1
|
Co M, Raterman B, Klamer B, Kolipaka A, Walter B. Nucleus pulposus structure and function assessed in shear using magnetic resonance elastography, quantitative MRI, and rheometry. JOR Spine 2024; 7:e1335. [PMID: 38741919 PMCID: PMC11089841 DOI: 10.1002/jsp2.1335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Background In vivo quantification of the structure-function relationship of the intervertebral disc (IVD) via quantitative MRI has the potential to aid objective stratification of disease and evaluation of restorative therapies. Magnetic resonance elastography (MRE) is an imaging technique that assesses tissue shear properties and combined with quantitative MRI metrics reflective of composition can inform structure-function of the IVD. The objectives of this study were to (1) compare MRE- and rheometry-derived shear modulus in agarose gels and nucleus pulposus (NP) tissue and (2) correlate MRE and rheological measures of NP tissue with composition and quantitative MRI. Method MRE and MRI assessment (i.e., T1ρ and T2 mapping) of agarose samples (2%, 3%, and 4% (w/v); n = 3-4/%) and of bovine caudal IVDs after equilibrium dialysis in 5% or 25% PEG (n = 13/PEG%) was conducted. Subsequently, agarose and NP tissue underwent torsional mechanical testing consisting of a frequency sweep from 1 to 100 Hz at a rotational strain of 0.05%. NP tissue was additionally evaluated under creep and stress relaxation conditions. Linear mixed-effects models and univariate regression analyses evaluated the effects of testing method, %agarose or %PEG, and frequency, as well as correlations between parameters. Results MRE- and rheometry-derived shear moduli were greater at 100 Hz than at 80 Hz in all agarose and NP tissue samples. Additionally, all samples with lower water content had higher complex shear moduli. There was a significant correlation between MRE- and rheometry-derived modulus values for homogenous agarose samples. T1ρ and T2 relaxation times for agarose and tissue were negatively correlated with complex shear modulus derived from both techniques. For NP tissue, shear modulus was positively correlated with GAG/wet-weight and negatively correlated with %water content. Conclusion This work demonstrates that MRE can assess hydration-induced changes in IVD shear properties and further highlights the structure-function relationship between composition and shear mechanical behaviors of NP tissue.
Collapse
Affiliation(s)
- Megan Co
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Brian Raterman
- Department of RadiologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Brett Klamer
- Department of Biomedical Informatics, Center for BiostatisticsThe Ohio State UniversityColumbusOhioUSA
| | - Arunark Kolipaka
- Department of RadiologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Benjamin Walter
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOhioUSA
- Department of OrthopaedicsThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
2
|
She Y, Tang S, Zhu Z, Sun Y, Deng W, Wang S, Jiang N. Comparison of temporomandibular joint disc, meniscus, and intervertebral disc in fundamental characteristics and tissue engineering. J Biomed Mater Res B Appl Biomater 2023; 111:717-729. [PMID: 36221912 DOI: 10.1002/jbm.b.35178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 01/21/2023]
Abstract
The temporomandibular joint (TMJ) disc, meniscus and intervertebral disc (IVD) are three fibrocartilage discs, which play critical roles in our daily life. Their degeneration contributes to diseases such as TMJ disorders, osteoarthritis and degenerative disc disease, affecting patients' quality of life and causing substantial morbidity and mortality. Interestingly, similar in some aspects of fundamental characteristics, they exhibit differences in other aspects such as biomechanical properties. Highlighting these similarities and differences can not only benefit a comprehensive understanding of them and their pathology but also assist in future research of tissue engineering. Likewise, comparing their tissue engineering in cell sources, scaffold and stimuli can guide imitation and improvement of their engineered discs. However, the anatomical structure, function, and biomechanical characteristics of the IVD, TMJ, and Meniscus have not been compared in any meaningful depth needed to advance current tissue engineering research on these joints, resulting in incomplete understanding of them and their pathology and ultimately limiting future research of tissue engineering. This review, for the first time, comprehensively compares three fibrocartilage discs in those aspects to cast light on their similarities and differences.
Collapse
Affiliation(s)
- Yilin She
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiyi Tang
- West China Medical School, Sichuan University, Chengdu, China
| | - Zilin Zhu
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Yixin Sun
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wanyu Deng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sicheng Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Co M, Dong H, Boulter DJ, Nguyen XV, Khan SN, Raterman B, Klamer B, Kolipaka A, Walter BA. Magnetic Resonance Elastography of Intervertebral Discs: Spin-Echo Echo-Planar Imaging Sequence Validation. J Magn Reson Imaging 2022; 56:1722-1732. [PMID: 35289470 PMCID: PMC9475395 DOI: 10.1002/jmri.28151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Magnetic resonance elastography (MRE) is an imaging technique that can noninvasively assess the shear properties of the intervertebral disc (IVD). Unlike the standard gradient recalled echo (GRE) MRE technique, a spin-echo echo-planar imaging (SE-EPI) sequence has the potential to improve imaging efficiency and patient compliance. PURPOSE To validate the use of an SE-EPI sequence for MRE of the IVD compared against the standard GRE sequence. STUDY TYPE Cross-over. SUBJECTS Twenty-eight healthy volunteers (15 males and 13 females, age range: 19-55). FIELD STRENGTH/SEQUENCE 3 T; GRE, SE-EPI with breath holds (SE-EPI-BH) and SE-EPI with free breathing (SE-EPI-FB) MRE sequences. ASSESSMENT MRE-derived shear stiffnesses were calculated via principal frequency analysis. SE-EPI derived shear stiffness and octahedral shear strain signal-to-noise ratios (OSS-SNR) were compared against those derived using the GRE sequence. The reproducibility and repeatability of SE-EPI stiffness measurements were determined. Shear stiffness was evaluated in the nucleus pulposus (NP) and annulus fibrosus (AF) regions of the disc. Scan times between sequences were compared. STATISTICAL TESTS Linear mixed models, Bland-Altman plots, and Lin's concordance correlation coefficients (CCCs) were used with P < 0.05 considered statistically significant. RESULTS Good correlation was observed between shear stiffnesses derived from the SE-EPI sequences with those derived from the GRE sequence with CCC values greater than 0.73 and 0.78 for the NP and AF regions, respectively. OSS-SNR was not significantly different between GRE and SE-EPI sequences (P > 0.05). SE-EPI sequences generated highly reproducible and repeatable stiffness measurements with CCC values greater than 0.97 in the NP and AF regions and reduced scan time by at least 51% compared to GRE. SE-EPI-BH and SE-EPI-FB stiffness measurements were similar with CCC values greater than 0.98 for both regions. DATA CONCLUSION SE-EPI-based MRE-derived stiffnesses were highly reproducible and repeatable and correlated with current standard GRE MRE-derived stiffness estimates while reducing scan times. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Megan Co
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Huiming Dong
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Daniel J Boulter
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Xuan V Nguyen
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Safdar N Khan
- Department of Orthopedics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Brian Raterman
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Brett Klamer
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA
| | - Arunark Kolipaka
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Benjamin A Walter
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Spine Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Tavakoli J, Geargeflia S, Tipper JL, Diwan AD. Magnetic resonance elastography: A non-invasive biomarker for low back pain studies. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
5
|
Liu J, Wang D, Li Y, Zhou Z, Zhang D, Li J, Chu H. Overall Structure Construction of an Intervertebral Disk Based on Highly Anisotropic Wood Hydrogel Composite Materials with Mechanical Matching and Buckling Buffering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15709-15719. [PMID: 33755430 DOI: 10.1021/acsami.1c02487] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural intervertebral disks (IVDs) exhibit distinctive anisotropic mechanical support and dissipation performances due to their well-developed special microstructures. As the intact IVD structure degrades, the absence of function will lead to severe backache. However, the complete simulation for the characteristic structure and function of native IVD is unattainable using current methods. In this work, by overall construction of the two-phase structure of native IVD (extraction of the naturally aligned cellulose framework and in situ polymerization of the nanocomposite hydrogel), a complete wood framework IVD (WF-IVD) is manufactured containing elastic nanocomposite hydrogel-based nucleus pulposus (NP) and anisotropic wood cellulose hydrogel-based annulus fibrosus (AF). In addition to the imitation and construction of the natural structure, WF-IVD also achieves favorable mechanical matching and good biocompatibility and possesses unique mechanical buckling buffer characteristics owing to the aligned fiber bundles. This study offers a promising strategy for the mimicking and construction of complex native tissues.
Collapse
Affiliation(s)
- Jinming Liu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Dingqian Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yanyan Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ziqi Zhou
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Dongyue Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hetao Chu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Ashinsky BG, Gullbrand SE, Wang C, Bonnevie ED, Han L, Mauck RL, Smith HE. Degeneration alters structure-function relationships at multiple length-scales and across interfaces in human intervertebral discs. J Anat 2020; 238:986-998. [PMID: 33205444 DOI: 10.1111/joa.13349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disc (IVD) degeneration and associated back pain place a significant burden on the population. IVD degeneration is a progressive cascade of cellular, compositional, and structural changes, which results in a loss of disc height, disorganization of extracellular matrix architecture, tears in the annulus fibrosus which may involve herniation of the nucleus pulposus, and remodeling of the bony and cartilaginous endplates (CEP). These changes to the IVD often occur concomitantly, across the entire motion segment from the disc subcomponents to the CEP and vertebral bone, making it difficult to determine the causal initiating factor of degeneration. Furthermore, assessments of the subcomponents of the IVD have been largely qualitative, with most studies focusing on a single attribute, rather than multiple adjacent IVD substructures. The objective of this study was to perform a multiscale and multimodal analysis of human lumbar motion segments across various length scales and degrees of degeneration. We performed multiple assays on every sample and identified several correlations between structural and functional measurements of disc subcomponents. Our results demonstrate that with increasing Pfirrmann grade there is a reduction in disc height and nucleus pulposus T2 relaxation time, in addition to alterations in motion segment macromechanical function, disc matrix composition and cellular morphology. At the cartilage endplate-vertebral bone interface, substantial remodeling was observed coinciding with alterations in micromechanical properties. Finally, we report significant relationships between vertebral bone and nucleus pulposus metrics, as well as between micromechanical properties of the endplate and whole motion segment biomechanical parameters, indicating the importance of studying IVD degeneration as a whole organ.
Collapse
Affiliation(s)
- Beth G Ashinsky
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Sarah E Gullbrand
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Chao Wang
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, USA
| | - Edward D Bonnevie
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Lin Han
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Harvey E Smith
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| |
Collapse
|
7
|
Guidetti M, Royston TJ. Analytical solution for diverging elliptic shear wave in bounded and unbounded transverse isotropic viscoelastic material with nonhomogeneous inner boundary. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:EL59. [PMID: 30710967 PMCID: PMC6345629 DOI: 10.1121/1.5088028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A theoretical approach was recently introduced by Guidetti and Royston [J. Acoust. Soc. Am. 144, 2312-2323 (2018)] for the radially converging elliptic shear wave pattern in transverse isotropic materials subjected to axisymmetric excitation normal to the fiber axis at the outer boundary of the material. This approach is enabled via a transformation to an elliptic coordinate system with isotropic properties. The approach is extended to the case of diverging shear waves radiating from a cylindrical rod that is axially oscillating perpendicular to the axis of isotropy and parallel to the plane of isotropy.
Collapse
Affiliation(s)
- Martina Guidetti
- Richard and Loan Hill Department of Bioengineering, 851 South Morgan Street, MC 063, University of Illinois at Chicago, Chicago, Illinois 60607, ,
| | - Thomas J Royston
- Richard and Loan Hill Department of Bioengineering, 851 South Morgan Street, MC 063, University of Illinois at Chicago, Chicago, Illinois 60607, ,
| |
Collapse
|