1
|
Shen Q, Wu W, Chiew M, Ji Y, Woods JG, Okell TW. Ultra-high temporal resolution 4D angiography using arterial spin labeling with subspace reconstruction. Magn Reson Med 2025; 93:1924-1941. [PMID: 40063716 PMCID: PMC11893029 DOI: 10.1002/mrm.30407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/23/2024] [Accepted: 12/04/2024] [Indexed: 03/14/2025]
Abstract
PURPOSE To achieve ultra-high temporal resolution non-contrast 4D angiography with improved spatiotemporal fidelity. METHODS Continuous data acquisition using 3D golden-angle sampling following an arterial spin labeling preparation allows for flexibly reconstructing 4D dynamic angiograms at arbitrary temporal resolutions. However, k-space data is often temporally "binned" before image reconstruction, negatively affecting spatiotemporal fidelity and limiting temporal resolution. In this work, a subspace was extracted by linearly compressing a dictionary constructed from simulated curves of an angiographic kinetic model. The subspace was used to represent and reconstruct the voxelwise signal timecourse at the same temporal resolution as the data acquisition without temporal binning. Physiological parameters were estimated from the resulting images using a Bayesian fitting approach. A group of eight healthy subjects were scanned and the in vivo results reconstructed by different methods were compared. Because of the difficulty of obtaining ground truth 4D angiograms with ultra-high temporal resolution, the in vivo results were cross-validated with numerical simulations. RESULTS The proposed method enables 4D time-resolved angiography with much higher temporal resolution (14.7 ms) than previously reported (˜50 ms) while maintaining high spatial resolution (1.1 mm isotropic). Blood flow dynamics were depicted in greater detail, thin vessel visibility was improved, and the estimated physiological parameters also exhibited more realistic spatial patterns with the proposed method. CONCLUSION Incorporating a subspace compressed kinetic model into the reconstruction of 4D ASL angiograms notably improved the temporal resolution and spatiotemporal fidelity, which was subsequently beneficial for accurate physiological modeling.
Collapse
Affiliation(s)
- Qijia Shen
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of Oxford
OxfordUK
| | - Wenchuan Wu
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of Oxford
OxfordUK
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of Oxford
OxfordUK
- Physical SciencesSunnybrook Research InstituteTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Yang Ji
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of Oxford
OxfordUK
| | - Joseph G. Woods
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of Oxford
OxfordUK
| | - Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of Oxford
OxfordUK
| |
Collapse
|
2
|
Shen Q, Wu W, Chiew M, Ji Y, Woods JG, Okell TW. Efficient 3D cone trajectory design for improved combined angiographic and perfusion imaging using arterial spin labeling. Magn Reson Med 2024; 92:1568-1583. [PMID: 38767321 DOI: 10.1002/mrm.30149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE To improve the spatial resolution and repeatability of a non-contrast MRI technique for simultaneous time resolved 3D angiography and perfusion imaging by developing an efficient 3D cone trajectory design. METHODS A novel parameterized 3D cone trajectory design incorporating the 3D golden angle was integrated into 4D combined angiography and perfusion using radial imaging and arterial spin labeling (CAPRIA) to achieve higher spatial resolution and sampling efficiency for both dynamic angiography and perfusion imaging with flexible spatiotemporal resolution. Numerical simulations and physical phantom scanning were used to optimize the cone design. Eight healthy volunteers were scanned to compare the original radial trajectory in 4D CAPRIA with our newly designed cone trajectory. A locally low rank reconstruction method was used to leverage the complementary k-space sampling across time. RESULTS The improved sampling in the periphery of k-space obtained with the optimized 3D cone trajectory resulted in improved spatial resolution compared with the radial trajectory in phantom scans. Improved vessel sharpness and perfusion visualization were also achieved in vivo. Less dephasing was observed in the angiograms because of the short TE of our cone trajectory and the improved k-space sampling efficiency also resulted in higher repeatability compared to the original radial approach. CONCLUSION The proposed 3D cone trajectory combined with 3D golden angle ordering resulted in improved spatial resolution and image quality for both angiography and perfusion imaging and could potentially benefit other applications that require an efficient sampling scheme with flexible spatial and temporal resolution.
Collapse
Affiliation(s)
- Qijia Shen
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Wenchuan Wu
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yang Ji
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Joseph G Woods
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Thomas W Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Togao O, Obara M, Yamashita K, Kikuchi K, Wada T, Murazaki H, Arimura K, Nishimura A, Horie N, van de Ven K, Van Cauteren M, Ishigami K. Arterial Spin Labeling-Based MR Angiography for Cerebrovascular Diseases: Principles and Clinical Applications. J Magn Reson Imaging 2024; 60:1305-1324. [PMID: 37937684 DOI: 10.1002/jmri.29119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Arterial spin labeling (ASL) is a noninvasive imaging technique that labels the proton spins in arterial blood and uses them as endogenous tracers. Brain perfusion imaging with ASL is becoming increasingly common in clinical practice, and clinical applications of ASL for intracranial magnetic resonance angiography (MRA) have also been demonstrated. Unlike computed tomography (CT) angiography and cerebral angiography, ASL-based MRA does not require contrast agents. ASL-based MRA overcomes most of the disadvantages of time-of-flight (TOF) MRA. Several schemes have been developed for ASL-based MRA; the most common method has been pulsed ASL, but more recently pseudo-continuous ASL, which provides a higher signal-to-noise ratio (SNR), has been used more frequently. New methods that have been developed include direct intracranial labeling methods such as velocity-selective ASL and acceleration-selective ASL. MRA using an extremely short echo time (eg, silent MRA) or ultrashort echo-time (TE) MRA can suppress metal susceptibility artifacts and is ideal for patients with a metallic device implanted in a cerebral vessel. Vessel-selective 4D ASL MRA can provide digital subtraction angiography (DSA)-like images. This review highlights the principles, clinical applications, and characteristics of various ASL-based MRA techniques. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Osamu Togao
- Department of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Koji Yamashita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazufumi Kikuchi
- Department of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuhiro Wada
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Hiroo Murazaki
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Koichi Arimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ataru Nishimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Okell TW, Chiew M. Optimization of 4D combined angiography and perfusion using radial imaging and arterial spin labeling. Magn Reson Med 2023; 89:1853-1870. [PMID: 36533868 PMCID: PMC10952652 DOI: 10.1002/mrm.29558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE To extend and optimize a non-contrast MRI technique to obtain whole head 4D (time-resolved 3D) qualitative angiographic and perfusion images from a single scan. METHODS 4D combined angiography and perfusion using radial imaging and arterial spin labeling (CAPRIA) uses pseudocontinuous labeling with a 3D golden ratio ("koosh ball") readout to continuously image the blood water as it travels through the arterial system and exchanges into the tissue. High spatial/temporal resolution angiograms and low spatial/temporal resolution perfusion images can be flexibly reconstructed from the same raw k-space data. Constant and variable flip angle (CFA and VFA, respectively) excitation schedules were optimized through simulations and tested in healthy volunteers. A conventional sensitivity encoding (SENSE) reconstruction was compared against a locally low rank (LLR) reconstruction, which leverages spatiotemporal correlations. Comparison was also made with time-matched time-of-flight angiography and multi-delay EPI perfusion images. Differences in image quality were assessed through split-scan repeatability. RESULTS The optimized VFA schedule (2-9°) resulted in a significant (p < 0.001) improvement in image quality (up to 84% vs. CFA), particularly for the lower SNR perfusion images. The LLR reconstruction provided effective denoising without biasing the signal timecourses, significantly improving angiographic and perfusion image quality and repeatability (up to 143%, p < 0.001). 4D CAPRIA performed well compared with time-of-flight angiography and had better perfusion signal repeatability than the EPI-based approach (p < 0.001). CONCLUSION 4D CAPRIA optimized using a VFA schedule and LLR reconstruction can yield high quality whole head 4D angiograms and perfusion images from a single scan.
Collapse
Affiliation(s)
- Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of Oxford
OxfordUK
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of Oxford
OxfordUK
| |
Collapse
|
5
|
Woods JG, Schauman SS, Chiew M, Chappell MA, Okell TW. Time-encoded pseudo-continuous arterial spin labeling: Increasing SNR in ASL dynamic angiography. Magn Reson Med 2023; 89:1323-1341. [PMID: 36255158 PMCID: PMC10091734 DOI: 10.1002/mrm.29491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/28/2022] [Accepted: 09/23/2022] [Indexed: 02/01/2023]
Abstract
PURPOSE Dynamic angiography using arterial spin labeling (ASL) can provide detailed hemodynamic information. However, the long time-resolved readouts require small flip angles to preserve ASL signal for later timepoints, limiting SNR. By using time-encoded ASL to generate temporal information, the readout can be shortened. Here, the SNR improvements from using larger flip angles, made possible by the shorter readout, are quantitatively investigated. METHODS The SNR of a conventional protocol with nine Look-Locker readouts and a 4 × $$ \times $$ 3 time-encoded protocol with three Look-Locker readouts (giving nine matched timepoints) were compared using simulations and in vivo data. Both protocols were compared using readouts with constant flip angles (CFAs) and variable flip angles (VFAs), where the VFA scheme was designed to produce a consistent ASL signal across readouts. Optimization of the background suppression to minimize physiological noise across readouts was also explored. RESULTS The time-encoded protocol increased in vivo SNR by 103% and 96% when using CFAs or VFAs, respectively. Use of VFAs improved SNR compared with CFAs by 25% and 21% for the conventional and time-encoded protocols, respectively. The VFA scheme also removed signal discontinuities in the time-encoded data. Preliminary data suggest that optimizing the background suppression could improve in vivo SNR by a further 16%. CONCLUSIONS Time encoding can be used to generate additional temporal information in ASL angiography. This enables the use of larger flip angles, which can double the SNR compared with a non-time-encoded protocol. The shortened time-encoded readout can also lead to improved background suppression, reducing physiological noise and further improving SNR.
Collapse
Affiliation(s)
- Joseph G Woods
- Wellcome Centre for Integrated Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - S Sophie Schauman
- Wellcome Centre for Integrated Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom.,Department of Radiology, Stanford University, Stanford, California, USA
| | - Mark Chiew
- Wellcome Centre for Integrated Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - Michael A Chappell
- Wellcome Centre for Integrated Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom.,Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Thomas W Okell
- Wellcome Centre for Integrated Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Hernandez‐Garcia L, Aramendía‐Vidaurreta V, Bolar DS, Dai W, Fernández‐Seara MA, Guo J, Madhuranthakam AJ, Mutsaerts H, Petr J, Qin Q, Schollenberger J, Suzuki Y, Taso M, Thomas DL, van Osch MJP, Woods J, Zhao MY, Yan L, Wang Z, Zhao L, Okell TW. Recent Technical Developments in ASL: A Review of the State of the Art. Magn Reson Med 2022; 88:2021-2042. [PMID: 35983963 PMCID: PMC9420802 DOI: 10.1002/mrm.29381] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/31/2022] [Accepted: 06/18/2022] [Indexed: 12/11/2022]
Abstract
This review article provides an overview of a range of recent technical developments in advanced arterial spin labeling (ASL) methods that have been developed or adopted by the community since the publication of a previous ASL consensus paper by Alsop et al. It is part of a series of review/recommendation papers from the International Society for Magnetic Resonance in Medicine Perfusion Study Group. Here, we focus on advancements in readouts and trajectories, image reconstruction, noise reduction, partial volume correction, quantification of nonperfusion parameters, fMRI, fingerprinting, vessel selective ASL, angiography, deep learning, and ultrahigh field ASL. We aim to provide a high level of understanding of these new approaches and some guidance for their implementation, with the goal of facilitating the adoption of such advances by research groups and by MRI vendors. Topics outside the scope of this article that are reviewed at length in separate articles include velocity selective ASL, multiple-timepoint ASL, body ASL, and clinical ASL recommendations.
Collapse
Affiliation(s)
| | | | - Divya S. Bolar
- Center for Functional Magnetic Resonance Imaging, Department of RadiologyUniversity of California at San DiegoSan DiegoCaliforniaUSA
| | - Weiying Dai
- Department of Computer ScienceState University of New York at BinghamtonBinghamtonNYUSA
| | | | - Jia Guo
- Department of BioengineeringUniversity of California RiversideRiversideCaliforniaUSA
| | | | - Henk Mutsaerts
- Department of Radiology & Nuclear MedicineAmsterdam University Medical Center, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Jan Petr
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer ResearchDresdenGermany
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Yuriko Suzuki
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Manuel Taso
- Division of MRI research, RadiologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - David L. Thomas
- Department of Brain Repair and RehabilitationUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Matthias J. P. van Osch
- C.J. Gorter Center for high field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Joseph Woods
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
- Department of RadiologyUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Moss Y. Zhao
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Lirong Yan
- Department of Radiology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Ze Wang
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Li Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument ScienceZhejiang UniversityZhejiangPeople's Republic of China
| | - Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
7
|
Togao O, Obara M, Kikuchi K, Helle M, Arimura K, Nishimura A, Wada T, Murazaki H, Van Cauteren M, Hiwatashi A, Ishigami K. Vessel-Selective 4D-MRA Using Superselective Pseudocontinuous Arterial Spin-Labeling with Keyhole and View-Sharing for Visualizing Intracranial Dural AVFs. AJNR Am J Neuroradiol 2022; 43:368-375. [PMID: 35241425 PMCID: PMC8910818 DOI: 10.3174/ajnr.a7426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/11/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE An accurate assessment of the hemodynamics of an intracranial dural AVF is necessary for treatment planning. We aimed to investigate the utility of 4D-MRA based on superselective pseudocontinuous arterial spin-labeling with CENTRA-keyhole and view-sharing (4D-S-PACK) for the vessel-selective visualization of intracranial dural AVFs. MATERIALS AND METHODS We retrospectively analyzed the images of 21 patients (12 men and 9 women; mean age, 62.2 [SD,19.2] years) with intracranial dural AVFs, each of whom was imaged with DSA, 4D-S-PACK, and nonselective 4D-MRA based on pseudocontinuous arterial spin-labeling combined with CENTRA-keyhole and view-sharing (4D-PACK). The shunt location, venous drainage patterns, feeding artery identification, and Borden classification were evaluated by 2 observers using both MRA methods on separate occasions. Vessel selectivity was evaluated on 4D-S-PACK. RESULTS Shunt locations were correctly evaluated in all 21 patients by both observers on both MRA methods. With 4D-S-PACK, observers 1 and 2 detected 76 (80.0%, P < .001) and 73 (76.8%, P < .001) feeding arteries of the 95 feeding arteries identified on DSA but only 39 (41.1%) and 46 (48.4%) feeding arteries with nonselective 4D-PACK, respectively. Both observers correctly identified 10 of the 11 patients with cortical venous reflux confirmed by DSA with both 4D-S-PACK and 4D-PACK (sensitivity = 90.9%, specificity = 90.9% for each method), and they made accurate Borden classifications in 20 of the 21 patients (95.2%) on both MRA methods. Of the 84 vessel territories examined, vessel selectivity was graded 3 or 4 in 73 (91.2%) and 66 (88.0%) territories by observers 1 and 2, respectively. CONCLUSIONS 4D-S-PACK is useful for the identification of feeding arteries and accurate classifications of intracranial dural AVFs and can be a useful noninvasive clinical tool.
Collapse
Affiliation(s)
- O. Togao
- From the Departments of Molecular Imaging & Diagnosis (O.T.)
| | - M. Obara
- Philips Japan (M.O., M.V.C.), Tokyo, Japan
| | | | - M. Helle
- Philips Research (M.H.), Hamburg, Germany
| | - K. Arimura
- Neurosurgery (K.A., A.N.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - A. Nishimura
- Neurosurgery (K.A., A.N.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - T. Wada
- Division of Radiology (T.W., H.M.), Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - H. Murazaki
- Division of Radiology (T.W., H.M.), Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | | | | | | |
Collapse
|
8
|
Zhang Z, Karasan E, Gopalan K, Liu C, Lustig M. DiSpect: Displacement spectrum imaging of flow and tissue perfusion using spin-labeling and stimulated echoes. Magn Reson Med 2021; 86:2468-2481. [PMID: 34096098 DOI: 10.1002/mrm.28882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE We propose a new method, displacement spectrum (DiSpect) imaging, for probing in vivo complex tissue dynamics such as motion, flow, diffusion, and perfusion. Based on stimulated echoes and image phase, our flexible approach enables observations of the spin dynamics over short (milliseconds) to long (seconds) evolution times. METHODS The DiSpect method is a Fourier-encoded variant of displacement encoding with stimulated echoes, which encodes bulk displacement of spins that occurs between tagging and imaging in the image phase. However, this method fails to capture partial volume effects as well as blood flow. The DiSpect variant mitigates this by performing multiple scans with increasing displacement-encoding steps. Fourier analysis can then resolve the multidimensional spectrum of displacements that spins exhibit over the mixing time. In addition, repeated imaging following tagging can capture dynamic displacement spectra with increasing mixing times. RESULTS We demonstrate properties of DiSpect MRI using flow phantom experiments as well as in vivo brain scans. Specifically, the ability of DiSpect to perform retrospective vessel-selective perfusion imaging at multiple mixing times is highlighted. CONCLUSION The DiSpect variant is a new tool in the arsenal of MRI techniques for probing complex tissue dynamics. The flexibility and the rich information it provides open the possibility of alternative ways to quantitatively measure numerous complex spin dynamics, such as flow and perfusion within a single exam.
Collapse
Affiliation(s)
- Zhiyong Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA
| | - Ekin Karasan
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA
| | - Karthik Gopalan
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA
| | - Michael Lustig
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
9
|
Shao X, Yan L, Ma SJ, Wang K, Wang DJJ. High-Resolution Neurovascular Imaging at 7T: Arterial Spin Labeling Perfusion, 4-Dimensional MR Angiography, and Black Blood MR Imaging. Magn Reson Imaging Clin N Am 2021; 29:53-65. [PMID: 33237015 PMCID: PMC7694883 DOI: 10.1016/j.mric.2020.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ultrahigh field offers increased resolution and contrast for neurovascular imaging. Arterial spin labeling methods benefit from an increased intrinsic signal-to-noise ratio of MR imaging signal and a prolonged tracer half-life at ultrahigh field, allowing the visualization of layer-dependent microvascular perfusion. Arterial spin labeling-based time-resolved 4-dimensional MR angiography at 7T provides a detailed depiction of the vascular architecture and dynamic blood flow pattern with high spatial and temporal resolutions. High-resolution black blood MR imaging at 7T allows detailed characterization of small perforating arteries such as lenticulostriate arteries. All techniques benefit from advances in parallel radiofrequency transmission technologies at ultrahigh field.
Collapse
Affiliation(s)
- Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Lirong Yan
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Samantha J Ma
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA; Siemens Healthcare, Los Angeles, CA, USA
| | - Kai Wang
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA 90033, USA.
| |
Collapse
|
10
|
Heidari Pahlavian S, Geri O, Russin J, Ma SJ, Amar A, Wang DJJ, Ben Bashat D, Yan L. Semiautomatic cerebrovascular territory mapping based on dynamic ASL MR angiography without vessel-encoded labeling. Magn Reson Med 2020; 85:2735-2746. [PMID: 33347641 DOI: 10.1002/mrm.28623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 11/11/2022]
Abstract
PURPOSE Characterizing vessel territories can provide crucial information for evaluation of cerebrovascular disorders. In this study, we present a novel postprocessing pipeline for vascular territorial imaging of cerebral arteries based on a noncontrast enhanced time-resolved 4D magnetic resonance angiography (MRA). METHODS Eight healthy participants, 1 Moyamoya patient, and 1 arteriovenous malformations patient were recruited. Territorial segmentation and relative blood flow rate calculations of cerebral arteries including left and right middle cerebral arteries and left and right posterior cerebral arteries were carried out based on the 4D MRA-derived arterial arrival time maps of intracranial vessels. RESULTS Among healthy young subjects, the average relative blood flow rate values corresponding to left and right middle cerebral arteries and left and right posterior cerebral arteries were 35.9 ± 5.9%, 32.9 ± 7.5%, 15.4 ± 3.8%, and 15.9 ± 2.5%, respectively. Excellent agreement was observed between relative blood flow rate values obtained from the proposed 4D MRA-based method and reference 2D phase contrast MRI. Abnormal cerebral circulations were visualized and quantified on both patients using the developed technique. CONCLUSION The vascular territorial imaging technique developed in this study allowed for the generation of territorial maps with user-defined level of details within a clinically feasible scan time, and as such may provide useful information to assess cerebral circulation balance in different pathologies.
Collapse
Affiliation(s)
- Soroush Heidari Pahlavian
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | | | - Jonathan Russin
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Samantha J Ma
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Arun Amar
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Danny J J Wang
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Dafna Ben Bashat
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Lirong Yan
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Obara M, Togao O, Helle M, Murazaki H, Wada T, Yoneyama M, Hamano H, Nakamura M, Van Cauteren M. Improved selective visualization of internal and external carotid artery in 4D-MR angiography based on super-selective pseudo-continuous arterial spin labeling combined with CENTRA-keyhole and view-sharing (4D-S-PACK). Magn Reson Imaging 2020; 73:15-22. [PMID: 32763367 DOI: 10.1016/j.mri.2020.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE Four-dimensional magnetic resonance angiography (4D-MRA) based on super-selective pseudo-continuous arterial spin labeling, combined with Keyhole and View-sharing (4D-S-PACK) was introduced for scan-accelerated vessel-selective 4D-MRA. Label selectivity and visualization effectiveness were assessed. METHODS Nine healthy volunteers were included in the study. The label selectivity for the imaging of internal carotid artery (ICA) and external carotid artery (ECA) circulation was assessed qualitatively. The contrast-to-noise ratio (CNR) in 4D-S-PACK was measured in four middle cerebral artery (MCA) and superficial temporal artery (STA) segments and compared with that in contrast-inherent inflow-enhanced multi-phase angiography combined with the vessel-selective arterial spin labeling technique (CINEMA-select). Vessel-selective arterial visualization in 4D-S-PACK was assessed qualitatively in a patient with dural arteriovenous fistula and compared with digital subtraction angiography (DSA) and non-vessel selective 4D-PACK. RESULTS 4D-S-PACK vessel selectivity was judged to be at a clinically acceptable level in all cases except one ECA-targeted label. The CNR was significantly higher using 4D-S-PACK compared with CINEMA-select in MCA and STA peripheral segments (p < 0.001). In patient examination, territorial flow visualization in feeding artery and draining vein circulation on 4D-S-PACK were comparable with that on DSA and the identification of such responsible vessels was easier on 4D-S-PACK than on 4D-PACK. CONCLUSION 4D-S-PACK showed high vessel-selectivity and higher visualization effectiveness compared with CINEMA-select. One clinical case was performed and ICA and ECA territorial flow was successfully visualized separately, suggesting clinical usefulness.
Collapse
Affiliation(s)
- Makoto Obara
- Philips Japan Ltd, Philips Building, 13-37 Kohnan 2-chome, Minato-ku, Tokyo, 108-8507, Japan.
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Michael Helle
- Philips Research, Röntgenstraße 24-26, 22335 Hamburg, Germany
| | - Hiroo Murazaki
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tatsuhiro Wada
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masami Yoneyama
- Philips Japan Ltd, Philips Building, 13-37 Kohnan 2-chome, Minato-ku, Tokyo, 108-8507, Japan
| | - Hiroshi Hamano
- Philips Japan Ltd, Philips Building, 13-37 Kohnan 2-chome, Minato-ku, Tokyo, 108-8507, Japan
| | - Masanobu Nakamura
- Philips Japan Ltd, Philips Building, 13-37 Kohnan 2-chome, Minato-ku, Tokyo, 108-8507, Japan
| | - Marc Van Cauteren
- Philips Healthcare, Business Unit MR, Kohnan 2-13-37, Minato-ku, Tokyo, 108-8507, Japan
| |
Collapse
|
12
|
Togao O, Obara M, Helle M, Yamashita K, Kikuchi K, Momosaka D, Kikuchi Y, Nishimura A, Arimura K, Wada T, Murazaki H, Iihara K, Van Cauteren M, Hiwatashi A. Vessel-selective 4D-MR angiography using super-selective pseudo-continuous arterial spin labeling may be a useful tool for assessing brain AVM hemodynamics. Eur Radiol 2020; 30:6452-6463. [PMID: 32696254 DOI: 10.1007/s00330-020-07057-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/04/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To evaluate the usefulness of 4D-MR angiography based on super-selective pseudo-continuous ASL combined with keyhole and view-sharing (4D-S-PACK) for vessel-selective visualization and to examine the ability of this technique to visualize brain arteriovenous malformations (AVMs). METHODS In this retrospective study, 15 patients (ten men and five women, mean age 44.0 ± 16.9 years) with brain AVMs were enrolled. All patients were imaged with 4D-PACK (non-selective), 4D-S-PACK, and digital subtraction angiography (DSA). Observers evaluated vessel selectivity, identification of feeding arteries and venous drainage patterns, visualization scores, and contrast-to-noise ratio (CNR) for each AVM component. Measurements were compared between the MR methods. RESULTS Vessel selectivity was graded 4 in 43/45 (95.6%, observer 1) and 42/45 (93.3%, observer 2) territories and graded 3 in two (observer 1) and three (observer 2) territories. The sensitivity and specificity for identification of feeding arteries for both observers was 88.9% and 100% on 4D-PACK, and 100% and 100% on 4D-S-PACK, respectively. For venous drainage, the sensitivity and specificity was 100% on both methods for observer 1. The sensitivity and specificity for observer 2 was 94.4% and 83.3% on 4D-PACK, and 94.4% and 91.7% on 4D-S-PACK, respectively. The CNRs at the timepoint of 1600 ms were slightly lower in 4D-S-PACK than in 4D-PACK for all AVM components (Feeding artery, p = .02; nidus, p = .001; and draining artery, p = .02). The visualization scores for both observers were not significantly different between 4D-PACK and 4D-S-PACK for all components. CONCLUSIONS 4D-S-PACK could be a useful non-invasive clinical tool for assessing hemodynamics in brain AVMs. KEY POINTS • The 4D-MR angiography based on super-selective pseudo-continuous arterial spin labeling combined with CENTRA-keyhole and view-sharing (4D-S-PACK) enabled excellent vessel selectivity. • The 4D-S-PACK enabled the perfect identification of feeding arteries of brain arteriovenous malformation (AVM). • 4D-S-PACK could be a non-invasive clinical tool for assessing hemodynamics in brain AVMs.
Collapse
Affiliation(s)
- Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Makoto Obara
- Philips Japan, 13-37, Kohnan 2-chome, Minato-ku, Tokyo, 108-8507, Japan
| | | | - Koji Yamashita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazufumi Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daichi Momosaka
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshitomo Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ataru Nishimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koichi Arimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tatsuhiro Wada
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Hiroo Murazaki
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Koji Iihara
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Marc Van Cauteren
- Philips Japan, 13-37, Kohnan 2-chome, Minato-ku, Tokyo, 108-8507, Japan
| | - Akio Hiwatashi
- Department of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
13
|
Suzuki Y, Fujima N, van Osch MJP. Intracranial 3D and 4D MR Angiography Using Arterial Spin Labeling: Technical Considerations. Magn Reson Med Sci 2019; 19:294-309. [PMID: 31761840 PMCID: PMC7809141 DOI: 10.2463/mrms.rev.2019-0096] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the 1980’s some of the earliest studies of arterial spin labeling (ASL) MRI have demonstrated its ability to generate MR angiography (MRA) images. Thanks to many technical improvements, ASL has been successfully moving its position from the realm of research into the clinical area, albeit more known as perfusion imaging than as MRA. For MRA imaging, other techniques such as time-of-flight, phase contrast MRA and contrast-enhanced (CE) MRA are more popular choices for clinical applications. In the last decade, however, ASL-MRA has been experiencing a remarkable revival, especially because of its non-invasive nature, i.e. the fact that it does not rely on the use of contrast agent. Very importantly, there are additional benefits of using ASL for MRA. For example, its higher flexibility to achieve both high spatial and temporal resolution than CE dynamic MRA, and the capability of vessel specific visualization, in which the vascular tree arising from a selected artery can be exclusively visualized. In this article, the implementation and recent developments of ASL-based MRA are discussed; not only focusing on the basic sequences based upon pulsed ASL or pseudo-continuous ASL, but also including more recent labeling approaches, such as vessel-selective labeling, velocity-selective ASL, vessel-encoded ASL and time-encoded ASL. Although these ASL techniques have been already utilized in perfusion imaging and their usefulness has been suggested by many studies, some additional considerations should be made when employing them for MRA, since there is something more than the difference of the spatial resolution of the readout sequence. Moreover, extensive discussion is included on what readout sequence to use, especially by highlighting how to achieve high spatial resolution while keeping scan-time reasonable such that the ASL-MRA sequence can easily be included into a clinical examination.
Collapse
Affiliation(s)
- Yuriko Suzuki
- Institute of Biomedical Engineering, University of Oxford
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
| | | |
Collapse
|
14
|
Schauman SS, Chiew M, Okell TW. Highly accelerated vessel-selective arterial spin labeling angiography using sparsity and smoothness constraints. Magn Reson Med 2019; 83:892-905. [PMID: 31538357 PMCID: PMC6899790 DOI: 10.1002/mrm.27979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/25/2019] [Accepted: 08/10/2019] [Indexed: 11/27/2022]
Abstract
Purpose To demonstrate that vessel selectivity in dynamic arterial spin labeling angiography can be achieved without any scan‐time penalty or noticeable loss of image quality compared with conventional arterial spin labeling angiography. Methods Simulations on a numerical phantom were used to assess whether the increased sparsity of vessel‐encoded angiograms compared with non‐vessel‐encoded angiograms alone can improve reconstruction results in a compressed‐sensing framework. Further simulations were performed to study whether the difference in relative sparsity between nonselective and vessel‐selective dynamic angiograms was sufficient to achieve similar image quality at matched scan times in the presence of noise. Finally, data were acquired from 5 healthy volunteers to validate the technique in vivo. All data, both simulated and in vivo, were sampled in 2D using a golden‐angle radial trajectory and reconstructed by enforcing image domain sparsity and temporal smoothness on the angiograms in a parallel imaging and compressed‐sensing framework. Results Relative sparsity was established as a primary factor governing the reconstruction fidelity. Using the proposed reconstruction scheme, differences between vessel‐selective and nonselective angiography were negligible compared with the dominant factor of total scan time in both simulations and in vivo experiments at acceleration factors up to R = 34. The reconstruction quality was not heavily dependent on hand‐tuning the parameters of the reconstruction. Conclusion The increase in relative sparsity of vessel‐selective angiograms compared with nonselective angiograms can be leveraged to achieve higher acceleration without loss of image quality, resulting in the acquisition of vessel‐selective information at no scan‐time cost.
Collapse
Affiliation(s)
- S Sophie Schauman
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Thomas W Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
The advantages of radial trajectories for vessel-selective dynamic angiography with arterial spin labeling. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 32:643-653. [PMID: 31422519 PMCID: PMC6825642 DOI: 10.1007/s10334-019-00771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/10/2019] [Accepted: 07/27/2019] [Indexed: 10/31/2022]
Abstract
OBJECTIVES To demonstrate the advantages of radial k-space trajectories over conventional Cartesian approaches for accelerating the acquisition of vessel-selective arterial spin labeling (ASL) dynamic angiograms, which are conventionally time consuming to acquire. MATERIALS AND METHODS Vessel-encoded pseudocontinuous ASL was combined with time-resolved balanced steady-state free precession (bSSFP) and spoiled gradient echo (SPGR) readouts to obtain dynamic vessel-selective angiograms arising from the four main brain-feeding arteries. Dynamic 2D protocols with acquisition times of one minute or less were achieved through radial undersampling or a Cartesian parallel imaging approach. For whole-brain dynamic 3D imaging, magnetic field inhomogeneity and the high acceleration factors required rule out the use of bSSFP and Cartesian trajectories, so the feasibility of acquiring 3D radial SPGR angiograms was tested. RESULTS The improved SNR efficiency of bSSFP over SPGR was confirmed for 2D dynamic imaging. Radial trajectories had considerable advantages over a Cartesian approach, including a factor of two improvements in the measured SNR (p < 0.00001, N = 6), improved distal vessel delineation and the lack of a need for calibration data. The 3D radial approach produced good quality angiograms with negligible artifacts despite the high acceleration factor (R = 13). CONCLUSION Radial trajectories outperform conventional Cartesian techniques for accelerated vessel-selective ASL dynamic angiography.
Collapse
|
16
|
Schollenberger J, Figueroa CA, Nielsen JF, Hernandez-Garcia L. Practical considerations for territorial perfusion mapping in the cerebral circulation using super-selective pseudo-continuous arterial spin labeling. Magn Reson Med 2019; 83:492-504. [PMID: 31418475 DOI: 10.1002/mrm.27936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/18/2019] [Accepted: 07/17/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE This paper discusses several challenges faced by super-selective pseudo-continuous arterial spin labeling, which is used to quantify territorial perfusion in the cerebral circulation. The effects of off-resonance, pulsatility, vessel movement, and label rotation scheme are investigated, and methods to maximize labeling efficiency and overall image quality are evaluated. A strategy to calculate the territorial perfusion fractions of individual vessels is proposed. METHODS The effects of off-resonance, label rotation scheme, and vessel movement on labeling efficiency were simulated. Two off-resonance compensation strategies (multiphase prescan, field map), cardiac triggering, and vessel movement were studied in vivo in a group of 10 subjects. Subsequently, a territorial perfusion fraction map was acquired in 2 subjects based on the mean vessel labeling efficiency. RESULTS Multiphase calibration provided the highest labeling efficiency (P = .002) followed by the field map compensation (P = .037) compared with the uncompensated acquisition. Cardiac triggering resulted in a qualitative improvement of the image and an increase in signal contrast between the perfusion territory and the surrounding tissue (P = .010) but failed to show a significant change in temporal and spatial SNR. The constant clockwise label rotation scheme yielded the highest labeling efficiency. Significant vessel movement (>2 mm according to simulations) was observed in 50% of subjects. The measured territorial perfusion fractions showed good agreement with anatomical data. CONCLUSION Optimized labeling efficiency resulted in increased image quality and accuracy of territorial perfusion fraction maps. Labeling efficiency depends critically on off-resonance calibration, cardiac triggering, optimal label rotation scheme, and vessel location tracking.
Collapse
Affiliation(s)
- Jonas Schollenberger
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - C Alberto Figueroa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Jon-Fredrik Nielsen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,FMRI Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Luis Hernandez-Garcia
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,FMRI Laboratory, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
17
|
Shao X, Zhao Z, Russin J, Amar A, Sanossian N, Wang DJ, Yan L. Quantification of intracranial arterial blood flow using noncontrast enhanced 4D dynamic MR angiography. Magn Reson Med 2019; 82:449-459. [PMID: 30847971 DOI: 10.1002/mrm.27712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/16/2019] [Accepted: 02/05/2019] [Indexed: 01/27/2023]
Abstract
PURPOSE Noncontrast enhanced dynamic magnetic resonance angiography delineates the pattern of dynamic blood flow of the cerebral vasculature. A model-free solution was proposed to quantify arterial blood flow (aBF) by using the monotonic property of the residual function. THEORY AND METHODS Analytical simulations and in-vivo studies were performed to evaluate the performance of the proposed method by comparing the aBF values generated from the proposed and conventional singular value decomposition methods. The aBF values were compared with blood flow velocity measured by 2D phase contrast MRI, and compared between balanced steady-state free precession-based radial and spoiled GRE-based Cartesian acquisitions. Hemodynamic parametric maps were generated in 1 patient with arteriovenous malformation. RESULTS The proposed method generates reliable aBF measurement at different signal-to-noise ratio levels, whereas overestimation/underestimation of aBF was observed when a high/low threshold was applied in the singular value decomposition method. Average aBF in large vascular branches was 214.4 and 214.5 mL/mL/min with radial and Cartesian acquisitions, respectively. Significant correlations were found between aBF and blood flow velocity measured by phase contrast MRI (P = 0.0008), and between Cartesian and radial acquisitions (P < 0.0001). Altered hemodynamics were observed at the lesion site of the arteriovenous malformation patient. CONCLUSION A robust analytical solution was proposed for quantifying aBF. This model-free method is robust to noise, and its clinical value in the diagnosis of cerebrovascular disorders awaits further evaluation.
Collapse
Affiliation(s)
- Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ziwei Zhao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jonathan Russin
- Center for Neurorestoration, Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Arun Amar
- Center for Neurorestoration, Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Nerses Sanossian
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Danny Jj Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Lirong Yan
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
18
|
Okell TW. Combined angiography and perfusion using radial imaging and arterial spin labeling. Magn Reson Med 2019; 81:182-194. [PMID: 30024066 PMCID: PMC6282709 DOI: 10.1002/mrm.27366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/28/2018] [Accepted: 04/25/2018] [Indexed: 11/24/2022]
Abstract
PURPOSE To demonstrate the feasibility of a novel noninvasive MRI technique for the comprehensive evaluation of blood flow to the brain: combined angiography and perfusion using radial imaging and arterial spin labeling (CAPRIA). METHODS In the CAPRIA pulse sequence, blood labeled with a pseudocontinuous arterial spin labeling pulse train is continuously imaged as it flows through the arterial tree and into the brain tissue using a golden ratio radial readout. From a single raw data set, this flexible imaging approach allows the reconstruction of both high spatial/temporal resolution angiographic images with a high undersampling factor and low spatial/temporal resolution perfusion images with a low undersampling factor. The sparse and high SNR nature of angiographic images ensures that radial undersampling artifacts are relatively benign, even when using a simple regridding image reconstruction. Pulse sequence parameters were optimized through sampling efficiency calculations and the numerical evaluation of modified pseudocontinuous arterial spin labeling signal models. A comparison was made against conventional pseudocontinuous arterial spin labeling angiographic and perfusion acquisitions. RESULTS 2D CAPRIA data in healthy volunteers demonstrated the feasibility of this approach, with good vessel visualization in the angiographic images and clear tissue perfusion signal when reconstructed at 108-ms and 252-ms temporal resolution, respectively. Images were qualitatively similar to those from conventional acquisitions, but CAPRIA had significantly higher SNR efficiency (48% improvement on average, P = 0.02). CONCLUSION The CAPRIA technique shows potential for the efficient evaluation of both macrovascular blood flow and tissue perfusion within a single scan, with potential applications in a range of cerebrovascular diseases.
Collapse
Affiliation(s)
- Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
19
|
Suzuki Y, Okell TW, Fujima N, van Osch MJP. Acceleration of vessel-selective dynamic MR Angiography by pseudocontinuous arterial spin labeling in combination with Acquisition of ConTRol and labEled images in the Same Shot (ACTRESS). Magn Reson Med 2018; 81:2995-3006. [PMID: 30506957 PMCID: PMC6492290 DOI: 10.1002/mrm.27619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 11/25/2022]
Abstract
Purpose The recently introduced “Acquisition of ConTRol and labEled imaging in the Same Shot” (ACTRESS) approach was designed to halve the scan time of arterial spin labeling (ASL) ‐based 4D‐MRA by obtaining both labeled and control images in a single Look‐Locker readout. However, application for vessel‐selective labeling remains difficult. The aim of this study was to achieve a combination of ACTRESS and vessel‐selective labeling to halve the scan time of vessel‐selective 4D‐MRA. Methods By Bloch equation simulations, Look‐Locker pseudocontinuous‐ASL (pCASL) was optimized to achieve constant static tissue signal across the multidelay readout, which is essential for the ACTRESS approach. Additionally, a new subtraction scheme was proposed to achieve visualization of the inflow phase even when labeled blood will have already arrived in the distal arteries during the first phase acquisition due to the long duration of the pCASL labeling module. In vivo studies were performed to investigate the signal variation of the static tissue, as well as to assess image quality of vessel‐selective 4D‐MRA with ACTRESS. Results In in vivo studies, the mean signal variation of the static tissue was 8.98% over the Look‐Locker phases, thereby minimizing the elevation of background signal. This allowed visualization of peripheral arteries and slowly arriving arterial blood with image quality as good as conventional pCASL within half the acquisition time. Vessel‐selective pCASL‐ACTRESS enabled the separated visualization of vessels arising from internal and external carotid arteries within this shortened acquisition time. Conclusion By combining vessel‐selective pCASL and ACTRESS approach, 4D‐MRA of a single targeted arterial tree was achieved in a few minutes.
Collapse
Affiliation(s)
- Yuriko Suzuki
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.,C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas W Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Hokkaido, Japan
| | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Okell TW, Garcia M, Chappell MA, Byrne JV, Jezzard P. Visualizing artery-specific blood flow patterns above the circle of Willis with vessel-encoded arterial spin labeling. Magn Reson Med 2018; 81:1595-1604. [PMID: 30357925 PMCID: PMC6492185 DOI: 10.1002/mrm.27507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/26/2018] [Accepted: 08/04/2018] [Indexed: 11/20/2022]
Abstract
Purpose To establish the feasibility of using vessel‐encoded pseudocontinuous arterial spin labeling (VEPCASL) for noninvasive vascular territory imaging (VTI) and artery‐specific dynamic angiography of a large number of arterial branches above the circle of Willis within a clinically feasible scan time. Methods 3D time‐of‐flight angiography was used to select a labeling plane and establish 7 pairs of encoding cycles. These were used for VEPCASL VTI and dynamic 2D angiography (8 min and 3 min acquisition times, respectively) in healthy volunteers, allowing the separation of signals arising from 13 arterial branches (including extracranial arteries) in postprocessing. To demonstrate the clinical potential of this approach, VEPCASL angiography was also applied in 5 patients with brain arteriovenous malformation (AVM). Results In healthy volunteers, the artery‐specific filling of the vascular tree and resulting perfusion territories were well depicted. SNRs were approximately 5 times higher than those achievable with single‐artery selective methods. Blood supply to the AVMs was well visualized in all cases, showing the main feeding arteries and venous drainage. Conclusions VEPCASL is a highly efficient method for both VTI and dynamic angiography of a large number of arterial branches, providing a comprehensive picture of vascular flow patterns and the effect on downstream tissue perfusion within an acceptable scan time. Automation of labeling plane and vessel‐encoding selection would improve robustness and efficiency, and further refinement could allow quantitative blood flow measurements to be obtained. This technique shows promise for visualizing the blood supply to lesions and collateral flow patterns.
Collapse
Affiliation(s)
- Thomas W Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Meritxell Garcia
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, Clinic for Radiology and Nuclear Medicine, University of Basel, Basel, Switzerland.,Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Michael A Chappell
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford, United Kingdom
| | - James V Byrne
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Havsteen I, Damm Nybing J, Christensen H, Christensen AF. Arterial spin labeling: a technical overview. Acta Radiol 2018; 59:1232-1238. [PMID: 29313361 DOI: 10.1177/0284185117752552] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arterial spin labeling (ASL) is a non-invasive magnetic resonance imaging perfusion method based on changes in net-magnetization of blood water. The absence of contrast use and ionizing radiation, renders ASL valuable in hyper-acute settings as a monitoring tool for repeated dynamical measurements during and after intervention, and for patients with known co-morbidities. This text provides a short methodological introduction to ASL and contrasts it with traditional contrast-enhanced perfusion imaging. The review focused on sequence usefulness in the clinical setting of acute cerebral ischemia investigation.
Collapse
Affiliation(s)
- Inger Havsteen
- Department of Radiology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Janus Damm Nybing
- Department of Radiology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Hanne Christensen
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Anders F Christensen
- Department of Radiology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| |
Collapse
|
22
|
Suzuki Y, van Osch MJP, Fujima N, Okell TW. Optimization of the spatial modulation function of vessel-encoded pseudo-continuous arterial spin labeling and its application to dynamic angiography. Magn Reson Med 2018; 81:410-423. [PMID: 30230589 DOI: 10.1002/mrm.27418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/09/2018] [Accepted: 06/01/2018] [Indexed: 11/11/2022]
Abstract
PURPOSE In vessel-encoded pseudo-continuous arterial spin labeling (ve-pCASL), vessel-selective labeling is achieved by modulation of the inversion efficiency across space. However, the spatial transition between the labeling and control conditions is rather gradual, which can cause partial labeling of vessels, reducing SNR-efficiency and necessitating complex postprocessing to decode the vessel-selective signals. The purpose of this study is to optimize the pCASL labeling parameters to obtain a sharper spatial inversion profile of the labeling and thereby minimizing the risk of partial labeling of untargeted arteries. METHODS Bloch simulations were performed to investigate how the inversion profile was influenced by the pCASL labeling parameters: the maximum (Gmax ) and mean (Gmean ) labeling gradient were varied for ve-pCASL with unipolar and bipolar gradients. The findings in the simulation study were subsequently confirmed in an in vivo volunteer study. Moreover, conventional and optimized settings were compared for 4D-MRA using four-cycle Hadamard ve-pCASL; the visualization of arteries and the presence of the partial labeling were assessed by an expert observer. RESULTS When using unipolar gradient, lower Gmean resulted in a steeper spatial transition, whereas the width of the control region was broader for higher Gmax . The in vivo study confirmed these findings. When using bipolar gradients, the control region was always very narrow. Qualitative comparison of the 4D-MRA demonstrated lower occurrence of partial labeling when using the optimized gradient parameters. CONCLUSION The shape of the ve-pCASL inversion profile can be optimized by changing Gmean and Gmax to reduce partial labeling of untargeted arteries.
Collapse
Affiliation(s)
- Yuriko Suzuki
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Hokkaido, Japan
| | - Thomas W Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Donahue MJ, Achten E, Cogswell PM, De Leeuw FE, Derdeyn CP, Dijkhuizen RM, Fan AP, Ghaznawi R, Heit JJ, Ikram MA, Jezzard P, Jordan LC, Jouvent E, Knutsson L, Leigh R, Liebeskind DS, Lin W, Okell TW, Qureshi AI, Stagg CJ, van Osch MJP, van Zijl PCM, Watchmaker JM, Wintermark M, Wu O, Zaharchuk G, Zhou J, Hendrikse J. Consensus statement on current and emerging methods for the diagnosis and evaluation of cerebrovascular disease. J Cereb Blood Flow Metab 2018; 38:1391-1417. [PMID: 28816594 PMCID: PMC6125970 DOI: 10.1177/0271678x17721830] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/26/2017] [Accepted: 06/10/2017] [Indexed: 01/04/2023]
Abstract
Cerebrovascular disease (CVD) remains a leading cause of death and the leading cause of adult disability in most developed countries. This work summarizes state-of-the-art, and possible future, diagnostic and evaluation approaches in multiple stages of CVD, including (i) visualization of sub-clinical disease processes, (ii) acute stroke theranostics, and (iii) characterization of post-stroke recovery mechanisms. Underlying pathophysiology as it relates to large vessel steno-occlusive disease and the impact of this macrovascular disease on tissue-level viability, hemodynamics (cerebral blood flow, cerebral blood volume, and mean transit time), and metabolism (cerebral metabolic rate of oxygen consumption and pH) are also discussed in the context of emerging neuroimaging protocols with sensitivity to these factors. The overall purpose is to highlight advancements in stroke care and diagnostics and to provide a general overview of emerging research topics that have potential for reducing morbidity in multiple areas of CVD.
Collapse
Affiliation(s)
- Manus J Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA
| | - Eric Achten
- Department of Radiology and Nuclear Medicine, Universiteit Gent, Gent, Belgium
| | - Petrice M Cogswell
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frank-Erik De Leeuw
- Radboud University, Nijmegen Medical Center, Donders Institute Brain Cognition & Behaviour, Center for Neuroscience, Department of Neurology, Nijmegen, The Netherlands
| | - Colin P Derdeyn
- Department of Radiology and Neurology, University of Iowa, Iowa City, IA, USA
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Audrey P Fan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Rashid Ghaznawi
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeremy J Heit
- Department of Radiology, Neuroimaging and Neurointervention Division, Stanford University, CA, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Peter Jezzard
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Lori C Jordan
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric Jouvent
- Department of Neurology, AP-HP, Lariboisière Hospital, Paris, France
| | - Linda Knutsson
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Richard Leigh
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Weili Lin
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas W Okell
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Adnan I Qureshi
- Department of Neurology, Zeenat Qureshi Stroke Institute, St. Cloud, MN, USA
| | - Charlotte J Stagg
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford, UK
| | | | - Peter CM van Zijl
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jennifer M Watchmaker
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Max Wintermark
- Department of Radiology, Neuroimaging and Neurointervention Division, Stanford University, CA, USA
| | - Ona Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Greg Zaharchuk
- Department of Radiology, Neuroimaging and Neurointervention Division, Stanford University, CA, USA
| | - Jinyuan Zhou
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
24
|
Jezzard P, Chappell MA, Okell TW. Arterial spin labeling for the measurement of cerebral perfusion and angiography. J Cereb Blood Flow Metab 2018; 38:603-626. [PMID: 29168667 PMCID: PMC5888859 DOI: 10.1177/0271678x17743240] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Arterial spin labeling (ASL) is an MRI technique that was first proposed a quarter of a century ago. It offers the prospect of non-invasive quantitative measurement of cerebral perfusion, making it potentially very useful for research and clinical studies, particularly where multiple longitudinal measurements are required. However, it has suffered from a number of challenges, including a relatively low signal-to-noise ratio, and a confusing number of sequence variants, thus hindering its clinical uptake. Recently, however, there has been a consensus adoption of an accepted acquisition and analysis framework for ASL, and thus a better penetration onto clinical MRI scanners. Here, we review the basic concepts in ASL and describe the current state-of-the-art acquisition and analysis approaches, and the versatility of the method to perform both quantitative cerebral perfusion measurement, along with quantitative cerebral angiographic measurement.
Collapse
Affiliation(s)
- Peter Jezzard
- 1 Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Thomas W Okell
- 1 Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Edelman RR, Serhal A, Pursnani A, Pang J, Koktzoglou I. Cardiovascular cine imaging and flow evaluation using Fast Interrupted Steady-State (FISS) magnetic resonance. J Cardiovasc Magn Reson 2018; 20:12. [PMID: 29458384 PMCID: PMC5819298 DOI: 10.1186/s12968-018-0433-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/01/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Existing cine imaging techniques rely on balanced steady-state free precession (bSSFP) or spoiled gradient-echo readouts, each of which has limitations. For instance, with bSSFP, artifacts occur from rapid through-plane flow and off-resonance effects. We hypothesized that a prototype cine technique, radial fast interrupted steady-state (FISS), could overcome these limitations. The technique was compared with standard cine bSSFP for cardiac function, coronary artery conspicuity, and aortic valve morphology. Given its advantageous properties, we further hypothesized that the cine FISS technique, in combination with arterial spin labeling (ASL), could provide an alternative to phase contrast for visualizing in-plane flow patterns within the aorta and branch vessels. MAIN BODY The study was IRB-approved and subjects provided consent. Breath-hold cine FISS and bSSFP were acquired using similar imaging parameters. There was no significant difference in biplane left ventricular ejection fraction or cardiac image quality between the two techniques. Compared with cine bSSFP, cine FISS demonstrated a marked decrease in fat signal which improved conspicuity of the coronary arteries, while suppression of through-plane flow artifact on thin-slice cine FISS images improved visualization of the aortic valve. Banding artifacts in the subcutaneous tissues were reduced. In healthy subjects, dynamic flow patterns were well visualized in the aorta, coronary and renal arteries using cine FISS ASL, even when the slice was substantially thicker than the vessel diameter. CONCLUSION Cine FISS demonstrates several benefits for cardiovascular imaging compared with cine bSSFP, including better suppression of fat signal and reduced artifacts from through-plane flow and off-resonance effects. The main drawback is a slight (~ 20%) decrease in temporal resolution. In addition, preliminary results suggest that cine FISS ASL provides a potential alternative to phase contrast techniques for in-plane flow quantification, while enabling an efficient, visually-appealing, semi-projective display of blood flow patterns throughout the course of an artery and its branches.
Collapse
Affiliation(s)
- Robert R. Edelman
- Radiology, Northshore University HealthSystem, Evanston, IL USA
- Radiology, Northwestern Memorial Hospital, Chicago, IL USA
- Evanston, IL USA
| | - Ali Serhal
- Radiology, Northshore University HealthSystem, Evanston, IL USA
- Radiology, Northwestern Memorial Hospital, Chicago, IL USA
| | - Amit Pursnani
- Medicine, Northshore University HealthSystem, Evanston, IL USA
- Medicine, University of Chicago Pritzker School of Medicine, Chicago, IL USA
| | - Jianing Pang
- Siemens Medical Solutions USA Inc., Chicago, IL USA
| | - Ioannis Koktzoglou
- Radiology, Northshore University HealthSystem, Evanston, IL USA
- Radiology, University of Chicago Pritzker School of Medicine, Chicago, IL USA
| |
Collapse
|
26
|
Obara M, Togao O, Beck GM, Shibukawa S, Okuaki T, Yoneyama M, Nakamura M, Honda H, Van Cauteren M. Non-contrast enhanced 4D intracranial MR angiography based on pseudo-continuous arterial spin labeling with the keyhole and view-sharing technique. Magn Reson Med 2018; 80:719-725. [PMID: 29369424 DOI: 10.1002/mrm.27074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 11/11/2022]
Abstract
PURPOSE 4D dynamic MR angiography (4D-MRA) using pseudo-continuous arterial spin labeling (pCASL), combined with Keyhole and View-sharing (4D-PACK) for scan acceleration, is introduced. Its validity for arterial inflow dynamics visualization was investigated through comparison with 4D-pCASL and contrast inherent inflow enhanced multiphase angiography (CINEMA). METHODS Six healthy volunteers were included in the study. The arterial transit time (ATT) in 4D-PACK was measured at multiple regions in middle cerebral artery (MCA), and Pearson's correlation coefficient with ATT in 4D-pCASL was calculated. The contrast-to-noise ratio (CNR) in 4D-PACK was measured in four MCA segments and compared with that in 4D-pCASL and CINEMA. Arterial visualization in 4D-PACK was assessed qualitatively in patients with moyamoya disease and arteriovenous malformation by comparing with CINEMA. RESULTS 4D-PACK achieved a 36% scan time reduction compared with 4D-pCASL. The correlation coefficient for ATT measured by 4D-pCASL and 4D-PACK was greater than 0.96. The CNR was significantly higher using 4D-PACK compared with CINEMA in the M4 segment (P < 0.01). In patient examinations, the flow in the collateral artery or draining vein was better visualized in 4D-PACK compared with CINEMA. CONCLUSION 4D-PACK accelerates 4D-pCASL, shows similar inflow dynamics as 4D-pCASL and shows better peripheral visualization compared with CINEMA. Magn Reson Med 80:719-725, 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Makoto Obara
- Philips Electronics Japan Ltd., Healthcare, Shinagawa, Tokyo, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Shuhei Shibukawa
- Department of Radiology, Tokai University Hospital, Isehara, Kanagawa, Japan.,Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tomoyuki Okuaki
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan.,Philips Healthcare, Asia Pacific, Shinagawa, Tokyo, Japan
| | - Masami Yoneyama
- Philips Electronics Japan Ltd., Healthcare, Shinagawa, Tokyo, Japan
| | | | - Hiroshi Honda
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
27
|
Cong F, Zhuo Y, Yu S, Zhang X, Miao X, An J, Wang S, Cao Y, Zhang Y, Song HK, Wang DJ, Yan L. Noncontrast-enhanced time-resolved 4D dynamic intracranial MR angiography at 7T: A feasibility study. J Magn Reson Imaging 2017; 48:111-120. [PMID: 29232026 DOI: 10.1002/jmri.25923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/28/2017] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Arterial spin labeling (ASL) based-noncontrast-enhanced 4D MR angiography (NCE 4D MRA) shows potential in characterizing cerebrovascular hemodynamics in cerebrovascular disorders. Ultrahigh-field theoretically benefits ASL signal with increased inherent signal-to-noise ratio (SNR) and prolonged blood T1 , which may provide improved delineation of vasculature in 4D MRA. PURPOSE To investigate the feasibility of NCE 4D MRA using 3D Cartesian trajectory and stack-of-stars (SOS) golden angle radial trajectory at 7T. STUDY TYPE A prospective study. SUBJECTS Six normal volunteers and eight patients with arteriovenous malformation (AVM). FIELD STRENGTH/SEQUENCE NCE 4D MRA with Cartesian and radial trajectories were performed at 3T and 7T. ASSESSMENT Subjective image quality of 4D MRA was evaluated using a 4-point scale by two experienced neuroradiologists. The characterization of AVM components with 4D MRA and DSA was also graded using the Spetzler-Martin grading scale. STATISTICAL TESTS Cohen's kappa coefficient was calculated to evaluate the agreement between two readers within each 4D MRA technique (Cartesian and Radial). A Wilcoxon signed-rank test was performed to compare the subjective image quality scores of 4D MRA between Cartesian and radial trajectories, and between 7T and 3T, respectively. RESULTS Good-to-excellent image quality was achieved in 4D MRA with both Cartesian (3.83 ± 0.41) and radial (3.42 ± 0.49) acquisitions in healthy volunteers at 7T. However, markedly reduced scan time was needed with radial acquisition. 4D MRA at 7T (3.31 ± 0.59) shows better delineation of AVM lesion features, especially the vein drainage, compared with that of 3T (2.83 ± 0.75), although no statistical significance was achieved (P = 0.180). DATA CONCLUSION The feasibility of ASL based 4D MRA at 7T with Cartesian and SOS golden angle radial acquisition was demonstrated. The clinical evaluation of 4D MRA in AVMs between 3T and 7T suggested 7T 4D MRA images acquired with radial acquisition demonstrate excellent delineation of AVM features, especially the draining veins. LEVEL OF EVIDENCE 2 Technical Efficacy Stage 2 J. Magn. Reson. Imaging 2017.
Collapse
Affiliation(s)
- Fei Cong
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Songlin Yu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xianchang Zhang
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinyuan Miao
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing An
- Siemens Shenzhen Magnetic Resonance Ltd., Siemens MRI Center, Shenzhen, Guangdong, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hee Kwon Song
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | - Danny Jj Wang
- Laboratory of Functional MRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Lirong Yan
- Laboratory of Functional MRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|