1
|
Şimşek K, Gallea C, Genovese G, Lehéricy S, Branzoli F, Palombo M. Age-Trajectories of Higher-Order Diffusion Properties of Major Brain Metabolites in Cerebral and Cerebellar Gray Matter Using In Vivo Diffusion-Weighted MR Spectroscopy at 3T. Aging Cell 2025:e14477. [PMID: 39817637 DOI: 10.1111/acel.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/21/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025] Open
Abstract
Healthy brain aging involves changes in both brain structure and function, including alterations in cellular composition and microstructure across brain regions. Unlike diffusion-weighted MRI (dMRI), diffusion-weighted MR spectroscopy (dMRS) can assess cell-type specific microstructural changes, providing indirect information on both cell composition and microstructure through the quantification and interpretation of metabolites' diffusion properties. This work investigates age-related changes in the higher-order diffusion properties of total N-Acetyl-aspartate (neuronal biomarker), total choline (glial biomarker), and total creatine (both neuronal and glial biomarker) beyond the classical apparent diffusion coefficient in cerebral and cerebellar gray matter of healthy human brain. Twenty-five subjects were recruited and scanned using a diffusion-weighted semi-LASER sequence in two brain regions-of-interest (ROI) at 3T: posterior-cingulate (PCC) and cerebellar cortices. Metabolites' diffusion was characterized by quantifying metrics from both Gaussian and non-Gaussian signal representations and biophysical models. All studied metabolites exhibited lower apparent diffusivities and higher apparent kurtosis values in the cerebellum compared to the PCC, likely stemming from the higher microstructural complexity of cellular composition in the cerebellum. Multivariate regression analysis (accounting for ROI tissue composition as a covariate) showed slight decrease (or no change) of all metabolites' diffusivities and slight increase of all metabolites' kurtosis with age, none of which statistically significant (p > 0.05). The proposed age-trajectories provide benchmarks for identifying anomalies in the diffusion properties of major brain metabolites which could be related to pathological mechanisms altering both the brain microstructure and cellular composition.
Collapse
Affiliation(s)
- Kadir Şimşek
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Cécile Gallea
- Paris Brain Institute - ICM, Team "Movement Investigations and Therapeutics", Paris, France
- Paris Brain Institute - ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France
| | - Guglielmo Genovese
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stephane Lehéricy
- Paris Brain Institute - ICM, Team "Movement Investigations and Therapeutics", Paris, France
- Paris Brain Institute - ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France
| | - Francesca Branzoli
- Paris Brain Institute - ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| |
Collapse
|
2
|
Ligneul C, Najac C, Döring A, Beaulieu C, Branzoli F, Clarke WT, Cudalbu C, Genovese G, Jbabdi S, Jelescu I, Karampinos D, Kreis R, Lundell H, Marjańska M, Möller HE, Mosso J, Mougel E, Posse S, Ruschke S, Simsek K, Szczepankiewicz F, Tal A, Tax C, Oeltzschner G, Palombo M, Ronen I, Valette J. Diffusion-weighted MR spectroscopy: Consensus, recommendations, and resources from acquisition to modeling. Magn Reson Med 2024; 91:860-885. [PMID: 37946584 DOI: 10.1002/mrm.29877] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/18/2023] [Accepted: 09/08/2023] [Indexed: 11/12/2023]
Abstract
Brain cell structure and function reflect neurodevelopment, plasticity, and aging; and changes can help flag pathological processes such as neurodegeneration and neuroinflammation. Accurate and quantitative methods to noninvasively disentangle cellular structural features are needed and are a substantial focus of brain research. Diffusion-weighted MRS (dMRS) gives access to diffusion properties of endogenous intracellular brain metabolites that are preferentially located inside specific brain cell populations. Despite its great potential, dMRS remains a challenging technique on all levels: from the data acquisition to the analysis, quantification, modeling, and interpretation of results. These challenges were the motivation behind the organization of the Lorentz Center workshop on "Best Practices & Tools for Diffusion MR Spectroscopy" held in Leiden, the Netherlands, in September 2021. During the workshop, the dMRS community established a set of recommendations to execute robust dMRS studies. This paper provides a description of the steps needed for acquiring, processing, fitting, and modeling dMRS data, and provides links to useful resources.
Collapse
Affiliation(s)
- Clémence Ligneul
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Chloé Najac
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - André Döring
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Christian Beaulieu
- Departments of Biomedical Engineering and Radiology, University of Alberta, Alberta, Edmonton, Canada
| | - Francesca Branzoli
- Paris Brain Institute-ICM, Sorbonne University, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Guglielmo Genovese
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minnesota, Minneapolis, USA
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ileana Jelescu
- Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dimitrios Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Roland Kreis
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager anf Hvidovre, Hvidovre, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minnesota, Minneapolis, USA
| | - Harald E Möller
- NMR Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jessie Mosso
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- LIFMET, EPFL, Lausanne, Switzerland
| | - Eloïse Mougel
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoires des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Stefan Posse
- Department of Neurology, University of New Mexico School of Medicine, New Mexico, Albuquerque, USA
- Department of Physics and Astronomy, University of New Mexico School of Medicine, New Mexico, Albuquerque, USA
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Kadir Simsek
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | | | - Assaf Tal
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot, Israel
| | - Chantal Tax
- University Medical Center Utrecht, Utrecht, The Netherlands
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Maryland, Baltimore, USA
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Maryland, Baltimore, USA
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, UK
| | - Julien Valette
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoires des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| |
Collapse
|
3
|
Koolschijn RS, Clarke WT, Ip IB, Emir UE, Barron HC. Event-related functional magnetic resonance spectroscopy. Neuroimage 2023; 276:120194. [PMID: 37244321 PMCID: PMC7614684 DOI: 10.1016/j.neuroimage.2023.120194] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023] Open
Abstract
Proton-Magnetic Resonance Spectroscopy (MRS) is a non-invasive brain imaging technique used to measure the concentration of different neurochemicals. "Single-voxel" MRS data is typically acquired across several minutes, before individual transients are averaged through time to give a measurement of neurochemical concentrations. However, this approach is not sensitive to more rapid temporal dynamics of neurochemicals, including those that reflect functional changes in neural computation relevant to perception, cognition, motor control and ultimately behaviour. In this review we discuss recent advances in functional MRS (fMRS) that now allow us to obtain event-related measures of neurochemicals. Event-related fMRS involves presenting different experimental conditions as a series of trials that are intermixed. Critically, this approach allows spectra to be acquired at a time resolution in the order of seconds. Here we provide a comprehensive user guide for event-related task designs, choice of MRS sequence, analysis pipelines, and appropriate interpretation of event-related fMRS data. We raise various technical considerations by examining protocols used to quantify dynamic changes in GABA, the primary inhibitory neurotransmitter in the brain. Overall, we propose that although more data is needed, event-related fMRS can be used to measure dynamic changes in neurochemicals at a temporal resolution relevant to computations that support human cognition and behaviour.
Collapse
Affiliation(s)
- Renée S Koolschijn
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom; Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - I Betina Ip
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom
| | - Uzay E Emir
- School of Health Sciences, Purdue University, West Lafayette, United States
| | - Helen C Barron
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom; Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
4
|
Şimşek K, Döring A, Pampel A, Möller HE, Kreis R. Macromolecular background signal and non-Gaussian metabolite diffusion determined in human brain using ultra-high diffusion weighting. Magn Reson Med 2022; 88:1962-1977. [PMID: 35803740 PMCID: PMC9545875 DOI: 10.1002/mrm.29367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/08/2022] [Accepted: 05/31/2022] [Indexed: 12/14/2022]
Abstract
Purpose Definition of a macromolecular MR spectrum based on diffusion properties rather than relaxation time differences and characterization of non‐Gaussian diffusion of brain metabolites with strongly diffusion‐weighted MR spectroscopy. Methods Short echo time MRS with strong diffusion‐weighting with b‐values up to 25 ms/μm2 at two diffusion times was implemented on a Connectom system and applied in combination with simultaneous spectral and diffusion decay modeling. Motion‐compensation was performed with a combined method based on the simultaneously acquired water and a macromolecular signal. Results The motion compensation scheme prevented spurious signal decay reflected in very small apparent diffusion constants for macromolecular signal. Macromolecular background signal patterns were determined using multiple fit strategies. Signal decay corresponding to non‐Gaussian metabolite diffusion was represented by biexponential fit models yielding parameter estimates for human gray matter that are in line with published rodent data. The optimal fit strategies used constraints for the signal decay of metabolites with limited signal contributions to the overall spectrum. Conclusion The determined macromolecular spectrum based on diffusion properties deviates from the conventional one derived from longitudinal relaxation time differences calling for further investigation before use as experimental basis spectrum when fitting clinical MR spectra. The biexponential characterization of metabolite signal decay is the basis for investigations into pathologic alterations of microstructure. Click here for author‐reader discussions
Collapse
Affiliation(s)
- Kadir Şimşek
- Magnetic Resonance MethodologyInstitute of Diagnostic and Interventional Neuroradiology, University of BernBernSwitzerland
- Graduate School for Cellular and Biomedical SciencesUniversity of BernBernSwitzerland
- Translational Imaging Center (TIC)Swiss Institute for Translational and Entrepreneurial MedicineBernSwitzerland
| | - André Döring
- Cardiff University Brain Research Imaging Centre (CUBRIC)School of Psychology, Cardiff UniversityCardiffUK
| | - André Pampel
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Harald E. Möller
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Roland Kreis
- Magnetic Resonance MethodologyInstitute of Diagnostic and Interventional Neuroradiology, University of BernBernSwitzerland
- Translational Imaging Center (TIC)Swiss Institute for Translational and Entrepreneurial MedicineBernSwitzerland
| |
Collapse
|
5
|
Franconi F, Lemaire L, Gimel JC, Bonnet S, Saulnier P. NMR diffusometry: A new perspective for nanomedicine exploration. J Control Release 2021; 337:155-167. [PMID: 34280413 DOI: 10.1016/j.jconrel.2021.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/09/2022]
Abstract
Nuclear Magnetic Resonance (NMR) based diffusion methods open new perspectives for nanomedicine characterization and their bioenvironment interaction understanding. This review summarizes the theoretical background of diffusion phenomena. Self-diffusion and mutual diffusion coefficient notions are featured. Principles, advantages, drawbacks, and key challenges of NMR diffusometry spectroscopic and imaging methods are presented. This review article also gives an overview of representative applicative works to the nanomedicine field that can contribute to elucidate important issues. Examples of in vitro characterizations such as identification of formulated species, process monitoring, drug release follow-up, nanomedicine interactions with biological barriers are presented as well as possible transpositions for studying in vivo nanomedicine fate.
Collapse
Affiliation(s)
- Florence Franconi
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, PRISM, SFR ICAT, F-49000 Angers, France.
| | - Laurent Lemaire
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, PRISM, SFR ICAT, F-49000 Angers, France.
| | | | - Samuel Bonnet
- Univ Angers, PRISM, SFR ICAT, F-49000 Angers, France.
| | - Patrick Saulnier
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
6
|
Lundell H, Ingo C, Dyrby TB, Ronen I. Cytosolic diffusivity and microscopic anisotropy of N-acetyl aspartate in human white matter with diffusion-weighted MRS at 7 T. NMR IN BIOMEDICINE 2021; 34:e4304. [PMID: 32232909 PMCID: PMC8244075 DOI: 10.1002/nbm.4304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Metabolite diffusion measurable in humans in vivo with diffusion-weighted spectroscopy (DW-MRS) provides a window into the intracellular morphology and state of specific cell types. Anisotropic diffusion in white matter is governed by the microscopic properties of the individual cell types and their structural units (axons, soma, dendrites). However, anisotropy is also markedly affected by the macroscopic orientational distribution over the imaging voxel, particularly in DW-MRS, where the dimensions of the volume of interest (VOI) are much larger than those typically used in diffusion-weighted imaging. One way to address the confound of macroscopic structural features is to average the measurements acquired with uniformly distributed gradient directions to mimic a situation where fibers present in the VOI are orientationally uniformly distributed. This situation allows the extraction of relevant microstructural features such as transverse and longitudinal diffusivities within axons and the related microscopic fractional anisotropy. We present human DW-MRS data acquired at 7 T in two different white matter regions, processed and analyzed as described above, and find that intra-axonal diffusion of the neuronal metabolite N-acetyl aspartate is in good correspondence to simple model interpretations, such as multi-Gaussian diffusion from disperse fibers where the transverse diffusivity can be neglected. We also discuss the implications of our approach for current and future applications of DW-MRS for cell-specific measurements.
Collapse
Affiliation(s)
- Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital HvidovreDenmark
| | - Carson Ingo
- Department of Physical Therapy and Human Movement SciencesNorthwestern UniversityChicagoIllinois
- Department of NeurologyNorthwestern UniversityChicagoIllinois
| | - Tim B. Dyrby
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital HvidovreDenmark
- Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKongens LyngbyDenmark
| | - Itamar Ronen
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
7
|
Hanstock C, Beaulieu C. Rapid acquisition diffusion MR spectroscopy of metabolites in human brain. NMR IN BIOMEDICINE 2021; 34:e4270. [PMID: 32045958 DOI: 10.1002/nbm.4270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Few studies have focused on metabolite diffusion in the human brain using 1 H-MRS due to significant technical challenges. Moreover, such studies have required lengthy acquisition times and are therefore impractical to implement clinically. By first characterizing and then minimizing the effects of linear and oscillating eddy currents, which arise from the diffusion gradients, and by implementing phase-cycle and slice-order strategies, as well as introducing a new phase-alignment methodology, we report a method that allows data acquisition requiring 20 seconds per spectrum. This remained feasible, even for b-values >8000 s/mm2 , with a rapid acquisition diffusion MRS methodology. It has allowed the nonlinear characterization of signal intensity with multiple b-values, and has improved the measurement of rotationally invariant diffusion parameters via six-direction, six b-value diffusion tensor spectroscopy (DTS) in 12 minutes at 4.7 T. The shorter DTS acquisition will enable its application to white matter regions not aligned with the gradients and permit clinical studies in a feasible time.
Collapse
Affiliation(s)
- Chris Hanstock
- Department of Biomedical Engineering, University of Alberta, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Alberta, Canada
| |
Collapse
|
8
|
Genovese G, Marjańska M, Auerbach EJ, Cherif LY, Ronen I, Lehéricy S, Branzoli F. In vivo diffusion-weighted MRS using semi-LASER in the human brain at 3 T: Methodological aspects and clinical feasibility. NMR IN BIOMEDICINE 2021; 34:e4206. [PMID: 31930768 PMCID: PMC7354897 DOI: 10.1002/nbm.4206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/18/2019] [Accepted: 10/07/2019] [Indexed: 05/08/2023]
Abstract
Diffusion-weighted (DW-) MRS investigates non-invasively microstructural properties of tissue by probing metabolite diffusion in vivo. Despite the growing interest in DW-MRS for clinical applications, little has been published on the reproducibility of this technique. In this study, we explored the optimization of a single-voxel DW-semi-LASER sequence for clinical applications at 3 T, and evaluated the reproducibility of the method under different experimental conditions. DW-MRS measurements were carried out in 10 healthy participants and repeated across three sessions. Metabolite apparent diffusion coefficients (ADCs) were calculated from mono-exponential fits (ADCexp ) up to b = 3300 s/mm2 , and from the diffusional kurtosis approach (ADCK ) up to b = 7300 s/mm2 . The inter-subject variabilities of ADCs of N-acetylaspartate + N-acetylaspartylglutamate (tNAA), creatine + phosphocreatine, choline containing compounds, and myo-inositol were calculated in the posterior cingulate cortex (PCC) and in the corona radiata (CR). We explored the effect of physiological motion on the DW-MRS signal and the importance of cardiac gating and peak thresholding to account for signal amplitude fluctuations. Additionally, we investigated the dependence of the intra-subject variability on the acquisition scheme using a bootstrapping resampling method. Coefficients of variation were lower in PCC than CR, likely due to the different sensitivities to motion artifacts of the two regions. Finally, we computed coefficients of repeatability for ADCexp and performed power calculations needed for designing clinical studies. The power calculation for ADCexp of tNAA showed that in the PCC seven subjects per group are sufficient to detect a difference of 5% between two groups with an acquisition time of 4 min, suggesting that ADCexp of tNAA is a suitable marker for disease-related intracellular alteration even in small case-control studies. In the CR, further work is needed to evaluate the voxel size and location that minimize the motion artifacts and variability of the ADC measurements.
Collapse
Affiliation(s)
- Guglielmo Genovese
- Centre de NeuroImagerie de Recherche (CENIR), Institut du Cerveau et de la Moelle épinère (ICM), F-75013, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, F-75013, Paris, France
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Edward J. Auerbach
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Lydia Yahia Cherif
- Centre de NeuroImagerie de Recherche (CENIR), Institut du Cerveau et de la Moelle épinère (ICM), F-75013, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, F-75013, Paris, France
| | - Itamar Ronen
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stéphane Lehéricy
- Centre de NeuroImagerie de Recherche (CENIR), Institut du Cerveau et de la Moelle épinère (ICM), F-75013, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, F-75013, Paris, France
| | - Francesca Branzoli
- Centre de NeuroImagerie de Recherche (CENIR), Institut du Cerveau et de la Moelle épinère (ICM), F-75013, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, F-75013, Paris, France
- Corresponding author: Francesca Branzoli, Ph.D., Institut du cerveau et de la moelle épinière (ICM), Hôpital Pitié-Salpetrière, 47 boulevard de l’Hôpital, CS 21414, 75646 Paris Cedex 13, Phone number: +33 (0)1 57 27 46 46, Fax: +33 (0)1 45 83 19 28,
| |
Collapse
|
9
|
Iqbal Z, Nguyen D, Thomas MA, Jiang S. Deep learning can accelerate and quantify simulated localized correlated spectroscopy. Sci Rep 2021; 11:8727. [PMID: 33888805 PMCID: PMC8062502 DOI: 10.1038/s41598-021-88158-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Nuclear magnetic resonance spectroscopy (MRS) allows for the determination of atomic structures and concentrations of different chemicals in a biochemical sample of interest. MRS is used in vivo clinically to aid in the diagnosis of several pathologies that affect metabolic pathways in the body. Typically, this experiment produces a one dimensional (1D) 1H spectrum containing several peaks that are well associated with biochemicals, or metabolites. However, since many of these peaks overlap, distinguishing chemicals with similar atomic structures becomes much more challenging. One technique capable of overcoming this issue is the localized correlated spectroscopy (L-COSY) experiment, which acquires a second spectral dimension and spreads overlapping signal across this second dimension. Unfortunately, the acquisition of a two dimensional (2D) spectroscopy experiment is extremely time consuming. Furthermore, quantitation of a 2D spectrum is more complex. Recently, artificial intelligence has emerged in the field of medicine as a powerful force capable of diagnosing disease, aiding in treatment, and even predicting treatment outcome. In this study, we utilize deep learning to: (1) accelerate the L-COSY experiment and (2) quantify L-COSY spectra. All training and testing samples were produced using simulated metabolite spectra for chemicals found in the human body. We demonstrate that our deep learning model greatly outperforms compressed sensing based reconstruction of L-COSY spectra at higher acceleration factors. Specifically, at four-fold acceleration, our method has less than 5% normalized mean squared error, whereas compressed sensing yields 20% normalized mean squared error. We also show that at low SNR (25% noise compared to maximum signal), our deep learning model has less than 8% normalized mean squared error for quantitation of L-COSY spectra. These pilot simulation results appear promising and may help improve the efficiency and accuracy of L-COSY experiments in the future.
Collapse
Affiliation(s)
- Zohaib Iqbal
- Medical Artificial Intelligence and Automation Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Dan Nguyen
- Medical Artificial Intelligence and Automation Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Michael Albert Thomas
- Department of Radiological Sciences, University of California Los Angles, Los Angeles, CA, USA
| | - Steve Jiang
- Medical Artificial Intelligence and Automation Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
10
|
Henriques RN, Palombo M, Jespersen SN, Shemesh N, Lundell H, Ianuş A. Double diffusion encoding and applications for biomedical imaging. J Neurosci Methods 2020; 348:108989. [PMID: 33144100 DOI: 10.1016/j.jneumeth.2020.108989] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Diffusion Magnetic Resonance Imaging (dMRI) is one of the most important contemporary non-invasive modalities for probing tissue structure at the microscopic scale. The majority of dMRI techniques employ standard single diffusion encoding (SDE) measurements, covering different sequence parameter ranges depending on the complexity of the method. Although many signal representations and biophysical models have been proposed for SDE data, they are intrinsically limited by a lack of specificity. Advanced dMRI methods have been proposed to provide additional microstructural information beyond what can be inferred from SDE. These enhanced contrasts can play important roles in characterizing biological tissues, for instance upon diseases (e.g. neurodegenerative, cancer, stroke), aging, learning, and development. In this review we focus on double diffusion encoding (DDE), which stands out among other advanced acquisitions for its versatility, ability to probe more specific diffusion correlations, and feasibility for preclinical and clinical applications. Various DDE methodologies have been employed to probe compartment sizes (Section 3), decouple the effects of microscopic diffusion anisotropy from orientation dispersion (Section 4), probe displacement correlations, study exchange, or suppress fast diffusing compartments (Section 6). DDE measurements can also be used to improve the robustness of biophysical models (Section 5) and study intra-cellular diffusion via magnetic resonance spectroscopy of metabolites (Section 7). This review discusses all these topics as well as important practical aspects related to the implementation and contrast in preclinical and clinical settings (Section 9) and aims to provide the readers a guide for deciding on the right DDE acquisition for their specific application.
Collapse
Affiliation(s)
- Rafael N Henriques
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Marco Palombo
- Centre for Medical Image Computing and Dept. of Computer Science, University College London, London, UK
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Andrada Ianuş
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
11
|
Jelescu IO, Palombo M, Bagnato F, Schilling KG. Challenges for biophysical modeling of microstructure. J Neurosci Methods 2020; 344:108861. [PMID: 32692999 PMCID: PMC10163379 DOI: 10.1016/j.jneumeth.2020.108861] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The biophysical modeling efforts in diffusion MRI have grown considerably over the past 25 years. In this review, we dwell on the various challenges along the journey of bringing a biophysical model from initial design to clinical implementation, identifying both hurdles that have been already overcome and outstanding issues. First, we describe the critical initial task of selecting which features of tissue microstructure can be estimated using a model and which acquisition protocol needs to be implemented to make the estimation possible. The model performance should necessarily be tested in realistic numerical simulations and in experimental data - adapting the fitting strategy accordingly, and parameter estimates should be validated against complementary techniques, when/if available. Secondly, the model performance and validity should be explored in pathological conditions, and, if appropriate, dedicated models for pathology should be developed. We build on examples from tumors, ischemia and demyelinating diseases. We then discuss the challenges associated with clinical translation and added value. Finally, we single out four major unresolved challenges that are related to: the availability of a microstructural ground truth, the validation of model parameters which cannot be accessed with complementary techniques, the development of a generalized standard model for any brain region and pathology, and the seamless communication between different parties involved in the development and application of biophysical models of diffusion.
Collapse
|
12
|
Gao J, Jiang M, Magin RL, Gatto RG, Morfini G, Larson AC, Li W. Multicomponent diffusion analysis reveals microstructural alterations in spinal cord of a mouse model of amyotrophic lateral sclerosis ex vivo. PLoS One 2020; 15:e0231598. [PMID: 32310954 PMCID: PMC7170503 DOI: 10.1371/journal.pone.0231598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
The microstructure changes associated with degeneration of spinal axons in amyotrophic lateral sclerosis (ALS) may be reflected in altered water diffusion properties, potentially detectable with diffusion-weighted (DW) MRI. Prior work revealed the classical mono-exponential model fails to precisely depict decay in DW signal at high b-values. In this study, we aim to investigate signal decay behaviors at ultra-high b-values for non-invasive assessment of spinal cord alterations in the transgenic SOD1G93A mouse model of ALS. A multiexponential diffusion analysis using regularized non-negative least squares (rNNLS) algorithm was applied to a series of thirty DW MR images with b-values ranging from 0 to 858,022 s/mm2 on ex vivo spinal cords of transgenic SOD1G93A and age-matched control mice. We compared the distributions of measured diffusion coefficient fractions between the groups. The measured diffusion weighted signals in log-scale showed non-linear decay behaviors with increased b-values. Faster signal decays were observed with diffusion gradients applied parallel to the long axis of the spinal cord compared to when oriented in the transverse direction. Multiexponential analysis at the lumbar level in the spinal cord identified ten subintervals. A significant decrease of diffusion coefficient fractions was found in the ranges of [1.63×10−8,3.70×10−6] mm2/s (P = 0.0002) and of [6.01×10−6,4.20×10−5] mm2/s (P = 0.0388) in SOD1G93A mice. Anisotropic diffusion signals persisted at ultra-high b-value DWIs of the mouse spinal cord and multiexponential diffusion analysis offers the potential to evaluate microstructural alterations of ALS-affected spinal cord non-invasively.
Collapse
Affiliation(s)
- Jin Gao
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
- Research Resource Center, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Mingchen Jiang
- Department of Physiology, Northwestern University, Chicago, IL, United States of America
| | - Richard L. Magin
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Rodolfo G. Gatto
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Andrew C. Larson
- Department of Radiology, Northwestern University, Chicago, IL, United States of America
| | - Weiguo Li
- Research Resource Center, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Radiology, Northwestern University, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
13
|
Dehghani M, Kunz N, Lei H. Diffusion behavior of cerebral metabolites of congenital portal systemic shunt mice assessed noninvasively by diffusion-weighted 1 H magnetic resonance spectroscopy. NMR IN BIOMEDICINE 2020; 33:e4198. [PMID: 31765073 DOI: 10.1002/nbm.4198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 08/27/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Diffusion-weighted 1 H-MRS (DW-MRS) allows for noninvasive investigation of the cellular compartmentalization of cerebral metabolites. DW-MRS applied to the congenital portal systemic shunt (PSS) mouse brain may provide specific insight into alterations of cellular restrictions associated with PSS in humans. At 14.1 T, adult male PSS and their age-matched healthy (Ctrl) mice were studied using DW-MRS covering b-values ranging from 0 to 45 ms/μm2 to determine the diffusion behavior of abundant metabolites. The remarkable sensitivity and spectral resolution, in combination with very high diffusion weighting, allowed for precise measurement of the diffusion properties of endogenous N-acetyl-aspartate, total creatine, myo-inositol, total choline with extension to glutamine and glutamate in mouse brains, in vivo. Most metabolites had comparable diffusion properties in PSS and Ctrl mice, suggesting that intracellular distribution space for these metabolites was not affected in the model. The slightly different diffusivity of the slow decaying component of taurine (0.015 ± 0.003 μm2 /ms in PSS vs 0.021 ± 0.002 μm2 /ms in Ctrl, P < 0.05) might support a cellular redistribution of taurine in the PSS mouse brain.
Collapse
Affiliation(s)
- Masoumeh Dehghani
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Nicolas Kunz
- Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hongxia Lei
- Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Magnetic resonance spectroscopy extended by oscillating diffusion gradients: Cell-specific anomalous diffusion as a probe for tissue microstructure in human brain. Neuroimage 2019; 202:116075. [DOI: 10.1016/j.neuroimage.2019.116075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 11/23/2022] Open
|
15
|
Hoefemann M, Adalid V, Kreis R. Optimizing acquisition and fitting conditions for 1 H MR spectroscopy investigations in global brain pathology. NMR IN BIOMEDICINE 2019; 32:e4161. [PMID: 31410911 DOI: 10.1002/nbm.4161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 05/23/2023]
Abstract
PURPOSE To optimize acquisition and fitting conditions for nonfocal disease in terms of voxel size and use of individual coil element data. Increasing the voxel size yields a higher signal-to-noise ratio, but leads to larger linewidths and more artifacts. Several ways to improve the spectral quality for large voxels are exploited and the optimal use of individual coil signals investigated. METHODS Ten human subjects were measured at 3 T using a 64-channel receive head coil with a semi-LASER localization sequence under optimized and deliberately mis-set field homogeneity. Eight different voxel sizes (8 to 99 cm3 ) were probed. Spectra were fitted either as weighted sums of the individual coil elements or simultaneously without summation. Eighteen metabolites were included in the fit model that also included the lineshapes from all coil elements as reflected in water reference data. Fitting errors for creatine, myo-Inositol and glutamate are reported as representative parameters to judge optimal acquisition and evaluation conditions. RESULTS Minimal Cramér-Rao lower bounds and thus optimal acquisition conditions were found for a voxel size of ~ 70 cm3 for the representative upfield metabolites. Spectral quality in terms of lineshape and artifact appearance was determined to differ substantially between coil elements. Simultaneous fitting of spectra from individual coil elements instead of traditional fitting of a weighted sum spectrum reduced Cramer-Rao lower bounds by up to 17% for large voxel sizes. CONCLUSION The optimal voxel size for best precision in determined metabolite content is surprisingly large. Such an acquisition condition is most relevant for detection of low-concentration metabolites, like NAD+ or phenylalanine, but also for longitudinal studies where very small alterations in metabolite content are targeted. In addition, simultaneous fitting of single channel spectra enforcing lineshape and coil sensitivity information proved to be superior to traditional signal combination with subsequent fitting.
Collapse
Affiliation(s)
- Maike Hoefemann
- Depts. Radiology and Biomedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Victor Adalid
- Depts. Radiology and Biomedical Research, University of Bern, Bern, Switzerland
| | - Roland Kreis
- Depts. Radiology and Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Landheer K, Schulte RF, Treacy MS, Swanberg KM, Juchem C. Theoretical description of modern1H in Vivo magnetic resonance spectroscopic pulse sequences. J Magn Reson Imaging 2019; 51:1008-1029. [DOI: 10.1002/jmri.26846] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 01/20/2023] Open
Affiliation(s)
- Karl Landheer
- Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science New York New York USA
| | | | - Michael S. Treacy
- Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science New York New York USA
| | - Kelley M. Swanberg
- Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science New York New York USA
| | - Christoph Juchem
- Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science New York New York USA
- Radiology, Columbia University College of Physicians and Surgeons New York New York USA
| |
Collapse
|
17
|
Jones DK, Alexander DC, Bowtell R, Cercignani M, Dell'Acqua F, McHugh DJ, Miller KL, Palombo M, Parker GJM, Rudrapatna US, Tax CMW. Microstructural imaging of the human brain with a 'super-scanner': 10 key advantages of ultra-strong gradients for diffusion MRI. Neuroimage 2018; 182:8-38. [PMID: 29793061 DOI: 10.1016/j.neuroimage.2018.05.047] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
The key component of a microstructural diffusion MRI 'super-scanner' is a dedicated high-strength gradient system that enables stronger diffusion weightings per unit time compared to conventional gradient designs. This can, in turn, drastically shorten the time needed for diffusion encoding, increase the signal-to-noise ratio, and facilitate measurements at shorter diffusion times. This review, written from the perspective of the UK National Facility for In Vivo MR Imaging of Human Tissue Microstructure, an initiative to establish a shared 300 mT/m-gradient facility amongst the microstructural imaging community, describes ten advantages of ultra-strong gradients for microstructural imaging. Specifically, we will discuss how the increase of the accessible measurement space compared to a lower-gradient systems (in terms of Δ, b-value, and TE) can accelerate developments in the areas of 1) axon diameter distribution mapping; 2) microstructural parameter estimation; 3) mapping micro-vs macroscopic anisotropy features with gradient waveforms beyond a single pair of pulsed-gradients; 4) multi-contrast experiments, e.g. diffusion-relaxometry; 5) tractography and high-resolution imaging in vivo and 6) post mortem; 7) diffusion-weighted spectroscopy of metabolites other than water; 8) tumour characterisation; 9) functional diffusion MRI; and 10) quality enhancement of images acquired on lower-gradient systems. We finally discuss practical barriers in the use of ultra-strong gradients, and provide an outlook on the next generation of 'super-scanners'.
Collapse
Affiliation(s)
- D K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; School of Psychology, Faculty of Health Sciences, Australian Catholic University, Melbourne, Victoria, 3065, Australia.
| | - D C Alexander
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK; Clinical Imaging Research Centre, National University of Singapore, Singapore
| | - R Bowtell
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - M Cercignani
- Department of Psychiatry, Brighton and Sussex Medical School, Brighton, UK
| | - F Dell'Acqua
- Natbrainlab, Department of Neuroimaging, King's College London, London, UK
| | - D J McHugh
- Division of Informatics, Imaging and Data Sciences, The University of Manchester, Manchester, UK; CRUK and EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge and Manchester, UK
| | - K L Miller
- Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | - M Palombo
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK
| | - G J M Parker
- Division of Informatics, Imaging and Data Sciences, The University of Manchester, Manchester, UK; CRUK and EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge and Manchester, UK; Bioxydyn Ltd., Manchester, UK
| | - U S Rudrapatna
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - C M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
18
|
Palombo M, Shemesh N, Ronen I, Valette J. Insights into brain microstructure from in vivo DW-MRS. Neuroimage 2018; 182:97-116. [DOI: 10.1016/j.neuroimage.2017.11.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/09/2017] [Accepted: 11/15/2017] [Indexed: 12/27/2022] Open
|
19
|
Studying neurons and glia non-invasively via anomalous subdiffusion of intracellular metabolites. Brain Struct Funct 2018; 223:3841-3854. [DOI: 10.1007/s00429-018-1719-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 07/12/2018] [Indexed: 12/31/2022]
|
20
|
Hybrid quantitative MRI using chemical shift displacement and recovery-based simultaneous water and lipid imaging: A preliminary study. Magn Reson Imaging 2018; 50:61-67. [DOI: 10.1016/j.mri.2018.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 01/03/2023]
|
21
|
Deelchand DK, Auerbach EJ, Marjańska M. Apparent diffusion coefficients of the five major metabolites measured in the human brain in vivo at 3T. Magn Reson Med 2018; 79:2896-2901. [PMID: 29044690 PMCID: PMC5843522 DOI: 10.1002/mrm.26969] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/29/2017] [Accepted: 09/21/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE To measure the apparent diffusion coefficients (ADC) of five main metabolites in the human brain at 3T with PRESS and STEAM, avoiding measurement biases because of cross-terms. Cross-terms arise from interactions between slice-selection and spoiler gradients in the localized spectroscopy sequence and the diffusion gradients. METHODS Diffusion-weighted spectra were acquired from the prefrontal cortex in five healthy subjects using STEAM (echo time [TE]/mixing time [TM]/pulse repetition time [TR] = 21.22/105/3000 ms, b-values = 0 and 3172 s/mm2 ) and PRESS (TE/TR = 54.2/3000 ms, b-values = 0 and 2204 s/mm2 ). Diffusion weighting was applied using bipolar gradients in three orthogonal directions. Post-processed spectra were analyzed with LCModel, and the trace/3 ADC values were calculated. RESULTS Comparable trace/3 ADC values (0.14-0.18 µm2 /ms) were obtained for five main metabolites with both methods. These metabolites were quantified with Cramér-Rao lower bounds below 15%. CONCLUSION The ADC values of the five main metabolites were successfully measured in the human brain at 3T with eliminated directional dependence. Both STEAM and PRESS can be used to probe the diffusivity of metabolites in normal brain and various pathologies on the clinical scanner with slightly higher precision achieved with STEAM for glutamate and myo-inositol. Magn Reson Med 79:2896-2901, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Dinesh K. Deelchand
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Edward J. Auerbach
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
22
|
Döring A, Adalid V, Boesch C, Kreis R. Diffusion-weighted magnetic resonance spectroscopy boosted by simultaneously acquired water reference signals. Magn Reson Med 2018; 80:2326-2338. [DOI: 10.1002/mrm.27222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/19/2018] [Accepted: 03/27/2018] [Indexed: 11/08/2022]
Affiliation(s)
- André Döring
- Departments of Radiology and Biomedical Research; University of Bern; Bern Switzerland
- Graduate School for Cellular and Biomedical Sciences; University of Bern; Bern Switzerland
| | - Victor Adalid
- Departments of Radiology and Biomedical Research; University of Bern; Bern Switzerland
- Graduate School for Cellular and Biomedical Sciences; University of Bern; Bern Switzerland
| | - Chris Boesch
- Departments of Radiology and Biomedical Research; University of Bern; Bern Switzerland
| | - Roland Kreis
- Departments of Radiology and Biomedical Research; University of Bern; Bern Switzerland
| |
Collapse
|
23
|
Flament J, Hantraye P, Valette J. In Vivo Multidimensional Brain Imaging in Huntington's Disease Animal Models. Methods Mol Biol 2018; 1780:285-301. [PMID: 29856025 DOI: 10.1007/978-1-4939-7825-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder caused by an abnormal expansion of a CAG repeat located in the gene encoding for huntingtin protein. This mutation induces the expression of a polyglutamine stretch in the mutated protein resulting in the modification of various biological properties of the wild-type protein and the progressive appearance of motor, cognitive, and psychiatric disorders that are typically associated to this condition. Although the exact neuropathological mechanisms of degeneration are still not fully understood, HD pathology is characterized by severe neuronal losses in various brain regions including the basal ganglia and many cortical areas. Early signs of astrogliosis may precede actual neuronal degeneration. Early metabolic impairment at least in part associated with mitochondrial complex II deficiency may play a key role in huntingtin-induced mechanisms of neurodegeneration. Clinical trials are actively prepared including various gene-silencing approaches aiming at decreasing mutated huntingtin production. However, with the lack of a specific imaging biomarker capable of visualizing mutated huntingtin or huntingtin aggregates, there is a need for surrogate markers of huntingtin neurodegeneration. MRI and caudate nucleus atrophy is one of the most sensitive imaging biomarkers of HD. As such it can be used as a means to study disease progression and potential halting of the neurodegenerative process by therapeutic intervention, but this marker relies on actual neuronal loss which is a somewhat a late event in the pathology. As a means to develop, characterize and evaluate new, potentially earlier biomarkers of HD pathology we have recently embarked on a series of NMR developments looking for brain imaging techniques that allow for noninvasive longitudinal evaluation/characterization of functional alterations in animal models of HD. This chapter describes an assemblage of innovative NMR methods that have proved useful in detecting pathological cell dysfunctions in various preclinical models of HD.
Collapse
Affiliation(s)
- Julien Flament
- CEA, DRF, Institut de biologie François Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France
- INSERM, US27, Fontenay-aux-Roses, France
| | - Philippe Hantraye
- CEA, DRF, Institut de biologie François Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.
- INSERM, US27, Fontenay-aux-Roses, France.
- CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), Fontenay-aux-Roses, France.
| | - Julien Valette
- CEA, DRF, Institut de biologie François Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), Fontenay-aux-Roses, France
| |
Collapse
|
24
|
Dehghani M, Kunz N, Lanz B, Yoshihara HAI, Gruetter R. Diffusion-weighted MRS of acetate in the rat brain. NMR IN BIOMEDICINE 2017; 30:e3768. [PMID: 28796319 DOI: 10.1002/nbm.3768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 05/04/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
Acetate has been proposed as an astrocyte-specific energy substrate for metabolic studies in the brain. The determination of the relative contribution of the intracellular and extracellular compartments to the acetate signal using diffusion-weighted magnetic resonance spectroscopy can provide an insight into the cellular environment and distribution volume of acetate in the brain. In the present study, localized 1 H nuclear magnetic resonance (NMR) spectroscopy employing a diffusion-weighted stimulated echo acquisition mode (STEAM) sequence at an ultra-high magnetic field (14.1 T) was used to investigate the diffusivity characteristics of acetate and N-acetylaspartate (NAA) in the rat brain in vivo during prolonged acetate infusion. The persistence of the acetate resonance in 1 H spectra acquired at very large diffusion weighting indicated restricted diffusion of acetate and was attributed to intracellular spaces. However, the significantly greater diffusion of acetate relative to NAA suggests that a substantial fraction of acetate is located in the extracellular space of the brain. Assuming an even distribution for acetate in intracellular and extracellular spaces, the diffusion properties of acetate yielded a smaller volume of distribution for acetate relative to water and glucose in the rat brain.
Collapse
Affiliation(s)
- Masoumeh Dehghani
- Laboratoire d'imagerie fonctionnelle et métabolique (LIFMET), École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nicolas Kunz
- Centre d'Imagerie BioMédicale (CIBM)-AIT, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bernard Lanz
- Laboratoire d'imagerie fonctionnelle et métabolique (LIFMET), École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Hikari A I Yoshihara
- Service de Cardiologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratoire d'imagerie fonctionnelle et métabolique (LIFMET), École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Centre d'Imagerie BioMédicale (CIBM), École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Radiology, Université de Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
25
|
Ligneul C, Valette J. Probing metabolite diffusion at ultra-short time scales in the mouse brain using optimized oscillating gradients and "short"-echo-time diffusion-weighted MRS. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3671. [PMID: 27891691 PMCID: PMC5164933 DOI: 10.1002/nbm.3671] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 05/29/2023]
Abstract
Measuring diffusion at ultra-short time scales may yield information about short-range intracellular structure and cytosol viscosity. However, reaching such time scales usually requires oscillating gradients, which in turn imply long echo times TE . Here we propose a new kind of stretched oscillating gradient that allows us to increase diffusion-weighting b while preserving spectral and temporal properties of the gradient modulation. We used these optimized gradients to measure metabolite diffusion in the mouse brain down to effective diffusion times of 1 ms while keeping TE relatively short (60 ms). At such TE , a significant macromolecule signal could still be observed and used as an internal reference of approximately null diffusivity, which proved critical to discard datasets corrupted by some motion artifact. The methods introduced here may be useful to improve the accuracy and precision of metabolite apparent diffusion coefficient measurements with oscillating gradients.
Collapse
Affiliation(s)
- Clémence Ligneul
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), MIRCen, F-92260 Fontenay-aux-Roses, France
- Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| | - Julien Valette
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), MIRCen, F-92260 Fontenay-aux-Roses, France
- Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| |
Collapse
|
26
|
Verma SK, Nagashima K, Yaligar J, Michael N, Lee SS, Xianfeng T, Gopalan V, Sadananthan SA, Anantharaj R, Velan SS. Differentiating brown and white adipose tissues by high-resolution diffusion NMR spectroscopy. J Lipid Res 2016; 58:289-298. [PMID: 27845688 DOI: 10.1194/jlr.d072298] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/13/2016] [Indexed: 01/14/2023] Open
Abstract
There are two types of fat tissues, white adipose tissue (WAT) and brown adipose tissue (BAT), which essentially perform opposite functions in whole body energy metabolism. There is a large interest in identifying novel biophysical properties of WAT and BAT by a quantitative and easy-to-run technique. In this work, we used high-resolution pulsed field gradient diffusion NMR spectroscopy to study the apparent diffusion coefficient (ADC) of fat molecules in rat BAT and WAT samples. The ADC of fat in BAT and WAT from rats fed with a chow diet was compared with that of rats fed with a high-fat diet to monitor how the diffusion properties change due to obesity-associated parameters such as lipid droplet size, fatty acid chain length, and saturation. Feeding a high-fat diet resulted in increased saturation, increased chain lengths, and reduced ADC of fat in WAT. The ADC of fat was lower in BAT relative to WAT in rats fed both chow and high-fat diets. Diffusion of fat was restricted in BAT due to the presence of small multilocular lipid droplets. Our findings indicate that in vivo diffusion might be a potential way for better delineation of BAT and WAT in both lean and obese states.
Collapse
Affiliation(s)
- Sanjay Kumar Verma
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Kaz Nagashima
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Jadegoud Yaligar
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Navin Michael
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore
| | - Swee Shean Lee
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Tian Xianfeng
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Venkatesh Gopalan
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore
| | - Rengaraj Anantharaj
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - S Sendhil Velan
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore .,Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
27
|
Landheer K, Schulte R, Geraghty B, Hanstock C, Chen AP, Cunningham CH, Graham SJ. Diffusion-weighted J-resolved spectroscopy. Magn Reson Med 2016; 78:1235-1245. [PMID: 27797114 DOI: 10.1002/mrm.26514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE To develop a novel diffusion-weighted magnetic resonance spectroscopy (DW-MRS) technique in conjunction with J-resolved spatially localized spectroscopy (JPRESS) to measure the apparent diffusion coefficients (ADCs) of brain metabolites beyond N-acetylaspartic acid (NAA), creatine (Cr), and choline (Cho) at 3T. This technique will be useful to probe tissue microstructures in vivo, as the various metabolites have different physiological characteristics. METHODS Two JPRESS spectra were collected (high b-value and low b-value), and the ADCs of 16 different metabolites were estimated. Two analysis pipelines were developed: 1) a 2D pipeline that uses ProFit software to extract ADCs from metabolites not typically accessible at 3T and 2) a 1D pipeline that uses TARQUIN software to extract the metabolite concentrations from each line in the 2D dataset, allowing for scaling as well as validation. RESULTS The ADCs of 16 different metabolites were estimated from within six subjects in parietal white matter. There was excellent agreement between the results obtained from the 1D and 2D pipelines for NAA, Cr, and Cho. CONCLUSION The proposed technique provided consistent estimates for the ADCs of NAA, Cr, Cho, glutamate + glutamine, and myo-inositol in all subjects and additionally glutathione and scyllo-inositol in all but one subject. Magn Reson Med 78:1235-1245, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Karl Landheer
- Department of Medical Biophysics, University of Toronto, Ontario, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Ben Geraghty
- Department of Medical Biophysics, University of Toronto, Ontario, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Christopher Hanstock
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | - Charles H Cunningham
- Department of Medical Biophysics, University of Toronto, Ontario, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Simon J Graham
- Department of Medical Biophysics, University of Toronto, Ontario, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Fotso K, Dager SR, Landow A, Ackley E, Myers O, Dixon M, Shaw D, Corrigan NM, Posse S. Diffusion tensor spectroscopic imaging of the human brain in children and adults. Magn Reson Med 2016; 78:1246-1256. [PMID: 27791287 DOI: 10.1002/mrm.26518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/26/2016] [Accepted: 09/28/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE We developed diffusion tensor spectroscopic imaging (DTSI), based on proton-echo-planar-spectroscopic imaging (PEPSI), and evaluated the feasibility of mapping brain metabolite diffusion in adults and children. METHODS PRESS prelocalized DTSI at 3 Tesla (T) was performed using navigator-based correction of movement-related phase errors and cardiac gating with compensation for repetition time (TR) related variability in T1 saturation. Mean diffusivity (MD) and fractional anisotropy (FA) of total N-acetyl-aspartate (tNAA), total creatine (tCr), and total choline (tCho) were measured in eight adults (17-60 years) and 10 children (3-24 months) using bmax = 1734 s/mm2 , 1 cc and 4.5 cc voxel sizes, with nominal scan times of 17 min and 8:24 min. Residual movement-related phase encoding ghosting (PEG) was used as a regressor across scans to correct overestimation of MD. RESULTS After correction for PEG, metabolite slice-averaged MD estimated at 20% PEG were lower (P < 0.042) for adults (0.17/0.20/0.18 × 10-3 mm2 /s) than for children (0.26/0.27/0.24 × 10-3 mm2 /s). Extrapolated to 0% PEG, the MD estimates decreased further (0.09/0.11/0.11 × 10-3 mm2 /s versus 0.15/0.16/0.15 × 10-3 mm2 /s). Slice-averaged FA of tNAA (P = 0.049), tCr (P = 0.067), and tCho (P = 0.003) were higher in children. CONCLUSION This high-speed DTSI approach with PEG regression allows for estimation of metabolite MD and FA with improved tolerance to movement. Our preliminary data suggesting age-related changes support DTSI as a sensitive technique for investigating intracellular markers of biological processes. Magn Reson Med 78:1246-1256, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Kevin Fotso
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA.,Department of Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico, USA
| | - Stephen R Dager
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Alec Landow
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA.,Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA
| | - Elena Ackley
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Orrin Myers
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Mindy Dixon
- Seattle Children's Hospital, Seattle, Washington, USA
| | - Dennis Shaw
- Department of Radiology, University of Washington, Seattle, Washington, USA.,Seattle Children's Hospital, Seattle, Washington, USA
| | - Neva M Corrigan
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Stefan Posse
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA.,Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA.,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|