for brain tumor segmentation using different NMF algorithms. Comparison with common initialization methods shows that SPA achieves similar segmentation quality and it is competitive in terms of convergence rate. Whereas SPA was previously applied as a direct endmember extraction tool, we have shown improved segmentation results when using SPA as an initialization method, as it allows further enhancement of the sources during the NMF iterative procedure.
Collapse
Affiliation(s)
- Nicolas Sauwen
- KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, Leuven, Belgium
- imec, Leuven, Belgium
| | - Marjan Acou
- Ghent University Hospital, Department of Radiology, Ghent, Belgium
| | - Halandur N. Bharath
- KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, Leuven, Belgium
- imec, Leuven, Belgium
| | - Diana M. Sima
- KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, Leuven, Belgium
- imec, Leuven, Belgium
- Icometrix, R&D Department, Leuven, Belgium
| | - Jelle Veraart
- University of Antwerp, iMinds Vision Lab, Department of Physics, Antwerp, Belgium
| | - Frederik Maes
- KU Leuven, Department of Electrical Engineering (ESAT), PSI Centre for Processing Speech and Images, Leuven, Belgium
| | - Uwe Himmelreich
- KU Leuven, Department of Imaging and Pathology, Biomedical MRI/MoSAIC, Leuven, Belgium
| | - Eric Achten
- Ghent University Hospital, Department of Radiology, Ghent, Belgium
| | - Sabine Van Huffel
- KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, Leuven, Belgium
- imec, Leuven, Belgium
- * E-mail:
| |
Collapse
|
16
|
Sauwen N, Acou M, Sima DM, Veraart J, Maes F, Himmelreich U, Achten E, Huffel SV. Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization. BMC Med Imaging 2017; 17:29. [PMID: 28472943 PMCID: PMC5418702 DOI: 10.1186/s12880-017-0198-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/11/2017] [Indexed: 12/19/2022] Open
Abstract
Background Segmentation of gliomas in multi-parametric (MP-)MR images is challenging due to their heterogeneous nature in terms of size, appearance and location. Manual tumor segmentation is a time-consuming task and clinical practice would benefit from (semi-) automated segmentation of the different tumor compartments. Methods We present a semi-automated framework for brain tumor segmentation based on non-negative matrix factorization (NMF) that does not require prior training of the method. L1-regularization is incorporated into the NMF objective function to promote spatial consistency and sparseness of the tissue abundance maps. The pathological sources are initialized through user-defined voxel selection. Knowledge about the spatial location of the selected voxels is combined with tissue adjacency constraints in a post-processing step to enhance segmentation quality. The method is applied to an MP-MRI dataset of 21 high-grade glioma patients, including conventional, perfusion-weighted and diffusion-weighted MRI. To assess the effect of using MP-MRI data and the L1-regularization term, analyses are also run using only conventional MRI and without L1-regularization. Robustness against user input variability is verified by considering the statistical distribution of the segmentation results when repeatedly analyzing each patient’s dataset with a different set of random seeding points. Results Using L1-regularized semi-automated NMF segmentation, mean Dice-scores of 65%, 74 and 80% are found for active tumor, the tumor core and the whole tumor region. Mean Hausdorff distances of 6.1 mm, 7.4 mm and 8.2 mm are found for active tumor, the tumor core and the whole tumor region. Lower Dice-scores and higher Hausdorff distances are found without L1-regularization and when only considering conventional MRI data. Conclusions Based on the mean Dice-scores and Hausdorff distances, segmentation results are competitive with state-of-the-art in literature. Robust results were found for most patients, although careful voxel selection is mandatory to avoid sub-optimal segmentation.
Collapse
Affiliation(s)
- Nicolas Sauwen
- Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, KULeuven, Kasteelpark Arenberg, Leuven, Belgium. .,imec, Kapeldreef 75, Leuven, 3001, Belgium.
| | - Marjan Acou
- Department of Radiology, Ghent University Hospital, De Pintelaan 185, Ghent, 9000, Belgium
| | - Diana M Sima
- Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, KULeuven, Kasteelpark Arenberg, Leuven, Belgium.,imec, Kapeldreef 75, Leuven, 3001, Belgium
| | - Jelle Veraart
- Department of Physics, iMinds Vision Lab, University of Antwerp, Edegemsesteenweg 200-240, Antwerp, 2610, Belgium
| | - Frederik Maes
- Department of Electrical Engineering (ESAT), PSI Centre for Processing Speech and Images, KULeuven, Kasteelpark Arenberg 10, Leuven, 3001, Belgium
| | - Uwe Himmelreich
- Department of Imaging and Pathology, Biomedical MRI/MoSAIC, KULeuven, Herestraat 49, Leuven, 3000, Belgium
| | - Eric Achten
- Department of Radiology, Ghent University Hospital, De Pintelaan 185, Ghent, 9000, Belgium
| | - Sabine Van Huffel
- Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, KULeuven, Kasteelpark Arenberg, Leuven, Belgium.,imec, Kapeldreef 75, Leuven, 3001, Belgium
| |
Collapse
|
17
|
Christiaens D, Sunaert S, Suetens P, Maes F. Convexity-constrained and nonnegativity-constrained spherical factorization in diffusion-weighted imaging. Neuroimage 2017; 146:507-517. [PMID: 27989845 PMCID: PMC5543413 DOI: 10.1016/j.neuroimage.2016.10.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/14/2016] [Accepted: 10/25/2016] [Indexed: 12/13/2022] Open
Abstract
Diffusion-weighted imaging (DWI) facilitates probing neural tissue structure non-invasively by measuring its hindrance to water diffusion. Analysis of DWI is typically based on generative signal models for given tissue geometry and microstructural properties. In this work, we generalize multi-tissue spherical deconvolution to a blind source separation problem under convexity and nonnegativity constraints. This spherical factorization approach decomposes multi-shell DWI data, represented in the basis of spherical harmonics, into tissue-specific orientation distribution functions and corresponding response functions, without assuming the latter as known thus fully unsupervised. In healthy human brain data, the resulting components are associated with white matter fibres, grey matter, and cerebrospinal fluid. The factorization results are on par with state-of-the-art supervised methods, as demonstrated also in Monte-Carlo simulations evaluating accuracy and precision of the estimated response functions and orientation distribution functions of each component. In animal data and in the presence of oedema, the proposed factorization is able to recover unseen tissue structure, solely relying on DWI. As such, our method broadens the applicability of spherical deconvolution techniques to exploratory analysis of tissue structure in data where priors are uncertain or hard to define.
Collapse
Affiliation(s)
- Daan Christiaens
- KU Leuven, Department of Electrical Engineering, ESAT/PSI, Leuven, Belgium; UZ Leuven, Medical Imaging Research Center, Leuven, Belgium.
| | - Stefan Sunaert
- KU Leuven, Department of Imaging and Pathology, Translational MRI, Leuven, Belgium; UZ Leuven, Department of Radiology, Leuven, Belgium; UZ Leuven, Medical Imaging Research Center, Leuven, Belgium
| | - Paul Suetens
- KU Leuven, Department of Electrical Engineering, ESAT/PSI, Leuven, Belgium; UZ Leuven, Medical Imaging Research Center, Leuven, Belgium
| | - Frederik Maes
- KU Leuven, Department of Electrical Engineering, ESAT/PSI, Leuven, Belgium; UZ Leuven, Medical Imaging Research Center, Leuven, Belgium
| |
Collapse
|
18
|
Li Y, Liu X, Wei F, Sima DM, Van Cauter S, Himmelreich U, Pi Y, Hu G, Yao Y, Van Huffel S. An advanced MRI and MRSI data fusion scheme for enhancing unsupervised brain tumor differentiation. Comput Biol Med 2017; 81:121-129. [DOI: 10.1016/j.compbiomed.2016.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/09/2016] [Accepted: 12/26/2016] [Indexed: 01/12/2023]
|
19
|
Sauwen N, Acou M, Van Cauter S, Sima DM, Veraart J, Maes F, Himmelreich U, Achten E, Van Huffel S. Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI. NEUROIMAGE-CLINICAL 2016; 12:753-764. [PMID: 27812502 PMCID: PMC5079350 DOI: 10.1016/j.nicl.2016.09.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/03/2022]
Abstract
Tumor segmentation is a particularly challenging task in high-grade gliomas (HGGs), as they are among the most heterogeneous tumors in oncology. An accurate delineation of the lesion and its main subcomponents contributes to optimal treatment planning, prognosis and follow-up. Conventional MRI (cMRI) is the imaging modality of choice for manual segmentation, and is also considered in the vast majority of automated segmentation studies. Advanced MRI modalities such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have already shown their added value in tumor tissue characterization, hence there have been recent suggestions of combining different MRI modalities into a multi-parametric MRI (MP-MRI) approach for brain tumor segmentation. In this paper, we compare the performance of several unsupervised classification methods for HGG segmentation based on MP-MRI data including cMRI, DWI, MRSI and PWI. Two independent MP-MRI datasets with a different acquisition protocol were available from different hospitals. We demonstrate that a hierarchical non-negative matrix factorization variant which was previously introduced for MP-MRI tumor segmentation gives the best performance in terms of mean Dice-scores for the pathologic tissue classes on both datasets. Unsupervised classification algorithms are applied for brain tumor segmentation on multi-parametric MRI datasets. Reported mean Dice-scores are in the range of state-of-the-art segmentation algorithms. Hierarchical NMF obtained the best segmentation results in terms of mean Dice-scores for most of the tissue classes.
Collapse
Key Words
- 1H MRSI, proton magnetic resonance spectroscopic imaging
- ADC, apparent diffusion coefficient
- Cho, total choline
- Clustering
- Cre, total creatine
- DKI, diffusion kurtosis imaging
- DSC-MRI, dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging
- DTI, diffusion tensor imaging
- DWI, diffusion-weighted imaging
- FA, fractional anisotropy
- FCM, fuzzy C-means clustering
- FLAIR, fluid-attenuated inversion recovery
- GBM, glioblastoma multiforme
- GMM, Gaussian mixture modelling
- Glioma
- Glx, glutamine + glutamate
- Gly, glycine
- HALS, hierarchical alternating least squares
- HGG, high-grade glioma
- LGG, low-grade glioma
- Lac, lactate
- Lip, lipids
- MD, mean diffusivity
- MK, mean kurtosis
- MP-MRI, multi-parametric magnetic resonance imaging
- Multi-parametric MRI
- NAA, N-acetyl-aspartate
- NMF, non-negative matrix factorization
- NNLS, non-negative linear least-squares
- Non-negative matrix factorization
- PWI, perfusion-weighted imaging
- ROI, region of interest
- SC, spectral clustering
- SPA, successive projection algorithm
- Segmentation
- T1c, contrast-enhanced T1
- UZ Gent, University hospital of Ghent
- UZ Leuven, University hospitals of Leuven
- Unsupervised classification
- cMRI, conventional magnetic resonance imaging
- hNMF, hierarchical non-negative matrix factorization
- mI, myo-inositol
- rCBV, relative cerebral blood volume
Collapse
Affiliation(s)
- N Sauwen
- KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, Leuven, Belgium; iMinds, Department of Medical Information Technologies, Belgium
| | - M Acou
- Ghent University Hospital, Department of Radiology, Ghent, Belgium
| | - S Van Cauter
- University Hospitals of Leuven, Department of Radiology, Leuven, Belgium; Ziekenhuizen Oost-Limburg, Department of Radiology, Leuven, Belgium
| | - D M Sima
- KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, Leuven, Belgium; iMinds, Department of Medical Information Technologies, Belgium
| | - J Veraart
- University of Antwerp, iMinds Vision Lab, Department of Physics, Antwerp, Belgium
| | - F Maes
- KU Leuven, Department of Electrical Engineering (ESAT), PSI Centre for Processing Speech and Images, Leuven, Belgium
| | - U Himmelreich
- KU Leuven, Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Leuven, Belgium
| | - E Achten
- Ghent University Hospital, Department of Radiology, Ghent, Belgium
| | - S Van Huffel
- KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, Leuven, Belgium; iMinds, Department of Medical Information Technologies, Belgium
| |
Collapse
|
20
|
Soltaninejad M, Yang G, Lambrou T, Allinson N, Jones TL, Barrick TR, Howe FA, Ye X. Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. Int J Comput Assist Radiol Surg 2016; 12:183-203. [PMID: 27651330 PMCID: PMC5263212 DOI: 10.1007/s11548-016-1483-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/31/2016] [Indexed: 12/03/2022]
Abstract
Purpose We propose a fully automated method for detection and segmentation of the abnormal tissue associated with brain tumour (tumour core and oedema) from Fluid- Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Imaging (MRI). Methods The method is based on superpixel technique and classification of each superpixel. A number of novel image features including intensity-based, Gabor textons, fractal analysis and curvatures are calculated from each superpixel within the entire brain area in FLAIR MRI to ensure a robust classification. Extremely randomized trees (ERT) classifier is compared with support vector machine (SVM) to classify each superpixel into tumour and non-tumour. Results The proposed method is evaluated on two datasets: (1) Our own clinical dataset: 19 MRI FLAIR images of patients with gliomas of grade II to IV, and (2) BRATS 2012 dataset: 30 FLAIR images with 10 low-grade and 20 high-grade gliomas. The experimental results demonstrate the high detection and segmentation performance of the proposed method using ERT classifier. For our own cohort, the average detection sensitivity, balanced error rate and the Dice overlap measure for the segmented tumour against the ground truth are 89.48 %, 6 % and 0.91, respectively, while, for the BRATS dataset, the corresponding evaluation results are 88.09 %, 6 % and 0.88, respectively. Conclusions This provides a close match to expert delineation across all grades of glioma, leading to a faster and more reproducible method of brain tumour detection and delineation to aid patient management.
Collapse
Affiliation(s)
- Mohammadreza Soltaninejad
- Laboratory of Vision Engineering, School of Computer Science, University of Lincoln, Lincoln, LN6 7TS, UK.
| | - Guang Yang
- Neurosciences Research Centre, Molecular and Clinical Sciences Institute, St. George's, University of London, London, SW17 0RE, UK.,National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Tryphon Lambrou
- Laboratory of Vision Engineering, School of Computer Science, University of Lincoln, Lincoln, LN6 7TS, UK
| | - Nigel Allinson
- Laboratory of Vision Engineering, School of Computer Science, University of Lincoln, Lincoln, LN6 7TS, UK
| | - Timothy L Jones
- Atkinson Morley Department of Neurosurgery, St George's Hospital London, London, SW17 0RE, UK
| | - Thomas R Barrick
- Neurosciences Research Centre, Molecular and Clinical Sciences Institute, St. George's, University of London, London, SW17 0RE, UK
| | - Franklyn A Howe
- Neurosciences Research Centre, Molecular and Clinical Sciences Institute, St. George's, University of London, London, SW17 0RE, UK
| | - Xujiong Ye
- Laboratory of Vision Engineering, School of Computer Science, University of Lincoln, Lincoln, LN6 7TS, UK
| |
Collapse
|
21
|
Stamile C, Kocevar G, Cotton F, Maes F, Sappey-Marinier D, Van Huffel S. Multiparametric Non-Negative Matrix Factorization for Longitudinal Variations Detection in White-Matter Fiber Bundles. IEEE J Biomed Health Inform 2016; 21:1393-1402. [PMID: 27514068 DOI: 10.1109/jbhi.2016.2597963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Processing of longitudinal diffusion tensor imaging (DTI) data is a crucial challenge to better understand pathological mechanisms of complex brain diseases such as multiple sclerosis (MS) where white-matter (WM) fiber bundles are variably altered by inflammatory events. In this study, we propose a new fully automated method to detect longitudinal changes in diffusivity metrics along WM fiber bundles. The proposed method is divided in three main parts: 1) preprocessing of longitudinal diffusion acquisitions, 2) WM fiber-bundle extraction, and 3) application of nonnegative matrix factorization and density-based local outliers algorithms to detect and delineate longitudinal variations appearing in the cross section of the WM fiber bundle. In order to validate our method, we introduce a new model to simulate real longitudinal changes based on a generalized Gaussian probability density function. Moreover, we applied our method on longitudinal data. High level of performances were obtained for the detection of small longitudinal changes along the WM fiber bundles in MS patients.
Collapse
Affiliation(s)
- Claudio Stamile
- CREATIS, CNRS UMR5220, INSERM U1044, INSA-Lyon, Université de Lyon 1, Villeurbanne, France
| | - Gabriel Kocevar
- CREATIS, CNRS UMR5220, INSERM U1044, INSA-Lyon, Université de Lyon 1, Villeurbanne, France
| | - Francois Cotton
- CREATIS, CNRS UMR5220, INSERM U1044, INSA-Lyon, Université de Lyon 1, Villeurbanne, France
| | - Frederik Maes
- PSI Processing Speech and Images, Department of Electrical Engineering (ESAT), Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Sabine Van Huffel
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Bharath HN, Sima DM, Sauwen N, Himmelreich U, De Lathauwer L, Van Huffel S. Nonnegative Canonical Polyadic Decomposition for Tissue-Type Differentiation in Gliomas. IEEE J Biomed Health Inform 2016; 21:1124-1132. [PMID: 27429452 DOI: 10.1109/jbhi.2016.2583539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Magnetic resonance spectroscopic imaging (MRSI) reveals chemical information that characterizes different tissue types in brain tumors. Blind source separation techniques are used to extract the tissue-specific profiles and their corresponding distribution from the MRSI data. We focus on automatic detection of the tumor, necrotic and normal brain tissue types by constructing a 3D MRSI tensor from in vivo 2D-MRSI data of individual glioma patients. Nonnegative canonical polyadic decomposition (NCPD) is applied to the MRSI tensor to differentiate various tissue types. An in vivo study shows that NCPD has better performance in identifying tumor and necrotic tissue type in glioma patients compared to previous matrix-based decompositions, such as nonnegative matrix factorization and hierarchical nonnegative matrix factorization.
Collapse
Affiliation(s)
- H N Bharath
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - D M Sima
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - N Sauwen
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - U Himmelreich
- Biomedical MRI Unit/Molecular Small Animal Imaging Center, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - L De Lathauwer
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - S Van Huffel
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Automated Quality Control for Proton Magnetic Resonance Spectroscopy Data Using Convex Non-negative Matrix Factorization. BIOINFORMATICS AND BIOMEDICAL ENGINEERING 2016. [DOI: 10.1007/978-3-319-31744-1_62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|